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Preface

This book is largely intended as a substitute for Chapter I (and an invitation to Chapter IV) of
Hartshorne [Har77], to be taught as an introduction to varieties over a quarter- or semester-long
course. The main substantive difference is that it incorporates the concept of abstract varieties
defined using atlases, as is commonly done for differentiable manifolds. Although this is, as far as
I am aware, ahistorical,1 it seems to strike a good balance between keeping the material accessible
while providing sufficient generality to serve as the foundation for, e.g., learning about toric varieties.
This opens the door to treating abstract curves in a more geometric manner, and we also include
material on complete varieties and (the geometric forms of) the valuative criteria in the absolute
case. As a result, we give a very geometric proof of the fact that every global regular function
on a projective variety is constant. We have also included material on differential forms, divisors
on curves, and the analytic topology for complex varieties. Scattered through the book are some
theorems with nontrivial proofs (for instance, Theorem 8.4.10 stating that any two points on a
variety may be connected by a chain of curves), as well as some results whose proofs, while relatively
short, illustrate important techniques in algebraic geometry, such as reduction to the universal case
(Corollary 8.4.2) and the study of varieties of interest (such as the secant variety in 9.5.5) by
introducing an auxiliary variety in which existence conditions are replaced by choices of objects.

Following [Har77], we have taken a regular-function-centered approach to defining morphisms
of varieties, which thus leads naturally into scheme theory. Indeed, due to its origins in courses
taught from [Har77], much of our presentation follows [Har77] quite closely. For material not
found in [Har77], many of the proofs follow Shafarevich [Sha94a], [Sha94b], with some influence
also from Mumford [Mum99].

Obviously, the book is still in early draft form. I have not yet included many exercises, with
the most glaring omissions being example-oriented exercises, and exercises in early chapters. Also,
some topics like complete local rings and blow-ups are not yet included.

Conventions. All rings (including algebras over rings) are assumed to be commutative, with
multiplicative identity. In particular, an R-algebra is equivalent to a ring S, together with a
homomorphism R→ S.

Compact topological spaces are not assumed Hausdorff.

1As I understand it, abstract varieties were first introduced by Weil over arbitrary fields, requiring much more
technical definitions.
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CHAPTER 1

Introduction: an overview of algebraic geometry through the lens
of plane curves

Algebraic geometry is a technical subject, and of necessity, much of this book is devoted to
definitions and results of a rather general and abstract nature. We therefore begin much more
concretely, by introducing a number of important concepts in a very down-to-earth context. To
that end, we will discuss plane curves, and elliptic curves in particular. Many of the concepts
alluded to here will be returned to (with varying degrees of completeness) later in the book, while
a few serve only as hints of what lies beyond the scope of what we will cover.

1.1. Plane curves

Algebraic geometry is, in brief, the study of sets of solutions of (possibly multiple) polynomials
in multiple variables. It is the interplay between the geometry of the solution set and the algebra of
the polynomials that gives algebraic geometry its richness. In algebraic geometry, few objects are
as basic as the plane curve. We start with a single polynomial equation f(x, y) = 0 in two variables,
which we will assume for the sake of simplicity has coefficients in Z, so that we can conveniently
consider the curve as defined over Q or over Z/pZ for any p, or in fact over any field. There are then
immediately a range of questions one can ask about the plane curve defined as the set of solutions
of this equation:

• What do the real points of the curve look like? The complex points?
• Does the curve have a point with coordinates in Q?
• What can one say about the number of solutions over Q? Over a number field? Over a

finite field?

Generally, if f(x, y) is linear or quadratic, these questions can be answered in a rather complete
manner. However, the cubic case becomes much deeper, and is the subject of the theory of elliptic
curves. Before delving into this, we investigate some more general ideas.

We now begin discussing some basic properties of the geometry and topology of plane curves.

Smoothness. Over R or C, it makes sense to ask whether the curve defined by f(x, y) = 0
is a (one-dimensional) manifold. By the implicit function theorem, one can check that this is the
case if there is no point with

f(x0, y0) =
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0.

Over C, the converse also holds. For a plane curve defined by f(x, y) = 0, if this property is satisfied
we say it is smooth or nonsingular. Otherwise, any point satisfying the above simultaneous
vanishings is called a singularity of the curve.

Warning 1.1.1. Over non-algebraically-closed fields, the notions of smooth and non-singular
are not equivalent, but they are closely related, and for the purposes of this introduction we will
use them interchangeably.

These ideas will be explored in more detail in Chapter 4.
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Figure 1. Complex plane curves of genus 0, 1 and 3.

Compactness. Another property we might wish to study is compactness. If we consider plane
curves over R, we see that many of them (e.g., a line, or xy = 1, or y = x2, or y2 = x3 − x) have
points going “to infinity”, and therefore are not compact (in the usual topology on R2). There are
some exceptions, like the circle. However, over C it turns out that a plane curve always has points
going to infinity, and is therefore never compact.

We wish to compactify the picture by adding “points at infinity,” and the way to accomplish
this is to work not in the affine plane A2, but in the projective plane P2.

Informally, one may think of the projective plane as the affine plane together with one “point
at infinity” for each line through the origin in the affine plane. A plane curve goes through a given
“point at infinity” if it has a branch with slope approaching the slope of the corresponding line.

More formally, we can think of the projective plane as having three homogeneous coordinates
X,Y, Z, with the points of P2 corresponding to triples (X0, Y0, Z0) with not all three values equal
to 0, and considered up to simultaneous scaling. With this description, the affine plane could be
the open subset with Z0 6= 0; on this subset, we can always scale so that Z0 = 1, so we find that
the points correspond to points (x, y, 1), as they should. The points at infinity are then the points
with Z0 = 0.

In this context, we observe that although the value of a polynomial F (X,Y, Z) is no longer
well-defined, if F is homogeneous (that is, has all monomials of equal total degree) then whether
or not it is zero at (X0, Y0, Z0) remains well defined. Thus, we can talk about the zero set of a
homogeneous polynomial in P2. If we have started with f(x, y) = 0 in the (affine) plane, we can
obtain the closure in projective space by setting the associated polynomial F (X,Y, Z) to be the
same as f , with X and Y in place of x and y, and adding in just enough powers of Z to each term
so that the total degree becomes constant.

These ideas are explored in Chapters 6 and 8.
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In order to talk about smoothness of a projective curve defined by F (X,Y, Z) = 0, we can
simply apply our definition of smoothness for affine curves to the three curves F (x, y, 1) = 0,
F (x, 1, z) = 0, and F (1, y, z) = 0.

A few theorems. Having discussed smoothness and projective space, we can now address one
of the above questions with the following:

Theorem 1.1.2. Let C be a smooth curve in P2 over C. Then the (complex) points of C natu-
rally form a compact, connected, orientable surface (in the sense of a 2-dimensional real manifold).

This combines Corollary A.2.4, Corollary A.4.1, and Theorem A.5.1.
Using classification of surfaces, we can then define:

Definition 1.1.3. A complex smooth projective plane curve has genus g if the associated
topological surface has genus g; that is, if it has g “holes”.

We can now state another theorem, the “degree-genus formula,” which begins to hint at the
interplay between algebra and geometry which arises in the subject.

Theorem 1.1.4. Let C be a smooth projective plane curve defined as the zero set of a polynomial
F (X,Y, Z). If F has degree d, and C has genus g, then

g =
(d− 1)(d− 2)

2
.

See Exercise 11.2.6 for a proof of this. Note that not every genus can occur in this way (for
instance, genus 2 is not possible). It turns out that every genus can occur for smooth projective
curves imbedded in projective three-space, and in fact, every smooth projective curve can be
imbedded in projective three-space. In fact, we will introduce a more general notion of abstract
curve, and see in Chapter 7 that every abstract smooth curve can be realized as an open subset of a
smooth projective curve, so in fact every smooth curve can be imbedded in projective three-space.

1.2. Elliptic curves

We now specialize from plane curves to elliptic curves. For our purposes, we start with the
following simple definition:

Definition 1.2.1. The curve defined by f(x, y) = 0 is an elliptic curve if f(x, y) is of the
form y2−x3−ax− b for some a, b, and ∆ := −16(4a3 + 27b2) is non-zero. We then say that f(x, y)
is in Weierstrass form.

Why this definition? Over a field of characteristic 6= 2, 3, any plane curve given by an irreducible
cubic polynomial can always be put in the above form after appropriate (linear) change of variables.
The condition that ∆ 6= 0 is more interesting, and already provides an indication of the interplay
between algebra and geometry which is so characteristic of algebraic geometry.

Proposition 1.2.2. For f(x, y) in Weierstrass form, smoothness is equivalent to x3 + ax + b
having distinct roots, which is equivalent to having ∆ 6= 0.

Following our previous discussion, we will frequently wish to consider the corresponding pro-
jective curve, given by the homogeneous equation F (X,Y, Z) = Y 2Z −X3 − aXZ2 − bZ3 = 0.
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Figure 2. Four possibilities for real cubic curves in Weierstrass form.

Real points. We first consider the real points of the curve. Here, it is not hard to see that
the only possibilities for a curve in Weierstrass form are: a connected smooth curves with branches
going off to infinity; a smooth curve with one component homeomorphic to a circle, and the other
having branches going off to infinity; a curve with a “node”, i.e., a point at which it crosses itself;1

or a curve with a “cusp”, where it has a sharp point. Because of the hypothesis that ∆ 6= 0, only
the first two correspond to elliptic curves.

We next note that the unbounded branches both have slopes which approach vertical, so the
unique point at infinity which we have to add is the one which corresponds to a vertical line. We
can see this explicitly from the above projective equation: points at infinity correspond to Z = 0,
and in this case we must have X3 = 0, and hence X = 0, so the point at infinity (in projective
coordinates) must be (0, 1, 0).

In general, when one projectivizes in this manner, one may inadvertently introduce singular
points at infinity. However, one checks easily that the point at infinity of an elliptic curve is always
a smooth point, so we see that under our hypothesis that ∆ 6= 0, we have that the corresponding
curve is smooth not only in the affine plane, but also in the projective plane.

Complex points. As we have already mentioned, the complex points of an elliptic curve will
form an orientable surface, and we see from the degree-genus formula that it will have genus 1. We
thus conclude that it is topologically the same as C/Λ, where Λ is a lattice. In fact, this holds in
a stronger sense:

Theorem 1.2.3. Every elliptic curve E has genus 1. In fact, as a complex manifold, E is
isomorphic to C/Λ for some lattice Λ in the complex plane.

Thus, there is a map C → C/Λ → E, which is defined in terms of the Weierstrass ℘ function.
However, while this map is complex analytic, it is very far from being algebraic – in fact, there is
no nonconstant algebraic map from C to a complex elliptic curve.

We notice that the set C/Λ naturally has the structure of an abelian group, inherited from the
addition law on C. This means that for any elliptic curves considered over C, the points have an
abelian group structure as well.

Given this version of the group law, it is quite easy to describe the n-torsion points of E,
i.e., the points P such that nP = 0. If Λ is generated by τ1, τ2, then the n-torsion points are of the
form a

nτ1 + b
nτ2, for 0 6 a, b 6 n, so we see that the subgroup of n-torsion points is isomorphic to

Z/nZ× Z/nZ.

1It is possible for the branches at which the curve crosses itself to be strictly imaginary, so that the node creates
an isolated real point, as in the case y2 = x3 − 3x− 2.
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Intersection theory and the group law. It is a remarkable fact that under the isomorphism
C/Λ ∼→ E of complex manifolds, the addition law on C/Λ gives rises to an algebraically-defined
addition law on E. This law may be described intrinsically in terms of algebraic geometry using
rudimentary intersection theory. This is one of many examples of an application of a problem
in enumerative geometry (in this case, counting the number of points in the intersection of an
elliptic curve and a line) to a problem having nothing to do with enumeration (constructing a group
law on the set of points of an elliptic curve).

Suppose we have a line L in the projective plane. Our heuristic claim is as follows:
L intersects E in 3 points.
It is in fact true that L intersects E in at most 3 points. To make a precise statement that they

intersect in exactly 3 points, we need to address three issues:

• L might miss E if we look at points over a non-algebraically closed field (e.g., R);
• L intersects E in too few points if L happens to be tangent to E.

Notice that if we were working in the affine plane instead of the projective plane, there would
be the additional issue that L intersects E in too few points if L happens to be vertical.

The first point is easily addressed: we work over an algebraically closed field, such as C (in
fact, we will be able to give a statement in the end which does not require this restriction, but
the situation is quite special to elliptic curves). However, the second point is more substantive.
In this case, it can be addressed on ad-hoc basis by saying if L is tangent to E at a point P , the
intersection point should count for 3 or 2 points, depending on whether P is or is not an inflection
points of E. More generally, for plane curves one can make a complicated set of geometric axioms
for intersection multiplicity; see for instance [Kir92, Thm. 3.18]. However, as one sees in
an introductory schemes course, one of the great benefits of scheme theory (and particularly non-
reduced schemes) is a very clean and simple definition of intersection multiplicity. In any case,
once one has an appropriate definition of intersection multiplicity, our statement for lines and
elliptic curves is a special case of Bezout’s theorem:

Theorem 1.2.4. Let C,D be distinct smooth curves in the projective plane, of degrees d, e,
and defined over an algebraically closed field k. Then the number of points of C ∩ D, counting
multiplicity, is precisely d · e.

In fact, the condition that C and D are smooth is not necessary. We give a proof of the theorem
in the case that at least one is smooth in Exercise 9.3.20. Given this theorem, we can define an
operation

∗ : E × E → E

by setting P ∗Q to be the third point of intersection of E with the line L through P and Q (where
if P = Q, we let L be the tangent line to E at that point).

If we denote by O the point at infinity of E, we can define the addition law

+ : E × E → E

by P +Q := (P ∗Q) ∗O. One then has:

Theorem 1.2.5. The operation + defines an abelian group law on E, with the identity element
given by O, and the inverse of a point (x, y) given by (x,−y).

In fact, everything is easy to check except the associativity of the operation. Elementary proofs
of associativity can be given either algebraically or geometrically, but either approach is rather
Byzantine. There are however very elegant proofs which take a more sophisticated approach, using
Picard varieties.

Furthermore, if points P,Q have coefficients in some field k, it is easy to check that P ∗Q, and
hence P +Q, will have coefficients in k:
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Lemma 1.2.6. The group law on E makes E(k), the points of E with coefficients in k, into a
group, for any field k in which ∆(E) 6= 0.

One can also show:

Theorem 1.2.7. The group law on E(C) defined by intersection theory is the same as the group

law on E(C) defined by an isomorphism C/Λ ∼→ E(C) for some lattice Λ.

From here, it is not hard to prove:

Corollary 1.2.8. If k is an algebraically closed field of characteristic 0, then the subgroup of
n-torsion points of E(k) is isomorphic to Z/nZ× Z/nZ.

This is a basic example of the usefulness of studying an algebraic variety from a complex-analytic
perspective.

The j-invariant. It turns out that while Weierstrass equations are a useful tool, they are
not ideal for classifying elliptic curves, because two different Weierstrass equations may give the
“same” curve (for instance, differing only by a change of coordinates). For this, one uses instead
the following:

Definition 1.2.9. The j-invariant of an elliptic curve y2 = x3 + ax+ b is given by

j(E) := 1728
4a3

4a3 + 27b2
.

One can define in general what it should mean for curves to be isomorphic as abstract algebraic
curves, and then it is not too hard to prove the following:

Proposition 1.2.10. Let k be an algebraically closed field. Two elliptic curves over k are
isomorphic (over k) if and only if they have the same j-invariant.

Thus, this can be considered to give a classification of elliptic curves: they are in correspondence
with elements of k. Notice that we can then think of a “moduli space” of elliptic curves, meaning
a space whose points correspond to elliptic curves. In this case, the space is simply the affine line
A1. This concept of moduli space can be generalized to curves of higher genus as well, and the
geometry of moduli spaces of curves gets much more complicated as the genus increases. Indeed,
moduli spaces of curves remain an active subject of research today.
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CHAPTER 2

Affine algebraic varieties

In this chapter, we study algebraic sets and algebraic varieties in affine space, relating them to
ideals in polynomial rings, and developing the basic properties of the Zariski topology.

2.1. Zero sets and the Zariski topology

The basic idea is that an affine algebraic set should be the zero set of a system of polynomial
equations in several variables.

Example 2.1.1. The zero set of the polynomial 1 is the empty set.

The problem with this point of view is that over R (or Q), the zero set of f(x, y) = x2 + y2 + 1
is also empty. But we don’t want to consider it to be the “same variety,” since it is nonempty over
C (or Q(i)).

Our solution, for the purposes of the present book, is that unless we explicitly say otherwise,
we will always assume we are working with a field k which is algebraically closed.

With this hypothesis, we make some definitions:

Definition 2.1.2. Affine space of dimension n over k, denoted by Ank (or An when k is prespec-
ified) is the set of n-tuples of elements of k. An element P ∈ Ank is a point, and if P = (a1, . . . , an),
the ai are the coordinates of P .

We will use the following running notation:

Notation 2.1.3. Let An = k[x1, . . . , xn] be the polynomial ring in n variables over k.

Then any f ∈ An gives a function Ank → k, defined by

P = (a1, . . . , an) 7→ f(a1, . . . , an).

Thus, the zeroes of f are a subset of Ank .

Definition 2.1.4. Given T ⊆ An, the zero set of T is defined by

Z(T ) = {P ∈ Ank : f(P ) = 0 ∀f ∈ T}.

X ⊆ Ank is an algebraic set if there exists T ⊆ An such that X = Z(T ).

Example 2.1.5. With the algebraically closed assumption, if we consider the zero set in A2

of f(x, y) = x2 + y2 + 1, we can describe it quite explicitly. For each value of x, we can set

y =
√
−x2 − 1, and we get one or two points. We get two points if x2 + 1 6= 0 and char k 6= 2, and

we get one point otherwise.

The most basic properties of algebraic sets are expressed by the following proposition, which
says (in an explicit way) that algebraic sets satisfy the conditions to form the closed sets of a
topological space.

Proposition 2.1.6. We have the following:

(1)
⋃m
i=1 Z(Ti) = Z(

∏m
i=1 Ti) for any T1, . . . , Tm ⊆ An.
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(2)
⋂
i∈I Z(Ti) = Z(

⋃
i∈I Ti) for any (possibly infinite) set {Ti ⊆ An : i ∈ I}.

(3) Z(1) = ∅, Z(0) = Ank .

Proof. (1) Induct on m. The case m = 1 is trivial. For m > 1, by the induction hypothesis

we have
⋃m−1
i=1 Z(Ti) = Z(

∏m−1
i=1 Ti), so it is enough to treat the case m = 2. Now, if P ∈

Z(T1)
⋃
Z(T2), then P ∈ Z(Ti) for i = 1 or 2, which means either f(P ) = 0 for all f ∈ T1

or f(P ) = 0 for all f ∈ T2. Either way, we conclude that f(P ) = 0 for any f ∈ T1T2, so

P ∈ Z(
∏m−1
i=1 Ti). On the other hand, suppose that P ∈ Z(T1T2), and suppose that P 6∈ Z(T1).

Then for some f ∈ T1, we have f(P ) 6= 0. But fg(P ) = 0 for all g ∈ T2 by hypothesis, so we
conclude that g(P ) = 0 for all g ∈ T2, and hence P ∈ Z(T2).

(2) and (3) are clear from the definitions. �

The proposition allows us to define a topology on the set Ank .

Definition 2.1.7. The Zariski topology on Ank is the topology whose closed sets are the
algebraic sets.

We will be thinking of algebraic sets as topological spaces, using the subspace topology. How-
ever, ultimately this will not be enough to capture their structure, leading us also to consider what
functions we should be studying on them.

Remark 2.1.8. The Zariski topology is compatible with classical topologies (e.g., when k = R
or C) in the sense that Zariski closed subsets are also closed in classical topologies. But the Zariski
topology is much coarser, and is consequently a very pathological topology! For instance, it is almost
never Hausdorff, but it is always compact (if one does not require Hausdorff in the definition of
compactness). A substantial portion of the foundations of algebraic geometry involve dealing with
the deficiencies of this topology.

Definition 2.1.9. A topological space X is irreducible if for all X1, X2 ⊆ X closed with
X1 ∪X2 = X, we have X1 = X or X2 = X.

Remark 2.1.10. Irreducibility is equivalent to every open subset being dense, so an irreducible
topological space has a very coarse topology. The only irreducible Hausdorff space is a point!

Definition 2.1.11. An affine (algebraic) variety is an irreducible closed subset of Ank , in
the Zariski topology (i.e., an irreducible algebraic set).

Example 2.1.12. Z(xy) ⊆ A2 is not irreducible, since it is equal to Z(x) ∪ Z(y).

A point is obviously irreducible. A slightly less trivial example:

Example 2.1.13. The Zariski topology on A1: we claim the closed sets are the finite sets
(including the empty set), together with all of A1. Indeed, given any finite set of elements of k, it
can be expressed as Z(f) for some f ∈ k[x]. On the other hand, given a nonempty T ⊆ k[x], if
T = (0) then Z(T ) = A1. Otherwise, T contains some f 6= 0, and Z(T ) ⊆ Z(f), which is a finite
set. This proves the claim.

Note that in particular, we conclude that because algebraically closed fields are always infinite,
A1 is irreducible, hence a variety.

In higher dimensions, it is harder to use such direct analysis to prove irreducibility, and the
connection to algebra will be very helpful.

We will show in Proposition 2.3.6 below that every algebraic set can be expressed as a fi-
nite union of algebraic varieties. This is why it is common to restrict attention primarily to the
irreducible case.
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Warning 2.1.14. The definition of “variety” is not completely standard: sometimes authors
do not require irreducibility. The ambiguity is even more pronounced over non-algebraically-closed
fields.

Exercise 2.1.15. Identifying the sets A2
k = k2 = A1

k × A1
k, describe the closed subsets in the

product topology, and show that the Zariski topology on A2
k is strictly finer than the product

topology on A1
k × A1

k.

Exercise 2.1.16. Let S ⊆ Ank be a subset with the property that if (a1, . . . , an) ∈ S, then
(λa1, . . . , λan) ∈ S for all λ ∈ k. Suppose f ∈ I(S), and write f = f0 + f1 + · · · + fd, where each
fi is homogeneous of degree i. Then show that fi ∈ I(S) for each i.

Exercise 2.1.17. Let X be a topological space.

(a) Show that if Y ⊆ X is dense and irreducible, then X is also irreducible.
(b) Show that if X is the continuous image of an irreducible space, then X is irreducible.
(c) Suppose Y ⊆ X has the following property: for every P ∈ X r Y , there exists a space Z

and a continuous map f : Z → X such that P ∈ f(Z) and f−1(Y ) is dense in Z. Then
show that Y is dense in X.

2.2. Zero sets and ideals

In order to relate algebraic sets to algebra, the fundamental observation is the following: given
T ⊆ An, if I is the ideal generated by T , then we have Z(T ) = Z(I). So when dealing with algebraic
sets and the Zariski topology, it is enough to consider sets Z(I), where I ⊆ An is an ideal.

This is very helpful, since the set of ideals of An has a lot more structure than the set of subsets
of An!

As a first illustration of the usefulness of the algebraic point of view, one might wonder whether
there are some algebraic sets which require infinitely many polynomials to define. This is ruled out
by the following basic theorem of commutative algebra:

Theorem 2.2.1 (Hilbert basis). If R is a polynomial ring in finitely many variables over a
Noetherian ring, then R is Noetherian.

Recall that a ring has every ideal finitely generated if and only if every ascending chain of ideals
stabilizes (§1.4 of [Eis95]). Such a ring is Noetherian. For the proof of the theorem, see Theorem
1.2 of [Eis95].

As an immediate consequence since a field is Noetherian, we conclude:

Corollary 2.2.2. Every algebraic set in An is Z(f1, . . . , fm) for some finite set f1, . . . , fm ∈
An.

In order to more fully explore the relationship between algebraic sets and ideals, the next
question to address is:

Question 2.2.3. When do we have Z(I) = Z(J) for two different ideals I, J of An?

Example 2.2.4. In A1, we have Z(f) = Z(f2) for any f ∈ k[x], since f and f2 have the same
set of zeroes. More generally, if we have f, g ∈ k[x] such that for m sufficiently large, f |gm and
g|fm, then Z(f) = Z(g), and in fact the converse also holds. This turns out to generalize.

Recall that if I ⊆ An is an ideal, then

rad I := {f ∈ An : fm ∈ I for some m ∈ N}.
Then because taking powers doesn’t change the zero set of a polynomial, it is clear that:
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Proposition 2.2.5. Given I ⊆ An, we have Z(I) = Z(rad I).

Note that this implies that for studying algebraic sets, it is enough to consider sets Z(I) where
I is a radical ideal (i.e., equal to its own radical).

In order to pursue this further, we define:

Definition 2.2.6. Given Y ⊆ An, set I(Y ) = {f ∈ An : f(P ) = 0 ∀P ∈ Y }.

Observe that in symbols, to say f ∈ I(Y ) is equivalent to saying that Y ⊆ Z(f).
It is clear that I(Y ) is always an ideal of An, and in fact, we easily see:

Proposition 2.2.7. For any Y ⊆ An, the set I(Y ) is a radical ideal.

We also have the following basic observations:

Proposition 2.2.8. Given T1, T2 ⊆ An (not necessarily ideals), and S1, S2 ⊆ An (not neces-
sarily algebraic sets), we have:

(1) T1 ⊆ T2 ⇒ Z(T1) ⊇ Z(T2).
(2) S1 ⊆ S2 ⇒ I(S1) ⊇ I(S2).
(3) I(S1 ∪ S2) = I(S1) ∩ I(S2).

We can then conclude the following:

Corollary 2.2.9. If S ⊆ Ank is any subset, then Z(I(S)) = S, the closure of S in the Zariski
topology.

If S is closed and irreducible, then I(S) is a prime ideal.

Proof. For the first assertion, Z(I(S)) is closed by definition, and clearly contains S. On the
other hand, given S′ closed and containing S, we want to show that S′ ⊇ Z(I(S)). Since S′ ⊇ S,
using (1) and (2) of Proposition 2.2.8 we find that Z(I(S′)) ⊇ Z(I(S)). Since S′ is assumed close,
write S′ = Z(I ′) for some ideal I ′; then I(Z(I ′)) ⊇ I ′ by definition, so again using (1) of Proposition
2.2.8 we find

S′ = Z(I ′) ⊇ Z(I(Z(I ′))) = Z(I(S′)) ⊇ Z(I(S)),

as desired.
Next, suppose that S is closed and irreducible. Suppose fg ∈ I(S): then S ⊆ Z(fg) =

Z(f)∪Z(g), so by irreducibility we conclude that S ⊆ Z(f) or S ⊆ Z(g), but this means precisely
that f ∈ I(S) or g ∈ I(S). Hence, I(S) is prime, as desired. �

We now use the following key result from commutative algebra. Following the tradition in
commutative algebra, the name is left in German to make it more intimidating.

Theorem 2.2.10 (Hilbert Nullstellensatz1). Given I ⊆ An an ideal, and f ∈ An such that
f(P ) = 0 for all P ∈ Z(I), then fm ∈ I for some m > 0.

See Theorem 1.6 of [Eis95]. Note that unlike the Hilbert basis theorem, the Nullstellensatz
is special to polynomial rings over an algebraically closed field (although the difficult part of the
proof can be formulated more generally; see Remark 2.2.22 below).

Corollary 2.2.11. For any ideal I ⊆ An, we have I(Z(I)) = rad(I).
If I is prime, then Z(I) is irreducible.

1“Zero set lemma”
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Proof. Indeed, the first part is just a rephrasing of the Nullstellensatz, noting that I(Z(I)) =
I(Z(rad(I)) ⊇ rad(I) is clear from the definitions.

For the second part, if I is prime, suppose Z(I) = Y1∪Y2 for Yi ⊆ Ank closed. Then because prime
ideals are radical, we have by the first part that I = I(Z(I)) = I(Y1) ∩ I(Y2). Then I = I(Y1) or
I = I(Y2) by Exercise 2.2.12 below. We then have Z(I) = Z(I(Y1)) = Y1 or Z(I) = Z(I(Y2)) = Y2,
proving the desired irreducibility. �

Exercise 2.2.12. Show that if p ⊆ R is a prime ideal of a ring, and p = I ∩ J for ideals I, J ,
then p = I or p = J .

We thus conclude the following key foundational result.

Theorem 2.2.13. There is a one-to-one, inclusion-reversing correspondence

{algebraic sets Y ⊆ Ank} ←→ {radical ideals I ⊆ An}
given by

Y 7−→ I(Y )

Z(I) ←− [ I.

Moreover, under this correspondence, varieties correspond to prime ideals.

Example 2.2.14. Note that any point (a1, . . . , an) is always a closed subset, corresponding to
the (maximal) ideal (x1 − a1, . . . , xn − an) (why is this maximal? Because if we mod out by it, we
get k).

On the other hand, if m ⊆ An is a maximal ideal, it corresponds to a minimal closed subset of
An, which must be a single point.

Thus, points of Ank correspond to maximal ideals of An. Moreover, we note that the ideal
(x1 − a1, . . . , xn − an) is precisely the ideal of polynomials vanishing at (a1, . . . , an). Indeed, the
latter ideal contains the former, so they must agree since we already know that (x1−a1, . . . , xn−an)
is maximal.

Now we can give many examples of varieties, starting with the most basic ones.

Example 2.2.15. An is a variety, since it corresponds to the prime ideal (0) of An.

Example 2.2.16. If f ∈ An is an irreducible polynomial, then Z(f) is a variety in Ank , because
An is a unique factorization domain, so f generates a prime ideal.

Definition 2.2.17. A variety of the form Z(f) for f ∈ An irreducible is a hypersurface.

We will see in Corollary 2.4.18 below that a hypersurface can be defined equivalently as a
subvariety of Ank of codimension 1.

The following definition establishes the connection between algebraic sets and rings.

Definition 2.2.18. If Y ⊆ Ank is an algebraic set, the affine coordinate ring A(Y ) of Y is
An/I(Y ).

The intuition is that this is the ring of algebraic functions on Y . If we have a polynomial, it
gives a function of Y , but two polynomials give the same function if (in fact, if and only if) their
difference is in I(Y ). The only part which is subtle is that it’s not a priori clear that every algebraic
function should come from a polynomial on all of Ank , but we’ll return to this later to justify it
more fully.

Remark 2.2.19. Since Z(I) is radical, we see that a coordinate ring is always nilpotent-free,
and is finitely generated over k. Conversely, if a k-algebra R is nilpotent-free and generated over
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k by y1, . . . , yn, then there is a surjection k[x1, . . . , xn] → R defined by xi 7→ yi, and if the kernel
of this surjection is denoted by I, we see that R ∼= A(Z(I)). Thus, the possible coordinate rings of
algebraic sets are precisely the nilpotent-free, finitely generated k-algebras.

In addition, we see that the coordinate rings of affine varieties are precisely the integral domains
which are finitely generated k-algebras.

Exercise 2.2.20. Show that if f(x, y) ∈ k[x, y] is of the form y2 − g(x) for a nonconstant
polynomial g(x) ∈ k[x], then f(x, y) is irreducible, so that Z(f(x, y)) is irreducible and I(Z(f(x, y))
is generated by f(x, y).

Exercise 2.2.21. All of our definitions so far make perfect sense even if k is not algebraically
closed, and most of our basic results still hold. In fact, the only algebra theorem we have used
which requires algebraic closure is the Nullstellensatz.

(a) Over your favorite non-algebraically closed field, give a counterexample to the Nullstellen-
satz.

(b) Show by example that if k is not algebraically closed, a prime ideal may have a nonempty
zero set which is not irreducible.

Remark 2.2.22. The Nullstellensatz is not, strictly speaking, a purely algebraic statement. As
we have noted, as stated it also does not hold for non-algebraically-closed fields. On the other
hand, it is not very hard to develop an equivalent, purely algebraic statement which does hold for
arbitrary fields. As noted in Example 2.2.14, the Nullstellensatz implies that the maximal ideals
of An are all of the form (x1 − a1, . . . , xn − an), and in particular, modding out by any maximal
ideal yields the field k. In addition, if p is a prime ideal of An, and f ∈ An, suppose f ∈ m for
every maximal ideal m of An containing p. This then implies that f(P ) = 0 for all P ∈ Z(p), so
f ∈ I(Z(p)) = p. Thus, the Nullstellensatz implies:

(i) for every maximal ideal m of An, we have An/m = k;
(ii) every prime ideal of An is equal to the intersection of the maximal ideals containing it.

Conversely, suppose we know these two statements. We claim that the Nullstellensatz follows.
Indeed, given I ⊆ An, and f ∈ An such that f(P ) = 0 for all P ∈ Z(I), let p ⊆ An be a prime ideal
containing I, and m ⊆ An a maximal ideal containing p. Then An/m = k by (i), so let (a1, . . . , an)
be the images of (x1, . . . , xn) ∈ k; thus, the kernel of An → An/m contains (x1 − a1, . . . , xn − an),
and since the latter is a maximal ideal, we conclude that m = (x1 − a1, . . . , xn − an). Let P =
(a1, . . . , an); then Z(m) = {P}, so I(Z(m)) = I(P ) = m. Additionally, since m ⊇ p, we have
Z(p) ⊇ Z(m) = {P}, so f(P ) = 0 by hypothesis, and f ∈ I(Z(m)) = m. Since this held for all m
containing p, we conclude by (ii) that f ∈ p. Now, in general the radical of I is the intersection of
the prime ideals containing I (Proposition 1.14 of [AM69]), so we conclude that f is in the radical
of I, as desired.

Thus, we have translated the Nullstellensatz into a purely algebraic statement. In fact, we can
also see that (ii) follows from (i). First, observe that if (i) holds, then it also holds for every ring
R finitely generated over k, since every such ring is a quotient of some An. Now, given p ∈ An, to
prove (ii) it suffices to prove that the intersection of the maximal ideals of R := An/p is equal to 0.
Given f ∈ R nonzero, the ring of fractions Rf contains a maximal ideal m. Then m ∩R is a prime
ideal not containing f , so it suffices to see that it is maximal. But Rf ∼= R[x]/(xf − 1) is finitely
generated over R, and hence over k, so by (i), we have Rf/m = k. R/(m∩R) is a subring of Rf/m,
but still contains k, so we conclude that R/(m ∩R) = k, and m ∩R is maximal, as desired.

To summarize, we have seen that in fact, the Nullstellensatz is equivalent to the algebra state-
ment that for any maximal ideal m of An, we have An/m = k. We conclude by briefly discussing
the generalization to arbitrary fields. Obviously, if k is not algebraically closed, it is not true that
An/m = k for all maximal ideals m; in fact, every finite field extension of k occurs in this fashion.
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However, it turns out to be true that An/fm is always a finite extension of k. Equivalently, if a
field extension of k is transcendental, it cannot be finitely generated as a ring. This is intuitively
sensible, since if t is transcendental over k, there are infinitely many irreducible polynomials in
k[t], and making them all invertible should require infinitely many inverses. In fact, one can make
this into a proof (see Proposition 7.9 of [AM69]). Finally, we mention that while our above proof
that (i) implies (ii) is worded for the algebraically closed case, the argument can be adapted to the
general setting, so (ii) holds as stated for arbitrary fields.

2.3. Noetherian spaces

We now further investigate the basic properties of the Zariski topology.

Definition 2.3.1. A topological space X is Noetherian if every descending chain

Y1 ⊇ Y2 ⊇ Y3 ⊇ . . .
of closed subsets stabilizes.

This is an absurd condition, for any reasonable topological space. However, algebraic varieties
with the Zariski topology are not reasonable!

The following proposition is clear.

Proposition 2.3.2. A subspace of a Noetherian space is Noetherian.

Remark 2.3.3. Note that the definition of Noetherian immediately implies that if X is Noe-
therian, it must be compact. Combining this with Proposition 2.3.2, we see that every open subset
of a Noetherian space is also compact, amply demonstrating the pathology of such spaces!

We now observe:

Proposition 2.3.4. Ank is Noetherian.

Proof. Given Y1 ⊇ Y2 ⊇ . . . , we then have I(Y1) ⊆ I(Y2) ⊆ . . . . Then because An is a
Noetherian ring by the Hilbert basis theorem (Theorem 2.2.1), we know that the chain of ideals
must stabilize, so by Theorem 2.2.13, the original chain stabilizes as well. �

Corollary 2.3.5. Any algebraic set is Noetherian.

Proposition 2.3.6. Any Noetherian space X can be represented uniquely as a finite union
Y1 ∪ · · · ∪ Yn of irreducible closed subsets, with no Yi contained in any other.

Proof. In fact, it is easier to prove that every closed subset of X can be written in the desired
way. Let S be the set of closed subsets of X which cannot be written as a finite union of closed
irreducible subsets; we will show that S is empty. If S is nonempty, then because X is Noetherian, it
must contain a minimal element, say Z. Then Z cannot be irreducible, so we can write Z = Z1∪Z2,
with Z 6= Zi for i = 1, 2. By minimality of Z, each of the Zi is a finite union of irreducible closed
subsets, but then so is Z, which is a contradiction. Thus, we must have that S is empty, and X
can be written as a finite union of closed irreducible subsets. It is clear that we can require that
none of the Yi are contained in any other, simply by removing any which are.

It remains to show uniqueness, which we argue similarly: let Z be a minimal closed subset of
X such that

Z = Y1 ∪ · · · ∪ Ym = Y ′1 ∪ · · · ∪ Y ′m′
for some closed irreducible Yi and Y ′i , not all the same, and with no containments on either side.
Then Y1 = (Y1 ∩ Y ′1) ∪ · · · ∪ (Y1 ∩ Y ′m′), so by irreducibility, we have Y1 = Y1 ∩ Y ′i for some i, and
therefore Y1 ⊆ Y ′i . Arguing similarly, we have Y ′i ⊆ Yj for some j, so Y1 ⊆ Yj , and by hypothesis
we have j = 1, and Y ′i = Y1. But then if we set Z ′ = Y2∪· · ·∪Ym =, we see that also Z ′ =

⋃
6̀=i Y

′
i ,
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since both can be expressed as the closure of the complement of Y1 = Y ′i in Z. It then follows from
irreducibility of Y1 that Y1 6⊆ Z ′, so we have Z ′ ( Z, contradicting minimality of Z. �

Definition 2.3.7. The Yi of Proposition 2.3.6 are the irreducible components of X.

Remark 2.3.8. It follows that a Noetherian space can be Hausdorff if and only if it is a finite
union of points.

Corollary 2.3.9. Every algebraic set is (uniquely) a finite union of varieties.

This is the reason for the convention of restricting to the irreducible case in many situations.

Example 2.3.10. Returning to Z(xy) ⊆ A2
k, we see that the irreducible components are Z(x)

and Z(y), each of which is a variety (since x and y are irreducible).

2.4. Dimension

One of the advantages of working with Noetherian spaces is that one can use a very elementary
notion of dimension.

Definition 2.4.1. The dimension of X is the supremum of all m such that there exists a
chain Z0 ( Z1 ( · · · ( Zm of irreducible closed subsets of X.

The intuition is that the any proper closed subvariety of a variety should have strictly smaller
dimension, and conversely it should always be possible to find a subvariety with dimension exactly
1 less. In particular, an algebraic curve is a variety whose only (proper) closed subvarieties are
points.

Remark 2.4.2. Although this definition makes sense for any topological space, it is only a
reasonable notion when X is Noetherian, or in similar circumstances. For instance, the dimension
(in this sense) of Rn in the Euclidean topology is 0.

Even when X is Noetherian, the dimension need not be finite: although any descending chain
of closed subsets must be finite, there could be an infinite ascending chain. Furthermore, even if
there is no infinite chain, as is the case for natural Noetherian spaces arising in algebraic geometry,
there could be infinitely many incomparable chains, of arbitrarily long length.

Example 2.4.3. Using our prior description of its topology (Example 2.1.13), the dimension of
A1 is 1.

The definition of dimension, while easy to state, is not so easy to use directly. We therefore
develop the connection to algebra, starting with a parallel definition of dimension for rings:

Definition 2.4.4. The (Krull) dimension of a ring R is the supremum of all m such that there
exists a chain

p0 ) p1 ) · · · ) pm

of prime ideals in R.

From our inclusion-reversing bijection between varieties and prime ideals, we immediately see:

Corollary 2.4.5. If Y ⊆ Ank an algebraic set, we have dimY = dimA(Y ).

We now make a related pair of definitions:

Definition 2.4.6. The codimension of an irreducible closed subset Y ⊆ X, denoted codimX Y ,
is the supremum over all m such that there exists a chain Y ⊆ Y0 ( Y1 ( · · · ( Ym of irreducible
closed subsets of X.
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Definition 2.4.7. The height of a prime ideal p in a ring R is the supremum over all m such
that there exists a chain p ⊇ p0 ) p1 ) pm of prime ideals in R.

As with dimension, we see:

Corollary 2.4.8. Given algebraic sets Y ⊆ X, with Y irreducible, the codimension of Y in X
is equal to the height of I(Y )/I(X) in A(X).

Remark 2.4.9. It is not clear that dimY + codimX Y = dimX, since in principle the longest
chain in X might not have Y as one of the elements in it.

For classical algebraic geometry, the fundamental theorem on dimension is the following algebra
fact:

Theorem 2.4.10. Let k be field, and R an integral domain which is a finitely-generated k-
algebra. Then:

(a) The dimension of R is equal to the transcendence degree over k of the fraction field K(R).
(b) For any prime ideal p ⊆ R, we have

height p + dimR/p = dimR.

See Theorem A (§13.1) and Corollary 13.4 of [Eis95].
We immediately conclude:

Corollary 2.4.11. dimAnk = n.

Corollary 2.4.12. Given Y ⊆ X affine varieties,

dimY + codimX Y = dimX.

Note that without Theorem 2.4.10, even the finiteness of dimension is not obvious. In particular,
it is not a general consequence of Noetherianness – see Remark 4.2.9.

We also have:

Proposition 2.4.13. If X is a topological space and Z ⊆ X an irreducible closed subset, then
for any open subset U ⊆ X such that U ∩ Z 6= ∅, we have codimX Z = codimU Z ∩ U .

Proof. It is clear that intersecting with U and taking closures in X creates a bijection between
chains of irreducible closed subsets of X containing Z, and chains of irreducible closed subsets of
U containing Z ∩ U . Thus, the codimensions agree. �

The proof of Proposition 2.4.13 may look like it could also show that dimU = dimX, but this
is not true in general, because the longest chains of irreducible closed subsets in X might contain
subsets in the complement of U . However, in the case of interest to us this will not occur:

Corollary 2.4.14. If X is an affine variety and U ⊆ X a nonempty open subset, then dimU =
dimX.

Proof. Given P ∈ U , Proposition 2.4.13 implies that codimU P = codimX P . But by Corollary
2.4.12, codimX P = dimX, and by definition dimU = supP∈U codimP U , so we conclude dimU =
dimX. �

Another fundamental algebra theorem relating to dimension is the following:

Theorem 2.4.15 (Krull principal ideal). Let R be a Noetherian ring, and f ∈ R an element
which is not a unit or a zero divisor. Then every minimal prime ideal containing f has height 1.

More generally, if an ideal I ⊆ R is generated by elements (f1, . . . , fm), then every minimal
prime ideal containing I has height at most m.
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See Theorem 10.2 of [Eis95].
Geometrically, this says:

Corollary 2.4.16. Given f1, . . . , fm ∈ An, and any algebraic set Y ⊆ Ank , for any irreducible
component Z of Y ∩ Z(f1, . . . , fm), we have

codimY Z 6 m.

Thus, every time we add an equation, the codimension can go up by at most 1 (or equivalently,
the dimension can go down by at most 1). Of course, the change will be exactly 1 unless the new
polynomial vanishes on an irreducible component.

It is then natural to wonder whether, conversely, if we have a subvariety of codimension m, it
can be defined by some m equations. This is true in one special case:

Proposition 2.4.17. If R is a (Noetherian) unique factorization domain, every ideal of height
1 in R is principal.

In particular, we see:

Corollary 2.4.18. If Y ⊆ Ank is a variety of codimension 1, then Y = Z(f) for some f ∈ An.

However, once codimAn
k
Y = m > 2, it is not always possible to define Y by m equations.

Example 2.4.19. Identify A6
k with the collection of 2 × 3 matrices over k, and let Y be the

collection of matrices of rank less than or equal to 1. We know that Y is an algebraic set, because
it is given by vanishing of minors: specifically, if we use variables[

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

]
,

then
Y = Z(x1,1x2,2 − x1,2x2,1, x1,1x2,3 − x1,3x2,1, x1,2x2,3 − x1,3x2,2).

Now, we will see in Exercise 3.2.20 below that Y is in fact irreducible of dimension 4, but that I(Y )
cannot be generated by any two elements.

In fact, it turns out that Y cannot be written as the zero set of any two polynomials (equiv-
alently, that no ideal whose radical is I(Y ) can be generated by two elements). This last re-
sult is harder (see Example 5.6 of [Hun07]), but to illustrate what happens, if we just consider
Z(x1,1x2,2 − x1,2x2,1, x1,1x2,3 − x1,3x2,1), then this also has dimension 4, but in addition to Y , it
contains all matrices with x1,1 = x2,1 = 0.

This is typical: a given variety Y of codimension m may require more than m equations to
define, in which case any choice of m equations which are satisfied on Y will have a reducible zero
set which contains Y but also contains other irreducible components.

Exercise 2.4.20. We can now prove that certain natural sets aren’t algebraic, even over non-
algebraically closed fields.

(a) Show that neither branch of the real hyperbola xy = 1 in A2
R is an algebraic set (that

is, there does not exist a collection of real polynomials whose common real zero set is a
branch of xy = 1).

(b) The real points of y2 = x3 − x2 ⊆ A2
R have two connected components. Describe them,

and show that one of them is algebraic, while the other isn’t.
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CHAPTER 3

Regular functions and morphisms

We have discussed affine varieties and some of their basic properties, but our next task is to
study maps between them. In particular, we will obtain a concept of isomorphism of affine varieties,
which allows us to consider them independently from their imbedding in affine space. Following
Hartshorne [Har77], we will first consider the notion of regular functions, and then use them to
define morphisms.

3.1. Regular functions

A modern perspective on geometry is that geometry is captured by considering spaces together
with a designated class of maps between them. Taking this further, one can determine the maps of
interest simply by designating a particular class of functions of interest. This leads us to start our
discussion by defining a class of functions of interest. Ultimately, we will be interested in functions
not only on affine varieties, but on open subsets of them.

We have already indicated that polynomials define a natural class of algebraic functions. More
generally, we could consider functions defined by quotients of polynomials, wherever the denomi-
nator is nonvanishing. As with notions such as continuity and differentiability, we want our class
of functions to be locally determined, which leads us to the following definition.

Definition 3.1.1. Let Y ⊆ Ank be an affine algebraic set, and U ⊆ Y an open subset. A
function f : U → k is regular if for every P ∈ U , there exists an open neighborhood V ⊆ U of P
such that f = g

h , where g, h ∈ An and Z(h) ∩ V = ∅.
Denote by O(U) the ring of regular functions on U .

Note that O(U) forms a ring just because we can add and multiply functions as usual, by adding
and multiplying their values.

Example 3.1.2. If f ∈ An, then f defines a regular function on Y for any algebraic set Y ⊆ Ank .
In fact, we see that A(Y ) injects into O(Y ).

Example 3.1.3. Let Y = Z(wx− yz) ⊆ A4
k, and let U = Y r Z(x, y). We can define a regular

function f on U by defining it to be w
y on the complement of Z(y), and to be z

x on the complement

of Z(x). These functions agree on the complement of Z(x) ∪ Z(y), so we get a regular function.

The example shows that it if a regular function is defined on an open set U , it may not be
possible to give a single expression for it which is defined on all of U . Put differently, the V in the
definition may be necessary. However, the fundamental theorem on regular functions will assert in
particular that A(Y ) = O(Y ), so that this doesn’t occur when a regular function is defined on all
of Y . Before proving this, we explore two more basic properties of regular functions.

Lemma 3.1.4. A regular function f : U → k defines a continuous map U → A1
k.

Proof. By our description of the closed subsets of A1
k, it is enough to see that the preimage of

a point is closed. A point in A1
k is determined by some c ∈ A1

k. To check that f−1(c) is closed, it is
enough to check on an open cover of U . Given P ∈ U , let V ⊆ U be as in the definition of a regular
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function, so that f = g
h on V . Then on V , we see that f−1(c) is the zero set of g

h − c = g−ch
h , which

is just Z(g − ch), since h is nonvanishing on V . Thus, f−1(c) is closed in V by definition of the
Zariski topology. Since the choices of V cover U , we conclude that f−1(c) is closed, as desired. �

An important corollary is that regular functions are much more rigid than the functions of
interest in differential geometry:

Corollary 3.1.5. Let Y be a variety, and V ⊆ U ⊆ Y nonempty open subsets. If f, g are
regular functions on U , and f |V = g|V , then f = g.

Proof. By continuity, the locus in U on which f and g agree – which is just (f − g)−1(0) – is
closed. But since Y is irreducible, V is dense, and we conclude that f = g on all of U . �

We’ll need one more definition in order to prove our main theorem.

Definition 3.1.6. If Y ⊆ Ank is an affine algebraic set, and P ∈ Y , then the local ring at P
on Y , denoted OP,Y , is the set of pairs (U, f) with P ∈ U ⊆ Y , and f : U → k regular, modulo
the equivalence relation (U, f) ∼ (V, g) if there exists an open neighborhood W of P contained in
U ∩ V such f |W = g|W .

If further Y is a variety, the function field of Y (or field of rational functions on Y ),
denoted K(Y ), is the set of pairs (U, f) over all U ⊆ Y , modulo the relation that (U, f) ∼ (V, g) if
f |U∩V = g|U∩V .

Remark 3.1.7. We define the ring operations on OP,Y and K(Y ) using restrictions. In the
case of function fields, we use that U ∩ V is always nonempty, because Y is irreducible. If Y is
irreducible, then Corollary 3.1.5 implies that we could have defined our equivalence relation for
OP,Y just as we did for K(Y ).

The following is straightforward from the definitions:

Proposition 3.1.8. For an algebraic set Y and P ∈ Y , the local ring OP,Y is a local ring (i.e.,
has a unique maximal ideal), and its maximal ideal consists of (U, f) with f(P ) = 0. In addition,
K(Y ) is a field.

Remark 3.1.9. Again assuming Y is a variety, we have natural injections

A(Y ) ↪→ O(Y ) ↪→ OP,Y ↪→ K(Y ),

with the last two being a consequence of Corollary 3.1.5, so we can think of everything as being
inside of K(Y ).

If Y is not irreducible, we still have an inclusion A(Y ) ↪→ O(Y ) and a natural map O(Y ) →
OP,Y , but the latter will not be injective for most choices of P .

Exercise 3.1.10. If X ⊆ Ank is an algebraic set, and P ∈ X, describe the kernel of O(X) →
OP,X in terms of restrictions to irreducible components of X.

Theorem 3.1.11. Given Y ⊆ Ank an affine variety, we have:

(a) O(Y ) = A(Y );
(b) for all P ∈ Y , we have OP,Y = A(Y )mP , where mP denotes the maximal ideal of polyno-

mials vanishing at P ;
(c) K(Y ) is the fraction field of A(Y ).

In the above, A(Y )mP denotes the localization of A(Y ) at mP ; since A(Y ) is an integral domain,
this can be interpreted simply as the subring of the fraction field of A(Y ) consisting of elements
whose denominators are not in mP .
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Proof. We first prove (b). Given P ∈ Y , and f = g
h ∈ A(Y )mP , with h 6∈ mP , then f also

gives an element of OP,Y , and it is straightforward to check that we obtain a map A(Y )mP → OP,Y ,
which is moreover injective, since we can think of both rings as subrings of K(Y ). Furthermore,
the map is clearly surjective by the definition of regular functions, recalling that in OP,Y we can
always restrict to a neighborhood of P on which f is defined by a single quotient of polynomials.
We thus conclude (b).

Now, if K(A(Y )) is the field of fractions of A(Y ), then for any P ∈ Y , we have K(A(Y )) =
K(A(Y )mP ) = K(OP,Y ), by (b). So K(A(Y )) ⊇ ∪P∈Y OP,Y , but every element of K(Y ) is in some
OP,Y , and we conclude (c).

Finally, O(Y ) ⊆ ∩P∈Y OP,Y , so by the fact that any integral domain is equal to the intersection
of its localizations at all maximal ideals, we have

A(Y ) ⊆ O(Y ) ⊆
⋂
m

A(Y )m = A(Y ).

This proves (a), completing the proof of the theorem. �

We thus see that while a regular function on a general open subset U may need more than one
expression to define on all of U , if it is defined on all of Y , it can necessarily be given by a single
polynomial. In particular, this now justifies and makes precise our earlier assertion that we can
consider the ring A(Y ) to be the ring of algebraic functions on Y .

It is helpful to understand what happens to ideals of rings when we invert some elements, as in
constructing A(Y )m from A(Y ).

Exercise 3.1.12. Let R be a ring, and S ⊆ R a subset which is closed under multiplica-
tion. Let S−1R be the ring obtained by inverting elements of S, and f : R → S−1R the natural
homomorphism. Then:

(a) If I ⊆ S−1R is an ideal, then the ideal generated by f(f−1(I)) is equal to I; in particular,
I 7→ f−1(I) induces an injection from ideals of S−1R to ideals of R.

(b) The injection from (a) induces a bijection between prime ideals of S−1R and prime ideals
of R disjoint from S.

Corollary 3.1.13. If Y ⊆ Ank is an affine variety, then dim OP,Y = dimY , and K(Y ) is a
field finitely generated over k, of transcendence degree equal to dimY .

Proof. This is an immediate consequence of the theorem and our previous results on dimen-
sion, with the added observation that the height of mP in A(Y )mP is equal to the height in A(Y ),
so we have that

dimA(Y )mP = heightmP = dimA(Y )− dimA(Y )/mP = dimA(Y ) = dimY.

�

We can generalize the previous corollary to the setting of affine algebraic sets with an additional
definition.

Definition 3.1.14. If X ⊆ Ank is an affine algebraic set, and P ∈ X, define the dimension
of X at P , denoted dimP X, to be the maximum dimension of the irreducible components of X
containing P .

Exercise 3.1.15. Let X ⊆ Ank be an affine algebraic set, and P ∈ X. Then:

(a) dimP X is equal to the minimum dimension of all open neighborhoods of P in X.
(b) dimP X = dim OP,X .
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3.2. Morphisms

We are now in a good position to define and study morphisms. The idea is surprisingly simple,
and should make clear the idea that in order to describe a class of maps of interest, it is often
enough to describe a class of functions of interest.

Before going further, we will broaden our class of varieties slightly, so that our definition will
be in suitable generality.

Definition 3.2.1. A quasiaffine variety is an open subset of an affine variety.

Our definition of regular function was stated in the context of quasiaffine varieties, missing only
the terminology. In particular, the notation O(Y ) makes sense for a quasiaffine variety (however,
for reasons which will soon become clear, we reserve the notation A(Y ) for the affine case).

Until now, we have only considered closed subvarieties. But now that we have introduced
quasiaffine varieties, we change our terminology as follows:

Definition 3.2.2. Let X be a quasiaffine variety. A closed subvariety of X is a closed,
irreducible subset of X. An open subvariety of X is an open subset of X. A subvariety X is
an open subvariety of a closed subvariety of X.

Note that we could have equivalently defined a subvariety to be a closed subvariety of an open
subvariety, or the intersection of an open and a closed subvariety.

The definition of morphism is then as follows.

Definition 3.2.3. Given X,Y quasiaffine varieties, a morphism ϕ : X → Y is a continuous
map which satisfies the condition that for every V ⊆ Y open, and every regular function f on V ,
the composition f ◦ ϕ : ϕ−1(V )→ k is regular.

A morphism ϕ is an isomorphism if it is has an inverse which is also a morphism.

Remark 3.2.4. It is clear that a composition of morphisms is a morphism, so we obtain a
category of quasiaffine varieties, with the affine varieties as a full subcategory.

It is clear from the definition that a morphism X → Y induces a ring homomorphism O(Y )→
O(X). We will see that when X and Y are affine, we can go in the other direction as well, but that
this doesn’t work if X and Y are only assumed quasiaffine.

The prototypical example of a morphism, which guides our intuition for morphisms, is the
following:

Example 3.2.5. Given quasiaffine varieties X ⊆ Ank and Y ⊆ Amk , and polynomials f1, . . . , fm ∈
An, if the map (f1, . . . , fm) : Ank → Amk mapsX into Y , then the induced mapX → Y is a morphism.

We also see that we can reinterpret regular functions in terms of morphisms.

Example 3.2.6. Regular functions on a quasiaffine variety X are the same as morphisms
X → A1

k.

Both of the above examples can be deduced from the following.

Exercise 3.2.7. Show the following.

(a) If X is a quasiaffine variety, and a map ϕ : X → Amk is given by functions (f1, . . . , fm),
then ϕ is a morphism if and only if all the fi are regular functions.

(b) If ϕ : X → Y is a morphism of quasiaffine varieties, and Z ⊆ Y is a subvariety, then ϕ
factors through Z if and only if the image of ϕ is contained in Z.

It may be the case that a proper open subset of an affine variety is isomorphic to a different
affine variety.
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Example 3.2.8. Let U = A1
k r {(0)}. We claim U is isomorphic to Y = Z(xy − 1) ⊆ A2

k. This
is easily verified using Exercise 3.2.7. In one direction, the projection map (x, y) 7→ (x) gives a
morphism Y → A1

k, which has image equal to U , and therefore gives a morphism Y → U . The
inverse is given by the formula (x) 7→ (x, 1/x); since x and 1/x are regular functions on U , the
inverse is likewise a morphism.

More generally, we have the following.

Proposition 3.2.9. Let Y be an affine variety, and f ∈ A(Y ). Then Yf := Y r Z(f) is
isomorphic to an affine variety, and A(Yf ) = A(Y )f .

Proof. Suppose Y ⊆ Ank , so that I(Y ) ⊆ An, and choose a representative for f in An; then we

claim more specifically that Yf is isomorphic to Z(J) ⊆ An+1
k , where J = (I(Y ), tf − 1) ⊆ An[t].

This again follows from Exercise 3.2.7, since the projection map An+1
k → Ank which drops the

coordinate t maps Z(J) onto Yf , and therefore induces a morphism Z(J)→ Yf , and the inverse is
given by

(x1, . . . , xn) 7→ (x1, . . . , xn, 1/f(x1, . . . , xn)),

which is given by regular functions on Yf , and therefore is likewise a morphism. Finally, it is clear
that the given isomorphism identifies A(Z(J)) with A(Y )f , as desired. �

A surprising consequence of this proposition is that quasiaffine varieties can always be covered
by varieties which are isomorphic to affine varieties.

Corollary 3.2.10. Let Y be a quasiaffine variety. Then open subvarieties of Y which are
isomorphic to affine varieties form a base of the topology of Y , and in particular cover Y .

Proof. Since a quasiaffine variety is an open subset of an affine variety, it is enough to prove
the statement for affine varieties. By Proposition 3.2.9, it is enough to prove that if Y is affine,
then the subsets Yf form a base for the topology. Say Y ⊆ Ank , so that I(Y ) ⊆ An. Given P ∈ Y ,
and U ⊆ Y an open neighborhood of P , let Z = Y r U ; then Z = Z(I) for some ideal I, and by
definition, there is some f ∈ I such that f(P ) 6= 0. Then Z(f) ⊇ Z(I), so Yf ⊆ U , as desired. �

We now specialize to affine varieties, where Example 3.2.5, together with Theorem 3.1.11, will
imply that morphisms correspond to ring maps. More specifically, it is important to keep track of
k, so we observe that O(X) for any quasiaffine variety, and A(X) for an affine variety, are both
naturally k-algebras, and that if we have a morphism X → Y , the induced map O(Y )→ O(X) is
a homomorphism of k-algebras. We then have:

Corollary 3.2.11. Given a quasiaffine variety X and an affine variety Y , composition induces
a bijection between morphisms X → Y and k-algebra homomorphisms A(Y )→ O(X).

Proof. First recall that we observed earlier that a morphism X → Y gives a k-algebra homo-
morphism O(Y )→ O(X), and hence a k-algebra homomorphism A(Y )→ O(X).

In the other direction, say A(Y ) = Am/I(Y ). Then a k-algebra homomorphism A(Y )→ O(X)
can be lifted to a homomorphism Am → O(X), which is described by an m-tuple of regular functions
f1, . . . , fm ∈ O(X), by letting fi be the image of xi. Then since the fi came from a homomorphism
A(Y )→ O(X), they must map I(Y ) to 0, which implies (using that Y is closed) that the induced
map X → Amk has image contained in Y . Thus, by Exercise 3.2.7, we get a morphism X → Y .

It is straightforward to check that these constructions are inverse to one another, proving the
corollary. �

Remark 3.2.12. After we have introduced abstract varieties, we will see that Corollary 3.2.11
holds even when X is an abstract variety.

21



Using that the association between morphisms and k-algebra homomorphisms commutes with
composition, we can conclude the following.

Exercise 3.2.13. If X,Y are affine varieties, and ϕ : X → Y is a morphism, let ϕ∗ : A(Y ) →
A(X) be the corresponding k-algebra homomorphism. Then ϕ is an isomorphism if and only if ϕ∗

is an isomorphism.

In fancier categorical language, we have:

Corollary 3.2.14. The map X 7→ A(X), together with the identification A(X) = O(X),
induces an arrow-reversing equivalence of categories between the category of affine varieties, and
the category of k-algebras which are integral domains and finitely generated over k.

This is immediate from Corollary 3.2.11 and Remark 2.2.19, taking into account Theorem 3.1.11
(a).

Remark 3.2.15. Given the abstract “dots and arrows” nature of categories, it might seem as
though we lose a lot of information when we forget the structure of affine varieties as having come
from subsets of Ank , and only consider the category. However, the category contains a surprisingly
rich amount of information – see Appendix 3.A below.

We have now seen that in the affine case, there is a very satisfying equivalence between thinking
about affine varieties and their maps, and thinking about the associated affine coordinate rings.
However, we can quickly see that this is not true for quasiaffine varieties.

Exercise 3.2.16. Show that if U ⊆ A2
k is the complement of (0, 0), then the restriction map

O(A2
k)→ O(U) is an isomorphism.

To illustrate the power of Corollary 3.2.11, we can produce our first example of a quasiaffine
variety which is not isomorphic to an affine variety.

Corollary 3.2.17. U = A2
k r {(0, 0)} is not isomorphic to an affine variety.

Proof. If U were affine, then because A2 is affine, and the restriction map induces an isomor-
phism O(A2

k)
∼→ O(U), then by Corollary 3.2.11 the inclusion map U ↪→ A2

k would have to be an
isomorphism (see Exercise 3.2.13). But the inclusion map isn’t even bijective, so we conclude the
desired statement. �

Remark 3.2.18. Note that in the corollary, it is important not just to be thinking coarsely in
terms of isomorphic and non-isomorphic, but to be keeping track of what happens with a single
map. Otherwise, we start from the fact that O(A2

k) is isomorphic to O(U), and decide that if we
want to show that U isn’t affine, we need to prove that it isn’t isomorphic to A2

k, but this isn’t
much easier to do directly than showing that U isn’t isomorphic to any affine variety. In contrast,
by keeping track of the map, we get a trivial proof that U isn’t isomorphic to an affine variety.

Note the contrast between Corollary 3.2.17 and Proposition 3.2.9: from the latter, we conclude
that removing any hypersurface (i.e., curve) from A2

k will give us something still isomorphic to an
affine variety, so in some sense, A2

kr{(0, 0)} is bad because the set we have removed is “too small.”

Exercise 3.2.19. Show that if ϕ : X → Y is a morphism of quasiaffine varieties, and Z ⊆ Y is
a subvariety, then ϕ factors through Z if and only if the image of ϕ is contained in Z.

Exercise 3.2.20. We fill in some details of Example 2.4.19. Let Y ⊆ A6
k be the collection of

2× 3 matrices of rank at most 1.

(a) Show that Y is irreducible. Hint: construct a natural morphism A4
k → Y , and show that

the image is dense.
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(b) Show that dimY = 4.
(c) Show that I(Y ) cannot be generated by any two polynomials.

Exercise 3.2.21. Let X = Z(y2 − (x3 − x)) ⊆ Z2
k. Show that X is not isomorphic to A1

k.
Hint: which properties does k[t] have which are not shared by A(X)?

Exercise 3.2.22. Let X ⊆ Ank , Y ⊆ Amk be affine algebraic sets. Define the product X × Y
to be the subset X × Y ⊆ An+mk .

(a) Show that X ×Y is closed in An+mk , and that if X and Y are varieties, then X ×Y is also
a variety.

(b) Show that the projection maps p1 : X × Y → X and p2 : X × Y → Y are morphisms, and
that if Z is a quasiaffine variety, then morphisms Z → X×Y are in natural bijection with
pairs of morphisms Z → X,Z → Y via composing with p1 and p2.

(c) Show that if X and Y are varieties of dimensions d1 and d2 respectively, then X × Y has
dimension d1 + d2.

(d) Show that A(X × Y ) = A(X)⊗k A(Y ).

Exercise 3.2.23. According to part (b) of Exercise 3.2.22, if X is an affine variety, then the
diagonal map ∆ : X → X ×X sending x to (x, x) is a morphism. Show that ∆(X) is closed, and

∆ induces an isomorphism X
∼→ ∆(X).

3.3. Rational maps

In algebraic geometry, it turns out that we frequently want to consider maps that are only
defined on open subsets of the source variety. This is relevant especially in setting up the notion of
birational equivalence, which is a weakening of isomorphism and arises naturally in various settings.

Definition 3.3.1. If X,Y are quasiaffine varieties, a rational map ϕ : X 99K Y is an equiv-
alence class of pairs (U,ϕU ) where U ⊆ X is a nonempty open subset, and ϕU : U → Y is a
morphism. The equivalence relation is that (U,ϕU ) ∼ (V, ϕV ) if ϕU |U∩V = ϕV |U∩V .

In order to verify that the stated equivalence relation is in fact an equivalence relation, we use
the following:

Lemma 3.3.2. If X,Y are quasiaffine varieties, and ϕ,ψ : X → Y are morphisms such that
ϕ|U = ψ|U for some nonempty open U ⊆ X, then ϕ = ψ.

Proof. We have Y ⊆ Ank for some n; then by composing with the inclusion, we may assume
that Y = Ank . But we know from Exercise 3.2.7 that morphisms X → Ank are determined by
n-tuples of regular functions on X, and if two such n-tuples agree on U , they must agree on X by
Corollary 3.1.5. �

The most important kind of rational maps are those with dense images. We observe:

Proposition 3.3.3. Suppose ϕ : X → Y is a morphism of quasiaffine varieties, and U ⊆ X
nonempty and open. Then ϕ(X) is dense in Y if and only if ϕ(U) is dense in Y .

Proof. Since ϕ(U) ⊆ ϕ(X), we need to verify that if ϕ(X) is dense, then ϕ(U) is likewise
dense. But if V ⊆ Y is nonempty and open, then ϕ−1(V ) is nonempty and open in X, hence
dense by irreducibility of X. We conclude that ϕ−1(V ) ∩ U 6= ∅, and hence that ϕ(U) is dense, as
desired. �

This motivates the following:

Definition 3.3.4. A rational map X 99K Y is dominant if some (equivalently, every) repre-
sentative (U,ϕU ) has ϕU (U) dense in Y .
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In general, it may not be possible to compose two rational maps – the image of the first might
be contained in the complement of every open set on which the second is defined. However, the
composition of two dominant rational maps always makes sense, and is again a dominant rational
map. Thus, we can talk about the category whose objects are quasiaffine varieties, and whose
morphisms consist of dominant rational maps. The isomorphisms in this category are the following:

Definition 3.3.5. A birational map X 99K Y is a rational map which admits a rational map
inverse. We say X and Y are birational if there exists a birational map between them.

Here, we mean that there is a rational map Y 99K X such that the composition in each
direction exists as a rational map, and is equal to the identity. This condition automatically
implies dominance, so a birational map is necessarily dominant.

Example 3.3.6. For a quasiaffine variety X, a rational function on X is the same as a rational
map X 99K A1

k. Indeed, this follows immediately from the fact that a regular function on an open
subset U of X is the same as a morphism U → A1

k. A rational function corresponds to a dominant
rational map if and only if it is nonconstant: although it is not immediately obvious what the image
of a morphism U → A1

k could look like, its closure must be an irreducible closed subset of A1
k, and

hence is either a single point or all of A1
k.

Example 3.3.7. The morphism A2
k → A2

k defined by sending (x, y) to (x, xy) is not an iso-
morphism, but it is a birational map. We can define an inverse sending (u, v) to (u, v/u) which is
defined away from u = 0.

Example 3.3.8. The morphism A1
k → A2

k defined by (t) 7→ (t2, t3) has image Z = Z(y2 − x3).
It is clear that Z is a curve, so since both A1

k and Z have the cofinite topology, the induced
morphism A1

k → Z is a homeomorphism. This is not an isomorphism, though: the induced map is
k[x, y]/(y2 − x3) ↪→ k[t] sending x to t2 and y to t3, and the image of this map is k[t2, t3] ⊆ k[t],
which is not all of k[t].

On the other hand, we do see that the morphism gives a birational map A1
k → Z, since the

inverse can be defined by (x, y) 7→ (y/x) on the complement of x = 0 in Z.

The main observation is then that given a dominant rational map ϕ : X 99K Y and f ∈ K(Y ) a
rational function, composition induces a rational function f ◦ϕ ∈ K(X). This operation commutes
with addition and multiplication of rational functions, and sends constant functions to (the same)
constants, so we obtain a homomorphism ϕ∗ : K(Y ) → K(X) of fields over k. Since every field
homomorphism is an injection, this realizes K(Y ) as a subfield of K(X).

Theorem 3.3.9. For any two quasiaffine varieties X,Y , the map ϕ 7→ ϕ∗ induces a bijection
between the set of dominant rational maps X 99K Y and the set of k-algebra homomorphisms
K(Y ) ↪→ K(X).

Proof. Starting from a homomorphism θ : K(Y ) ↪→ K(X), we have to construct a dominant
rational map X 99K Y . For this purpose, we can freely restrict X or Y to open subsets, so we might
as well assume they are both affine. Then we know that K(Y ) = K(A(Y )) and K(X) = K(A(X)).
Let y1, . . . , yn be generators for A(Y ) over k. Then θ(yi) ∈ K(X), so we can write θ(yi) = xi

hi
for

some xi, hi ∈ A(X), with hi 6= 0. Set U = Xh1···hn ⊆ X; then U is still an affine variety, and we have
A(U) = A(X)h1···hn and K(U) = K(X), so we can think of θ as mapping A(Y ) into A(U). This
then gives us a morphism U → Y , which is a representative of the desired rational map X 99K Y .
It is dominant because it is induced by an injective ring map. A definition chase verifies that our
construction is inverse to the map ϕ 7→ ϕ∗, proving the theorem. �
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Remark 3.3.10. K = K(X) for some X if and only if K is a finitely generated field extension
of k, so Theorem 3.3.9 gives an arrow-reversing equivalence between the category of quasiaffine
varieties with dominant rational maps and the category of finitely generated field extensions of k.

Corollary 3.3.11. For two quasiaffine varieties X,Y , the following are equivalent:

(a) X and Y are birational;
(b) X and Y have isomorphic (nonempty) open subsets;
(c) K(X) ∼= K(Y ).

Proof. The theorem gives the equivalence of (a) and (c). It is clear that (b) implies (a).
Conversely, if ϕ : X 99K Y and ψ : Y 99K X are inverse to one another, represented by (U,ϕU ) and
(V, ψV ), then ψ◦ϕ is represented by (ϕ−1U (V ), ψV ◦ϕV ) and ϕ◦ψ is represented by (ψ−1V (U), ϕU ◦ψV ),
and by hypothesis both of these are equal to the identity. Then we see that ϕU and ψV induces
mutually inverse morphisms between ϕ−1U (ψ−1V (U)) and ψ−1V (ϕ−1U (V )), yielding (b). �

Remark 3.3.12. Birationality is not an interesting property in most geometric categories: for
instance, any two differentiable manifolds of the same dimension have many diffeomorphic open
subsets, and more specifically every open point has a neighborhood diffeomorphic to an open subset
of Rn. However, it is quite rare for a variety to have an open subset isomorphic to an open subset
of Ank ; such varieties are called rational, and they are considered quite special. We will return to
this in the context of curves.

Example 3.3.13. If k has characteristic p > 0, the Frobenius morphism A1
k → A1

k induced
by sending t to tp is a homeomorphism of A1

k onto itself: it is bijective because pth roots are
always unique in characteristic p, and have to exist over any algebraically closed field; it is then a
homeomorphism because the topology is cofinite.

However, this morphism is not an isomorphism, and in fact, not even a birational map: this
follows from Theorem 3.3.9 because it induces the field extension k(t) over k(tp), which is a degree-p
extension.

An illustration of the power of the techniques developed so far is the following:

Theorem 3.3.14. Every variety X is birational to a hypersurface.

Proof. Given Corollary 3.3.11, this reduces to two theorems in algebra: the first asserts that, if
K(X) has transcendence degree n, then K(X) can be realized as a finite, separable extension of the
field k(x1, . . . , xn) of rational functions in n variables (see Corollary A.17 of [Eis95]). The second
is the primitive element theorem, which says that K(X) can then be generated by a single element
y over k(x1, . . . , xn) – that is, we have K(X) ∼= k(x1, . . . , xn)[xn+1]/(f) for some polynomial f
with coefficients in k(x1, . . . , xn). We can clear denominators of the coefficients so that they lie in
k[x1, . . . , xn], so that f can be considered as a polynomial in x1, . . . , xn+1 with coefficients in k.
We then have Z(f) ⊆ An+1

k , and we conclude that X is birational to Z(f), as desired. �

Remark 3.3.15. Theorem 3.3.14 does not assert that X has an open cover by subvarieties
isomorphic to open subsets of hypersurfaces. This would in fact be false, as will be easy to see
once we have discussed singularities. It merely asserts that some nonempty open subset of X is
isomorphic to an open subset of a hypersurface.

3.A. Recovering geometry from categories

The fundamental organizing result on affine algebraic varieties over an algebraically closed field
k is surely Corollary 3.2.14, that the category they form is equivalent to the (opposite) category of
finitely generated integral domains over k. This single statement encapsulates the facts that two
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affine varieties are isomorphic if and only if their coordinate rings are isomorphic, and more gen-
erally, that every morphism of affine varieties come from a homomorphism (in the other direction)
of their coordinate rings.

However, this abstract categorical statement strips away the rich geometry enjoyed by the
varieties themselves. At first, it may also seem as though abstract statements about the category
cannot possibly capture the geometric content of its objects. And surely, the geometric definitions
and concepts remain an important and useful foundation in the study of varieties, even as the
translation to algebra provides crucial tools. Nonetheless, it is the goal of this note to demonstrate
that a surprising amount of the geometry of varieties can be recovered from the abstract “dots
and arrows” information encoded by the category. This underlines the power of the fundamental
categorical equivalence.

Let k be an algebraically closed field. We denote by Var/k the category of affine algebraic
varieties over k. Then the statement we will prove is the following.

Proposition 3.A.1. Let X be an object of Var/k; that is, an affine variety. Then the set of
points of X, as well as the Zariski topology on it, can be recovered completely from the data of the
category Var/k.

We assume the reader is familiar with the definition of a category, with final and initial objects,
and monomorphisms and epimorphisms. The affine variety consisting of a single point will play an
important role.

Notation 3.A.2. Denote by ∗ the isomorphism class of a single point.

Note that any two affine varieties which are a point are isomorphic, in fact uniquely.
We first see:

Lemma 3.A.3. The point is the universal final object of Var/k.

Proof. This is tautological if one allows A0 as an object of Var/k, but even if not, it is clear
that for any representative of ∗ as a subvariety of An, every affine variety X has a unique function
X → ∗, which is a morphism. �

Corollary 3.A.4. The set underlying an affine variety X may be recovered from Var/k.

Proof. Indeed, we know from Lemma 3.A.3 that ∗ is recognizable from the structure of Var/k.
If we choose any representative of ∗, we see that the set of morphisms ∗ → X are in bijection with
the set of points of X, since for any P ∈ X, there is clearly a unique function ∗ → X with image
P , and this can be described by polynomials as a constant function, so is a morphism. �

We next address the question of recovering the topology on X. We recall a relevant definition
from category theory.

Definition 3.A.5. A morphism h : A→ B in a category is an extremal epimorphism if it
is an epimorphism such that if h = f ◦ g, and f is a monomorphism, then f is an isomorphism.
Similarly, h is an extremal monomorphism if it is a monomorphism such that if h = f ◦ g, and
g is an epimorphism, then g is an isomorphism.

We will now start working with rings as well, so let Alg/k denote the category of finitely
generated integral domains over k.

Lemma 3.A.6. In the category Alg/k, a morphism h : A→ B is a monomorphism if and only
if it is injective. It is an extremal epimorphism if and only if it is surjective.
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Proof. Since a ring homomorphism is determined by the map on underlying sets, it is clear
that an injective map is a monomorphism, and a surjective map is an epimorphism, and indeed
an extremal epimorphism. Conversely, suppose h : A → B has kernel I, and a ∈ I is non-zero.
Then consider the homomorphisms g1, g2 : k[t] → A determined by sending t to 0 or to a. Then
h ◦ g1 = h ◦ g2, so h is not a monomorphism. This establishes the first assertion. On the other
hand, suppose h : A → B is not surjective. Then h factors as h : A → h(A) → B, with the latter
homomorphism injective, hence a monomorphism. Thus h is not an extremal epimorphism. �

Remark 3.A.7. The proof shows that for h to be surjective is in fact equivalent to the condition
that if h = f ◦ g, and f is a monomorphism, then f is an isomorphism (that is, we don’t need to
separately require that h is an epimorphism).

We need one more definition.

Definition 3.A.8. We say that a morphism Y → X of affine varieties is a closed imbedding
if it factors Y → Z → X where Y → Z is an isomorphism, and Z is a closed subvariety of X.

This is now enough for us to prove the main result.

Proof of Proposition 3.A.1. Our first observation is that if X is an affine variety, and Y
is another affine variety, with f : Y → X a morphism, then we can recover f(Y ) ⊆ X as the set
of morphisms ∗ → X which factor through Y . Next, it follows immediately from the definition of
the Zariski topology and our correspondence theorems that f : Y → X is a closed imbedding if
and only if f ] : A(X) → A(Y ) is surjective. By Lemma 3.A.6, this is equivalent to f ] being an
extremal epimorphism. By our categorical equivalence, we see that f is a closed imbedding if and
only if it is an extremal monomorphism. But this is a purely categorical condition. We can thus
reconstruct the Zariski topology on X by setting the closed subsets to be finite unions of images
f(Y ) ⊆ X, where f : Y → X is any extremal monomorphism in Var/k. �
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CHAPTER 4

Singularities

The topic of smoothness and singularities appears in some form in almost all algebraic geometry.
The intuition is that a variety is smooth at a point if in a suitable sense it “looks like a differentiable
manifold in a neighborhood of the point.” One can make this into a precise (and provable) statement
when working over the complex numbers.

The study of singularities is largely a local matter, so we will work throughout with affine
varieties, or more generally, affine algebraic sets. Since we know that every quasiaffine variety is
covered by affine varieties, this will pose no restriction in practice.

4.1. Tangent lines and singularities

We begin with some motivating examples.

Example 4.1.1. Consider the plane curves xy = 1, y2 = x3 − x, xy = 0, and y2 = x3 shown in
Figure 1.

The first two are nonsingular, while the last two have singularities at the origin. The third one
is not a variety, but we could make an irreducible version with a similar picture at the origin by
considering y2 = x3 + x2.

While the picture is clear enough, it is not immediately clear how to give an actual definition
of a singularity. One approach is by studying tangent spaces.

Definition 4.1.2. Given a polynomial f ∈ An without repeated factors, set Z = Z(f) ⊆ Ank .
Given also P = (b1, . . . , bn) ∈ Z, a parametric line (x1(t), . . . , xn(t)) = (a1t + b1, . . . , ant + bn) is
tangent to Z at P if f(a1t + b1, . . . , ant + bn) ∈ k[t] vanishes to order at least 2 at t = 0. (Note
that by construction, the line passes through P at t = 0, so we automatically have vanishing to
order at least 1)

Although we have defined tangency of a line in terms of a parametrization, it is easy to rephrase
the definition in a way which is independent of the parametrization of the line.

Figure 1. The four plane curves xy = 1, y2 = x3 − x, xy = 0, and y2 = x3.
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Example 4.1.3. Look at (1, 1) on the curve f(x, y) = xy − 1 = 0. The line (at+ 1, ct+ 1) has
f(at+ 1, ct+ 1) = act2 + (a+ c)t+ 1− 1 = act2 + (a+ c)t. We conclude that it is tangent to the
curve at (1, 1) if and only if a = −c, so the tangent line is y = −x+ 2.

For f(x, y) = y2 − x3 + x, consider (0, 0). The line (at, ct) has f(at, ct) = −a3t3 + c2t2 + at, so
it is tangent at (0, 0) if and only if a = 0, so the tangent line is x = 0.

For f(x, y) = xy, look again at (0, 0). The line (at, ct) has f(at, ct) = act2, so we see that
actually every line through the origin is tangent at (0, 0).

Finally, for the point (0, 0) and f(x, y) = y2 − x3, the line (at, ct) has f(at, ct) = −a3t3 + c2t2,
so again every line is tangent at (0, 0).

Thus, the idea, which we shall make into a precise definition shortly, is that a point is singular
if it has too many tangents. We first generalize to algebraic sets defined by more than one equation.
The idea is that since Z = ∩f∈I(Z)Z(f), the same relation should hold on the set of tangent lines.

Definition 4.1.4. Fix Z ⊆ Ank an affine algebraic set, and P = (b1, . . . , bn) ∈ Z. Then
a parametric line (x1(t), . . . , xn(t)) = (a1t + b1, . . . , ant + bn) is tangent to Z at P if f(a1t +
b1, . . . , ant+ bn) ∈ k[t] vanishes to order at least 2 at t = 0 for all f ∈ I(Z). In addition, we say a
vector (a1, . . . , an) ∈ kn is a tangent vector to Z at P if the line (a1t+ b1, . . . , ant+ bn) is tangent
to Z at P .

The advantage of considering tangent vectors is that it turns out they always form a subspace
of kn. More precisely, we have the following.

Exercise 4.1.5. Let X ⊆ Ank be an affine algebraic set, with f1, . . . , fm generating I(X). Then
given a point P ∈ X, and a vector v ∈ kn, the following are equivalent:

(a) v is a tangent vector to Z at P ;
(b) we have

(∂fi/∂x1(P ), . . . , ∂fi/∂xn(P )) · v = 0

for i = 1, . . . ,m;
(c) we have

(∂f/∂x1(P ), . . . , ∂f/∂xn(P )) · v = 0

for all f ∈ I(X).

In the above, the derivatives are purely formal, using the usual calculus rules for derivatives of
polynomials, which make sense over any ring.

Since the conditions (b) and (c) of Exercise 4.1.5 are visibly linear, we can make the following
definition.

Definition 4.1.6. Given Z ⊆ Ank an affine algebraic set, and P = (b1, . . . , bn) ∈ Z, the tangent
space of Z at P , denoted TP (Z), is the subspace of kn consisting of tangent vectors to Z at P .

Warning 4.1.7. Although the tangent space TP (Z) may be computed on a generating set for
I(Z), it is not true that if Z = Z(I), then TP (Z) can be computed on a generating set for Z. The
reason is that the definition of tangent space is quite sensitive to taking radicals. For instance, the
origin in A1

k has tangent space equal to (0), but it can also be written as Z(x2). If we tried to use
x2 to compute the tangent space, we would think that the tangent space is all of k.

We will see that the dimension of TP (Z) is always at least as large as the largest dimension of
a component of Z containing P , and it will turn out that a point P of Z is nonsingular if and only
if equality holds. However, we do not make this the definition, because it appears to depend on an
imbedding in affine space. We will instead develop a definition which is visibly intrinsic.
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4.2. Zariski cotangent spaces

We now describe a notion of (non)singularity which is intrinsic, and which also generalizes well.
An important preliminary definition is the following.

Definition 4.2.1. Let R be a Noetherian local ring with maximal ideal m, and k = R/m. The
Zariski cotangent space of R is defined to be mP /m

2
P , considered as a k-vector space.

If X is an affine algebraic set, and P ∈ X, the Zariski cotangent space of X at P , denoted
T ∗P (X), is the Zariski cotangent space of the local ring OP,X .

If Noetherian local rings are too abstract, the prototype to have in mind are our local rings
OP,X .

Note that k has a natural well-defined multiplication on m/m2, so the first definition makes
sense.

Why is it natural to think of T ∗P (X) as the cotangent space? Intuitively, if we have a tangent
vector v, and a function f on X, we can take the directional derivative of f in the direction of v,
and obtain an element of k. This isn’t affected if we subtract a constant from f , so we might as
well assume that f ∈ mP . On the other hand, if f ∈ m2

P , then any directional derivative at P is
always equal to 0, so we mod out by m2

P and arrive at the definition of T ∗P (X).
Now, if R is a Noetherian local ring with maximal ideal m, then m is finitely generated, and

any set of generators for m will also span m/m2 as a vector space over k := R/m. Thus, we see that
dimk m/m

2 is finite. On the other hand, Nakayama’s lemma (see Corollary 4.8 of [Eis95]) implies
that if we have f1, . . . , fn ∈ m which span m/m2, then f1, . . . , fn also generate m. It then follows
from Krull’s principal ideal theorem (Theorem 2.4.15) that the height of m is at most n, but in the
local case, the height of m is the same as dimR, so we conclude:

Corollary 4.2.2. If R is a Noetherian local ring, with maximal ideal m, and k = R/m, then

dimR 6 dimk m/m
2.

This leads us to the following definition:

Definition 4.2.3. A Noetherian local ring R with maximal ideal m is regular if dimR =
dimk m/m

2, where k = R/m.

Definition 4.2.4. If X is an affine algebraic set, and P ∈ X, then X is nonsingular at P if
OP,X is regular. Otherwise, P is a singularity of X. We say X is nonsingular if it is nonsingular
at P for all P ∈ X.

Remark 4.2.5. It is sometimes convenient to note that mP /m
2
P is the same whether we consider

mP in the local ring OP,X , or in the affine coordinate ring A(X). However, in the full coordinate
ring, if f1, . . . , fn span mP /m

2
P , this does not necessarily imply that they generate mP . The converse

still holds, though.

Example 4.2.6. Ank is nonsingular. Indeed, if P = (a1, . . . , an) is any point, we already know
that mP = (x1 − a1, . . . , xn − an), so is generated by n = dimAnk elements.

Note that in the example, what is happening is that each point P of Ank can be defined by
n polynomials f1, . . . , fn not only in the weak sense that P = Z(f1, . . . , fn), but in the strong
sense that I(P ) = (f1, . . . , fn). More generally, the foregoing algebra is saying that if we have
P ∈ X an affine algebraic set of dimension n near P , and f1, . . . , fm ∈ mP span T ∗P (X), then in a
neighborhood of P , we have

Z(f1) ∩ · · · ∩ Z(fm) = {P},
and since each fi can reduce the dimension by at most 1, we conclude that n 6 m. Nonsingularity
then corresponds to the dimension of mP /m

2
P being equal to n, the minimal possible value, or
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equivalently, being able to find f1, . . . , fn ∈ A(X) whose zero sets cut out P in the strong sense that
(f1, . . . , fn) = mP (in a neighborhood of P ). Thus, the fi play a role like coordinate functions, and
intuitively, the fact that they form a basis for mP /m

2
P means that their zero sets meet transversely.

This motivates the following definition.

Definition 4.2.7. If X is an affine algebraic set, and P ∈ X is a nonsingular point at which X
has dimension d, a system of local coordinates for X at P is a d-tuple (t1, . . . , td) of elements
of the maximal ideal m of OP,X which induces a basis for the Zariski cotangent space T ∗P (X).

In the case that d = 1 and (t) is a system of local coordinates, we will simply say that t is a
local coordinate.

Example 4.2.8. Let’s take another look at the curve Y given by y2 = x3. At the point
P = (1, 1) we have mP = (x− 1, y − 1). We can write

(x− 1)(x2 + x+ 1) = x3 − 1 = y2 − 1 = (y − 1)(y + 1),

and in the local ring, if char k 6= 2, then y + 1 is invertible, so y − 1 is a multiple of x− 1, and mP

is actually generated by x − 1. Thus, we see that dimmP /m
2
P must be 1, and P is a nonsingular

point, as we expect. If char k 6= 3, then x2 + x+ 1 is invertible in OP,Y , so again we get that P is
a nonsingular point, concluding that P is a nonsingular point in all characteristics.

On the other hand, if P = (0, 0), the maximal ideal is (x, y). Then m2
P is generated by

(x2, xy, y2), and in particular contains y2 − x3. This means that computing mP /m
2
P is the same in

A(Y ) as in A2. So mP /m
2
P is 2-dimensional, generated by x and y. Thus, P is a singularity of Y ,

as we would hope.

Remark 4.2.9. An immediate consequence of Corollary 4.2.2 is that if R is a Noetherian local
ring, then dimR is finite. This is not otherwise obvious: certainly a Noetherian local ring can have
infinite descending chains of ideals. Moreover, this statement does not hold for Noetherian rings in
general, because although any given chain of prime ideals must be contained in a maximal chain
of finite length (this follows from the local case), one can have incomparable chains of prime ideals
whose lengths grow without bound. See Exercise 9.6 of [Eis95].

4.3. The Jacobian criterion

While we were able to investigate some examples, the definition of nonsingular point is often
not very helpful in practice. To find a more tractable alternative, we return to the notion of tangent
spaces, and relate nonsingularity to tangent spaces as follows.

Proposition 4.3.1. Given an affine algebraic set X ⊆ Ank , and P ∈ X, then T ∗P (X) is the dual
space of TP (X), via the pairing induced by

〈f, v〉 = (∂f/∂x1(P ), . . . , ∂f/∂xn(P )) · v.

Proof. We first observe that the proposed pairing is well defined, which is precisely what
Exercise 4.1.5 says, since if f̃1, f̃2 ∈ An are two representatives of f , we have f̃1 − f̃2 ∈ I(X).

Next, if we have v ∈ TP (X) such that for all f ∈ mP , we see that 〈f, v〉 = 0, then it is immediate
that v = 0: if P = (a1, . . . , an), then in particular we have 〈xi − ai, v〉 = 0 for each i, but we see
from the definition that 〈xi − ai, v〉 is simply the ith coefficient of v.

It remains to show that if we have f ∈ mP such that 〈f, v〉 = 0 for all v ∈ TP (X), then f ∈ m2
P

in A(X). Letting m̃P denote the maximal ideal corresponding to P in the polynomial ring An, this
is the same as showing that f ∈ (m̃2

P , I(X)) in An. But we observe that TP (X) is the orthogonal
complement to vectors of the form (∂g/∂x1(P ), . . . , ∂g/∂xn(P )) for g ∈ I(X), and by hypothesis,
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(∂f/∂x1(P ), . . . , ∂f/∂xn(P )) is in the orthogonal complement to TP (X), so we conclude that there
exists some g ∈ I(X) such that

(∂f/∂x1(P ), . . . , ∂f/∂xn(P )) = (∂g/∂x1(P ), . . . , ∂g/∂xn(P )).

Then f−g has all partial derivatives vanishing at P , so it is clear that it is in m̃2
P , since if we expand

in terms of the xi − ai, any nonzero linear term would create a nonzero partial derivative. �

This leads to a different interpretation of nonsingularity which is useful for both computational
and theoretical purposes.

Corollary 4.3.2 (Jacobian criterion). Suppose X ⊆ Ank is an affine algebraic set, and f1, . . . , fm ∈
I(X). Given P ∈ X, if dimP X = d, then the n×m matrix

J(f1, . . . , fm)(P ) := ((∂fi/∂xj)(P ))i,j

has rank at most n − d. If equality holds, then P is a nonsingular point of X, and the converse
holds if the fi generate I(X).

In particular, if X = Z(f1, . . . , fm), and J(f1, . . . , fm)(P ) has rank m, then necessarily P is a
nonsingular point of X and every component of X passing through P has dimension n−m.

In fact, we will see in Corollary 4.3.10 below that if X is nonsingular at P , then X has only
one irreducible component containing P , so the phrasing “every component of X passing through
P” above is a bit misleading.

Proof. First, Exercise 3.1.15 gives us that dim OP,X = d. Let r be the rank of J(f1, . . . , fm)(P ).
If we extend the fi to a set f1, . . . , fm′ generating I(X), and let r′ be the rank of J(f1, . . . , fm′)(P ),
then Exercise 4.1.5 says that TP (X) is the orthogonal complement in kn of the rowspace of
J(f1, . . . , fm′)(P ), so we have

dimk TP (X) = n− r′ 6 n− r.
By Proposition 4.3.1, we then have dimk T

∗
P (X) = n− r′ 6 n− r also, so the first statements follow

from the fact (Corollary 4.2.2) that dimk T
∗
P (X) > d, and the definition of nonsingularity.

For the last statement, we already know from the Krull principal ideal theorem (Theorem
2.4.15) that every component of X has dimension at least n −m, but the hypotheses then imply
that if Z is any component of X containing P , then

n−m = dimk TP (X) > dimZ > n−m,
so we must have equality and the statement follows. �

Example 4.3.3. Suppose H = Z(f) ⊆ Ank is a hypersurface, with f irreducible (so that I(H) =
(f)). Then P ∈ H is singular if and only if (∂f/∂xi)(P ) = 0 for each i = 1, . . . , n.

The power of the Jacobian criterion is that it allows us to analyze the entire set of singular
points at once, instead of just looking at one point at a time.

Example 4.3.4. Returning to the plane curve with f = y2 − x3, we have ∂f/∂x = −3x2, and
∂f/∂y = 2y. Certainly, we have a singular point at (0, 0), but if k doesn’t have characteristic
3, setting 3x2 = 0 means x = 0 and the only point on the curve with x = 0 is (0, 0), so this is
the only singularity. On the other hand, if k doesn’t have characteristic 2, setting 2y = 0 and
y2 − x3 = 0 again implies the only singularity is (0, 0), so we conclude that (0, 0) is the only
singularity independent of characteristic.

An important consequence of the Jacobian condition is the following:

Corollary 4.3.5. Let X ⊆ Ank be an affine variety. Then the set of singular points of X form
a proper (but possibly empty) closed subset of X.
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Proof. We first observe that we can view the Jacobian matrix J(X) as a matrix with entries
consisting of polynomials, and then J(X)(P ) is obtained simply by evaluating these polynomials
at P . Hence, for any r, the set of P ∈ Ank such that J(X)(P ) has rank less than or equal to r
defines a Zariski closed subset of Ank , as it is described by the vanishing of (r+ 1)× (r+ 1) minors,
which are polynomials. Now, if dimX = d, the assertion that the set of singular points is closed
is immediate: the singular points are simply the intersection of X with the subset of Ank on which
J(X) has rank less than or equal to n− d− 1.

It remains to see that X has an open subset on which it is nonsingular. Here we use the theorem
that X is birational to a hypersurface H ⊆ Ad+1

k ; since birational varieties have isomorphic open
subsets, it is enough to prove that H is nonsingular on a nonempty open subset. Suppose H = Z(f)
for some irreducible f . Then the singular set of H is the intersection

Z(f) ∩ Z(∂f/∂x1) ∩ · · · ∩ Z(∂f/∂xn).

This can only be equal to all of H if Z(f) ⊆ Z(∂f/∂xi) for all i. But f is irreducible and ∂f/∂xi
has strictly smaller degree if it nonzero, so the only way this can happen is if ∂f/∂xi = 0 for all i. If
k has characteristic 0 this is impossible for a nonconstant polynomial. If k has characteristic p > 0,
it can only happen if in fact f is a polynomial in xp1, . . . , x

p
n. But in this case, since k is algebraically

closed, by taking pth roots of the coefficients of f we can write f = gp for some polynomial g. This
contradicts the irreducibility of f . We thus conclude that H, and hence X, has a nonempty subset
of nonsingular points. �

The following exercise relates systems of local coordinates more explicitly to the Jacobian
criterion.

Exercise 4.3.6. Let X ⊆ Ank be an affine variety of dimension d, given by an ideal I ⊆
k[t1, . . . , tn]. Given P = (c1, . . . , cn) ∈ X, the following are equivalent:

(1) X is nonsingular at P of dimension d, and (tn−d+1− cn−d+1, . . . , tn− cn) induces a system
of local coordinates for X at P ;

(2) projection to the last d coordinates induces an isomorphism TP (X)
∼→ T(cn−d+1,...,cn)(A

d
k);

(3) there exist f1, . . . , fn−d ∈ I such that the Jacobian matrix
(
∂fi
∂tj

)
16i,j6n−d

is invertible at

P .

We will conclude with a couple of additional fundamental results on (non)singularity, which
require the following commutative algebra result:

Theorem 4.3.7. If R is a regular local ring, then R is an integral domain.

See Corollary 10.14 of [Eis95].
We also have the following easier lemma:

Exercise 4.3.8. Let R be a ring, and p1, . . . , pn, q1, . . . , qm prime ideals such that no pi is
contained in any qj . Then there exists f ∈ R such that f ∈ pi for i = 1, . . . , n but f 6∈ qj for
j = 1, . . . ,m.

Corollary 4.3.9. If X is an affine algebraic set, then OP,X is an integral domain if and only
if P is contained in a unique irreducible component of X.

Proof. If P is contained in a unique irreducible component of X, then then the complement
of the other irreducible components is an open neighborhood U of P which is irreducible. It is then
clear that OP,X is an integral domain, since we can replace X by the closure of U without changing
OP,X . Conversely, suppose that OP,X is an integral domain, let Z be an irreducible component of
X containing P , and Z ′ the union of the other irreducible components of X. Using Exercise 4.3.8,
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let f1 ∈ A(X) vanish on Z but not on any component of Z ′, and let f2 ∈ A(X) vanish on Z ′ but
not on Z. Then f1f2 = 0, so we must have either f1 or f2 equal to 0 in OP,X . But because P ∈ Z,
we cannot have f2 = 0 in OP,X . Thus f1 = 0 in OP,X , and we conclude that no component of Z ′

can contain P , as desired. �

For us, the main geometric consequence of Theorem 4.3.7 is the following, which now follows
immediately from Corollary 4.3.9.

Corollary 4.3.10. If X is an affine algebraic set, and P ∈ X is a nonsingular point, then P
is contained in a unique irreducible component of X.

In particular, a connected nonsingular algebraic set is automatically a variety. This fits with
intuition – a point where two components intersect should not be nonsingular – but it’s not so
obvious from either definition. We can use this to generalize Corollary 4.3.5.

Corollary 4.3.11. If X is an affine algebraic set, then the set of singular points of X is a
nowhere dense closed subset of X.

Proof. Let Z ⊆ X be the points which are contained in more than one irreducible component
of X; then Z is closed. If U = X r Z, then U is open and dense in X, and is a disjoint union of
components U1, . . . , Un whose closures Z1, . . . , Zn are the irreducible components of X. Because
local rings aren’t affected by restricting to open subsets, the nonsingular points of X which are
contained in U are exactly the nonsingular points of each Zi which are contained in Ui, so these
form a dense open subset of U by Corollary 4.3.5. On the other hand, by Corollary 4.3.10, we
see that none of the points of Z are nonsingular points of X, so we conclude that the nonsingular
points of X are a dense open subset of U , and hence of X. �

Finally, we address an additional consequence of the results we have developed so far. Recall
that if an affine variety X has codimension c in Ank , it need not be possible to define X using only c
polynomials. We express this by saying that not every variety is a complete intersection. In fact, it
is not difficult to check that even if we relax the condition, and ask only that every point of X has
a neighborhood on which X can be defined by c polynomials, that this is still not always possible.
This says that X need not be a local complete intersection. However, we see that nonsingular
varieties are always local complete intersections.

Corollary 4.3.12. If P ∈ X is a nonsingular point, then X is a local complete intersection at
P , in the following sense: if dimP X = d, we have X ⊆ Ank , and f1, . . . , fm ∈ An generating I(X),
choose i1, . . . , in−d so that the corresponding rows of J(X)(P ) are linearly independent; then there
exists an open neighborhood U of P in Ank such that

Z(fi1 , . . . , fin−d
) ∩ U = X ∩ U.

Proof. Set Z = Z(fi1 , . . . , fin−d
). Obviously, we have X ⊆ Z. On the other hand, every

irreducible component of Z must have dimension at least d, and applying the Jacobian criterion
to Z, we see that it is nonsingular at P , with dimension d in a neighborhood of P . But then by
Corollary 4.3.10 Z has a unique irreducible component Z ′ containing P , which has dimension equal
to that of X. It then follows that X must also contain Z ′, and choosing U to be the complement
of any other components of X or Z, we have X ∩ U = Z ′ ∩ U = Z ∩ U , as desired. �

Remark 4.3.13. When one studies this sort of question, there are two different strengths with
which one can formulate the question. The weaker version is to look for f1, . . . , fc such that
X = Z(f1, . . . , fc). The stronger one is to actually ask that f1, . . . , fc generate I(X). The above
argument is phrased in the context of the weaker version for the sake of conceptual simplicity, but
the stronger statement also follows by arguments which are more algebraic. See Corollary 4.A.2
below.
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Remark 4.3.14. Our presentation is ahistorical in that the notion of nonsingularity in terms
of partial derivatives far preceded the theory of regular local rings (developed by Krull) and its
connection to nonsingularity (developed by Zariski) in the 1930’s and 1940’s.

Exercise 4.3.15. Show that if f(x, y) ∈ k[x, y] is of the form y2− g(x) for a nonconstant poly-
nomial g(x) ∈ k[x], so that f(x, y) is irreducible by Exercise 2.2.20, then Z(f(x, y)) is nonsingular
if and only if g(x) has no multiple roots.

Exercise 4.3.16. Show that if X and Y are nonsingular affine varieties, then X × Y is also
nonsingular.

Exercise 4.3.17. Show that if Y is a nonsingular affine variety of dimension d, and Z ⊆ Y is a
nonsingular closed subvariety of codimension c, then for every point P ∈ Z there exist f1, . . . , fc ∈
A(Y ) and an open neighborhood U of P in Y such that

Z ∩ U = Z(f1, . . . , fc) ∩ U ⊆ Y.
Exercise 4.3.18. Let Y ⊆ Ank be a nonsingular affine variety, and Z1, Z2 closed subvarieties of

Y . Suppose Z is an irreducible component of Z1 ∩ Z2. Show that

codimY Z 6 codimY Z1 + codimY Z2.

Hint: express Z1 ∩ Z2 as a different intersection inside Y × Y ⊆ A2n
k .

4.A. Local generation of ideals

We explain the stronger, ideal-theoretic formulation of local complete intersections at nonsin-
gular points, and give an application to generation of ideals.

Lemma 4.A.1. Let X ⊆ Ank be an algebraic set, of dimension d at a nonsingular point P ∈ X.
If f1, . . . , fn−d ∈ I(X) has J(f1, . . . , fn−d)(P ) of maximal rank n− d, then:

(i) I(X)OP,An
k

= (f1, . . . , fn−d)OP,An
k

;

(ii) there exists f ∈ A(Ank) rmP such that I(X)A(Ank)f = (f1, . . . , fn−d)A(Ank)f .

Proof. Let mP ⊆ OP,X and nP ⊆ OP,An
k

be the respective maximal ideals, and I ′ = I(X)OP,An
k
,

so that mP = nP /I
′. Then we have an exact sequence of k-vector spaces

0→ I ′/nP I
′ → nP /n

2
P → mP /m

2
P → 0.

We know that dimk nP /n
2
P = n and dimk mP /m

2
P = d, so we conclude that dimk I

′/nP I
′ = n− d.

But applying Proposition 4.3.1 to the case of Ank , our hypothesis on rkJ(f1, . . . , fn−d)(P ) implies
that (the images of) f1, . . . , fn−d are linearly independent in nP /n

2
P , and hence must give a basis

of I ′/nP I
′. Then (i) follows by Nakayama’s lemma.

Now, (i) means that if (g1, . . . , g`) is a generating set for I(X), then for each j = 1, . . . , `, we
have an expression

g`/1 =

m∑
i=1

ai,j/bi,jfi

in OP,An
k
, where ai,j ∈ A(Ank), and bi,j ∈ A(Ank) r nP . Setting f to be the product of the fi,j will

then yield (ii). �

We rephrase the second part of the lemma more geometrically as follows.

Corollary 4.A.2. If P ∈ X ⊆ Ank is a nonsingular point of an algebraic set, with dimP X = d,
and if we choose f1, . . . , fn−d ∈ I(X) so that J(f1, . . . , fn−d)(P ) has rank n − d, then there exists
f ∈ A(Ank) such that f(P ) 6= 0, and

I(X r Z(f)) = (f1, . . . , fn−d).
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More precisely, let Z = Z(xn+1f − 1) ⊆ An+1
k , so that the projection morphism An+1

k → Ank
induces an isomorphism

ϕ : Z
∼→ Ank r Z(f).

Then I(ϕ−1(X r Z(f))) = (f1 ◦ ϕ, . . . , fn−d ◦ ϕ, xn+1f − 1).

Proof. This is essentially a rephrasing of Lemma 4.A.1 (ii), recalling that the map A(Ank)→
A(Z) is canonically identified with the map A(Ank)→ A(Ank)f . �

We can apply these ideas as follows.

Corollary 4.A.3. Let X ⊆ Ank be a variety of dimension d, and f1, . . . , fm ∈ I(X) such
that Z(f1, . . . , fm) is connected, and rk J(f1, . . . , fm)(P ) = n − d for all P ∈ X. Then I(X) =
(f1, . . . , fm).

Note that the connectedness hypothesis is in particular satisfied if we are given that Y =
Z(f1, . . . , fm), so that Corollary 4.A.3 is one approach for showing that polynomial equations
which cut out a variety in fact generate the ideal of the variety.

Proof. At each P ∈ X, we can choose a subset of n − d of the fi corresponding to linearly
independent rows of the Jacobian matrix, and then by Lemma 4.A.1 (i) we see that I(X)OP,An

k
=

(f1, . . . , fm)OP,An
k

for all P ∈ X.

Next, we claim that X = Z(f1, . . . , fm). Since X ⊆ Z(f1, . . . , fm) by hypothesis, we have by
the Jacobian criterion that for all P ∈ X, the zero set Z(f1, . . . , fm) is nonsingular of dimension d
at P , so Z(f1, . . . , fm) must have X as one of its irreducible components, and no other component
can intersect X by Corollary 4.3.10. But then our connectedness hypothesis implies Z(f1, . . . , fm)
cannot have any other irreducible components, proving the claim.

Now, if P 6∈ X, then I(X) 6⊆ mP , so I(X) contains a unit in OP,An
k
, and I(X)OP,An

k
= OP,An

k
.

But the same holds for (f1, . . . , fm), so we conclude that we have I(X)OP,An
k

= (f1, . . . , fm)OP,An
k

for all P ∈ Ank . The following algebra proposition then completes our argument. �

Proposition 4.A.4. Let R be a ring, and I ⊆ I ′ ⊆ R ideals. If IRm = I ′Rm for every maximal
ideal of R, then I = I ′.

Proof. Suppose we have x ∈ I ′. Let J = {y ∈ R : yx ∈ I}. We observe that J is an ideal,
and wish to show that J = R. But given a maximal ideal m of R, we have IRm = I ′Rm, which
means we have x/1 = r/s for some r ∈ I, and s 6∈ m, or equivalently, there exists z 6∈ m such that
xsz = rz. We then see that sz ∈ J , and sz 6∈ m, so J 6⊆ m. Since this holds for all m, we conclude
that J = R, as desired. �
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CHAPTER 5

Abstract varieties via atlases

Having discussed affine and quasiaffine varieties, we next describe how abstract algebraic vari-
eties over an algebraically closed field may be defined rigorously via an atlas definition analogous
to the usual definition of differential manifolds. The restriction to algebraically closed fields allows
us to use the naive notions of the underlying spaces and their morphisms; we thus fix throughout
an algebraically closed field k.

5.1. Prevarieties

In the definition of manifolds, one imposes a condition that every point have a neighborhood
which is isomorphic (in some appropriate sense) to an open subset of Rn. This is not possible for
varieties, for two reasons. The first is that we do not want to restrict ourselves to smooth varieties,
so even for complex varieties we will not necessarily obtain topological manifolds. However, even
if we wished to restrict to smooth varieties, we could still not ask for our varieties to be locally
isomorphic to an open subset of affine space, because algebraic maps are fundamentally much more
rigid than differentiable maps, and it is simply not the case that a smooth variety has an open
cover by varieties which can be thought of as open subvarieties of affine space. We therefore allow
our varieties instead to be covered by open subsets which are isomorphic to affine varieties.

Asking for a variety to have an open cover by affine varieties may at first be counterintuitive –
in analogy with manifold theory, why not allow the open subsets to be isomorphic to open subsets
of affine varieties? However, we have just seen that every open subset of an affine variety has an
open cover by affine varieties, so in fact this would not be any different, and we conserve words by
imposing that our open cover consist of affine varieties.

To summarize, we will construct general abstract varieties by gluing together affine varieties
along open subsets, with the restriction that the gluing maps must be algebraic. We have:

Definition 5.1.1. A prevariety X over k is an irreducible topological space, together with
an open cover U1, . . . , Um, and a collection of homeomorphisms ϕi : Xi

∼→ Ui, where each Xi ⊆ Ani

is an affine variety equipped with the Zariski topology, and we require that every transition map

ϕi,j : ϕ−1i (Ui ∩ Uj)
ϕ−1
j ◦ϕi

∼→ ϕ−1j (Ui ∩ Uj)
is a morphism (of quasiaffine varieties). We say that each map ϕi : Xi → Ui ⊆ X is a chart, and

the collection of charts is an atlas.

Remarks 5.1.2. Since ϕ−1i,j = ϕj,i, the transition maps are necessarily isomorphisms. One often
thinks of a prevariety as being obtained from the collection of affine varieties Xi by gluing together
open subsets along the isomorphisms given by the transition maps.

We have not yet defined varieties because we haven’t yet imposed the condition analogous to
the Hausdorff condition for a manifold. We will revisit this shortly.

One can vary the definition a bit by defining a notion of equivalence of atlases and speaking of
a prevariety as a set with an equivalence class of atlases, or alternatively, by requiring an atlas to
be maximal. Either of these options removes the “dependence on choice” of the atlas, but at this
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point it is not clear whether it would be any less technical to simply do what modern algebraic
geometers do, which is to work with sheaves.

Example 5.1.3. Any affine variety “is” a prevariety, with an atlas consisting of a single chart.

Example 5.1.4. Suppose we have U1 = U2 = A1
k, and set U = A1

k r (0). We consider two
different possibilities for gluing U1 to U2 along U to obtain a prevariety.

The first is to let X be the union of U1 and U2 glued along U , where we identify U ⊆ U1 and
U ⊆ U2 simply by the identity map. In this case, X is almost the same as A1

k, except that now it
has two copies of the origin instead of one. In the usual real or complex topology, this satisfies the
conditions to be a manifold except that it is not Hausdorff.

On the other hand, we could identify the points of U ⊆ U1 with U ⊆ U2 via the inversion map
t 7→ 1/t. As we will see later, this is one way of describing the projective line P1

k. In the usual real
or complex topology, this will give a manifold, and will in fact be compact. We can picture that
by adding in U2 we have compactified U1 – because our transition map is t 7→ 1/t, the origin of U2

becomes the “point at infinity” of U1.

In the following exercise, we explore when we can in fact glue together affine varieties to make
a prevariety.

Exercise 5.1.5. Suppose that X1, . . . , Xn is a collection of affine varieties, and for each i, j,
we have Ui,j ⊆ Xi an open subset, and ϕi,j : Ui,j → Uj,i an isomorphism of quasiaffine varieties.
Suppose further that the ϕi,j satisfy the cocycle condition: for each i, j, `,

ϕj,` ◦
(
ϕi,j |ϕ−1

i,j (Uj,`)

)
= ϕi,`|ϕ−1

i,j (Uj,`)
.

(a) Show that there is a topological space X with an open cover U1, . . . , Un and homeomor-
phisms ϕi : Xi → Ui for i = 1, . . . , n such that the induced transition maps are the ϕi,j
(in particular, X has the structure of a prevariety).

(b) Show that the construction of (a) is unique in the sense that if X ′, U ′1, . . . , U
′
n, ϕ

′
1, . . . , ϕ

′
n

satisfies the same conditions, then there is a unique homeomorphism ϕ : X → X ′ such
that ϕ(Ui) = U ′i and ϕ ◦ ϕi = ϕ′i for each i.

(c) Finally, suppose that, given X1, . . . , Xn as above, for each i we have fixed isomorphisms
between K(Xi) and a given field K (over k). Given also Ui,j as above, suppose that the
isomorphisms ϕi,j are induced by our isomorphisms K(Xj) ∼= K ∼= K(Xi). Show that the
ϕi,j automatically satisfy the cocycle condition.

The first order of business is to understand quasiaffine varieties as special cases of prevarieties.
We make the following definition:

Definition 5.1.6. If X is a quasiaffine variety, and we have an atlas {ϕi : Xi → Ui} on the
underlying topological space of X, we say the atlas is admissible if each of the ϕi is an isomorphism
of quasiaffine varieties.

We see immediately that the one-chart atlas of Example 5.1.3 is admissible. More generally,
we will check:

Proposition 5.1.7. Suppose X is a quasiaffine variety and {ϕi : Xi → Ui} is a finite collection
of isomorphisms, with the Xi being affine varieties, and the Ui forming an open cover of X (and
each Ui considered as a quasiaffine variety). Then {ϕi : Xi → Ui} is an admissible atlas on X. In
particular, every quasiaffine variety has an admissible atlas.

Proof. For the first statement, all we need to check is that the transition maps are morphisms,
and in fact we see that they are isomorphisms because they are compositions of isomorphisms of
quasiaffine varieties.
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The second statement is immediate, since we know by Corollary 3.2.10 that X is covered by
open subsets which are isomorphic to affine varieties. �

Unless we state otherwise, we will from now on always assume that an atlas on a quasiaffine
variety is admissible.

We next consider more generally what sort of atlases we will want to use on a (suitable) subset
of a prevariety.

Proposition 5.1.8. Let X be a prevariety with atlas {ϕi : Xi → Ui}i∈I , and let Z be an
irreducible closed subset of an open subset of X. Then Z has an atlas {ψj : Zj → Vj}j∈J with the
following property: for all i ∈ I and j ∈ J , the induced map

ψ−1j (Ui)
ψj→ Vj ∩ Ui ↪→ Ui

ϕ−1
i→ Xi

gives an isomorphism of ψ−1j (Ui) ⊆ Zj onto its image in Xi.

Note that because ψj and ϕi are homeomorphisms by hypothesis, the image of ψ−1j (Ui) in Xi

is locally closed, so may be considered as a quasiaffine variety.

Proof. For each i, let {ψi,j : Zi,j → Vi,j}j∈Ji be an admissible atlas of the quasiaffine variety

ϕ−1i (Z) ⊆ Xi. Then let J =
∐
i Ji, and form {ψj : Zj → Vj}j∈J simply by taking the union of

all of the ϕi ◦ ψi,j′ . We claim that this is an atlas with the desired property. It is evident that
each ψj = ϕi ◦ ψi,j′ is a homeomorphism onto an open subset of Z ∩ Xi and hence of Z, and by
construction the union of the images covers Z.

First, given j1 corresponding to i1, j
′
1 and j2 corresponding to i2, j

′
2, the transition map ψ−1j2 ◦ψ

−1
j1

is obtained as
ψ−1
i2,j′2
◦ ϕ−1i2 ◦ ϕi1 ◦ ψi1,j′1 ,

and by hypothesis ϕ−1i2 ◦ϕi1 , ψi2,j′2 , and ψi1,j′1 are isomorphisms, so we conclude that the transition

map is likewise an isomorphism. Similarly, any ϕ−1i ◦ ψj is obtained as

ϕ−1i ◦ ϕi′ ◦ ψi′,j′
for some i′, j′, so is an isomorphism onto its image. �

We thus define:

Definition 5.1.9. If X is a prevariety, a subprevariety of X is an irreducible closed subset
of an open subset of X, with an atlas of the form given in Proposition 5.1.8.

Example 5.1.10. Although in general an induced atlas on an open subset will involve intro-
ducing more charts, this need not always be the case. For instance, if X is any prevariety with
atlas {ϕi : Xi → Ui}, and we consider the subprevariety of X corresponding to Ui, we see that we
may take the one-element atlas on Ui consisting only of ϕi : Xi → Ui.

5.2. Regular functions and morphisms

We next wish to define morphisms of prevarieties. Following the approach of [Har77] for
quasiaffine varieties, we first define regular functions, and use these to define morphisms.

Definition 5.2.1. If X is a prevariety with a given atlas, and U ⊆ X is open, a function
f : U → k is regular on U ⊆ X if for all i, the induced function

f ◦ ϕi : ϕ−1i (U)→ k

is regular (in the sense defined for quasiaffine varieties).
As before, we denote by O(U) the ring of regular functions on U ⊆ X.
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We incorporate X into our notation to reinforce that a priori, the notion of regularity depends
on the choice of atlas on X.

We first wish to verify that this concept of regular function is completely compatible with the
definition for quasiaffine varieties.

Proposition 5.2.2. If X is a quasiaffine variety, and U ⊆ X open, then a function f : U → k
is regular on X in the quasiaffine sense if and only if f is regular on X as a prevariety (always
assumed to have an admissible atlas).

Proof. Let {ϕi : Xi → Ui} be the given (admissible) atlas on X. By definition of admissibility
and the fact that regularity in the quasiaffine sense is a local condition, we have that quasiaffine
regularity on U is equivalent to quasiaffine regularity on U ∩ Ui for all i, which is equivalent to
quasiaffine regularity on ϕ−1i (U) for all i, giving the desired statement. �

It would also be good to know that our definition of subprevariety is in some sense independent
of the choices involved in the induced atlas. We will show that the resulting regular functions are
independent of these choices. Rather than showing this directly, we give a visibly independent
characterization of regular functions, which is also useful in other contexts. We have:

Proposition 5.2.3. Let X be a prevariety, and Z ⊆ X a subprevariety. Given U ⊆ Z open
and f : U → k, we have f regular on U ⊆ Z if and only if for all P ∈ U , there exists V ⊆ X an
open neighborhood of P , and a regular function g : V → k on V ⊆ X such that f |V ∩U = g|V ∩U .

Corollary 5.2.4. If X is a prevariety, and Z ⊆ X a subprevariety, then for any U ⊆ Z open,
the regularity of a function f : U → k is independent of the choice of atlas on Z as a subprevariety
of X.

We now move on to the definition of morphisms and isomorphisms. In particular, this will help
us understand when two atlases should be considered equivalent.

We can define morphisms as usual:

Definition 5.2.5. Given prevarieties X, Y with atlases given by {ϕi : Xi
∼→ Ui}i and {ψj :

Yj
∼→ Vj}j , a morphism ϕ : X → Y is a continuous map such that for all U ⊆ Y open, and all

f : U → k regular, we have f ◦ ϕ : ϕ−1(U)→ k is also regular.

It is immediate from Proposition 5.2.2 that if X,Y are quasiaffine varieties, morphisms X → Y
in the above sense are the same as morphisms in the sense we had already defined. We also see from
the definition (technically, using that composition of functions is associative) that compositions of
morphisms are morphisms.

Exercise 5.2.6. Using the construction of the projective line described in Example 5.1.4,
compute the regular functions which are defined on the whole projective line. Conclude that the
projective line is not isomorphic to any quasiaffine variety.

Example 5.2.7. If X is a prevariety and {ϕi : Xi → Ui} an atlas, then for each i, considering
Ui as a prevariety, the chart map ϕi is an isomorphism. Indeed, we saw in Example 5.1.10 that Ui
has a one-element atlas given by ϕi : Xi → Ui, so by definition of regular functions on prevarieties,
ϕi induces a correspondence between regular functions on (open subsets) of Ui and on Xi, and thus
ϕi is an isomorphism.

We next see that the condition of being a morphism is a local one.

Exercise 5.2.8. If ϕ : X → Y is a morphism, and U ⊆ X is an open subset considered as a
prevariety, then ϕ|U is a morphism.

Conversely, if we have a map ϕ : X → Y and an open cover Ui of X such that ϕ|Ui is a
morphism for each i, then ϕ is a morphism.
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Morphisms are also local on the target.

Exercise 5.2.9. If ϕ : X → Y is a morphism, and V ⊆ Y is an open subset of Y , if we consider
V and ϕ−1(V ) as prevarieties, then ϕ induces a morphism ϕ−1(V )→ V .

Conversely, a continuous map ϕ : X → Y is a morphism if there is some open cover Vi of Y
such that ϕ induces a morphism ϕ−1(Vi)→ Vi for each i.

A definition of morphism more analogous to a typical one using atlases for differentiable mani-
folds is then the following:

Exercise 5.2.10. With notation as in the above definition, a continous map ϕ : X → Y is a
morphism if and only if for any i, j, the induced map

(ϕi)
−1(ϕ−1(Vj))

ϕi→ ϕ−1(Vj) ∩ Ui
ϕ→ Vj

(ψj)
−1

→ Yj

is a morphism of quasiaffine varieties.

Following are some basic properties of morphisms.

Exercise 5.2.11. Prove the following.

(a) If Z ⊆ X is a subprevariety of a prevariety, the inclusion map of prevarieties is a morphism.
(b) If X and Y are prevarieties, Z a subprevariety of Y , and ϕ : X → Y any map with

ϕ(X) ⊆ Z, then ϕ is a morphism if and only if the induced map X → Z is a morphism.

Suppose X is a prevariety, and Y ⊆ An an affine variety. Then we see that a function X → Y is
equivalent to an n-tuple of functions X → k, such that the induced map X → An factors through
Y . We can effectively use this correspondence to describe morphisms in terms of n-tuples of regular
functions, generalizing our previous results for the quasiaffine case.

Proposition 5.2.12. Given a prevariety X and an affine variety Y ⊆ An, morphisms X → Y
are equivalent to n-tuples of regular functions on X such that the induced map ϕ : X → An has
image contained in Y .

In particular, morphisms X → Y are in bijection with k-algebra homomorphisms A(Y ) →
O(X).

Proof. Certainly, if ϕ is a morphism, then pulling back the coordinate functions x1, . . . , xn on
An gives an n-tuple of regular functions on X, which describe ϕ. Conversely, suppose the pullbacks
of the xi are regular functions fi ∈ O(X), so we have for any j that fi ◦ ϕj is regular on Xj ,
using our standard atlas notation. But Xj is affine, so this means that the induced map Xj → Y
is a morphism in the classical sense, and (using the one-chart atlas for Y ) by Exercise 5.2.10 we
conclude that ϕ is a morphism.

Now, to prove that morphisms X → Y are in bijection with k-algebra homomorphisms A(Y )→
O(X) it is enough to prove that an n-tuple of regular functions f1, . . . , fn on X defines a function
which maps X into Y if and only if g(f1, . . . , fn) = 0 for all g ∈ I(Y ), and this proceeds just as in
the quasiaffine case, described in Corollary 3.2.11. �

5.3. Abstract varieties

Note that a prevariety X is never Hausdorff (unless X consists of a single point), since it is
irreducible by hypothesis. However, the analogue of the Hausdorff condition for a manifold is
precisely what is missing from our definition. It turns out that the right definition involves the
following fact from point-set topology:

Exercise 5.3.1. A topological space X is Hausdorff if and only if the image of the diagonal
map X → X ×X is closed.
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We will use the same definitions for varieties, but because the Zariski topology on a product of
varieties is not the product topology, we will obtain a different and better-behaved notion.

Of course, we first need to define the product of prevarieties. The affine case was explored in
Exercise 3.2.22, but we recall the definition.

Definition 5.3.2. Given X ⊆ Ank and Y ⊆ Amk affine varieties, let X × Y ⊆ An+mk be the

product set via the natural identification of sets Ank × Amk = An+mk .

We then generalize as follows.

Definition 5.3.3. Given prevarieties X,Y , we define the product X × Y of X with Y to be
the product set X × Y , equipped with the atlas

ϕi × ϕj : Xi × Yj
∼→ Ui × Vj ,

and the topology induced by the atlas.

Exercise 5.3.4. Show the following:

(a) The above definition gives a valid prevariety.
(b) If X and Y are affine, this definition is consistent with the one we already have (and used

in the above) for products of affine varieties.
(c) If Y ⊆ X is a subprevariety, then the topology on Y × Y ⊆ X ×X is the subset topology.
(d) The projection maps p1 : X × Y → X and p2 : X × Y → Y are morphisms.
(e) If Z is any prevariety, then a map Z → X × Y is a morphism if and only if the induced

maps Z → X,Z → Y are morphisms, where the induced maps are obtained by composing
with p1 and p2.

We then have that any prevariety X has a natural diagonal morphism:

Corollary 5.3.5. Given a prevariety X, the diagonal map ∆ : X → X ×X is a morphism of
prevarieties.

Proof. This is immediate from Exercise 5.3.4 (d), since ∆ is the unique morphism correspond-
ing to the identity map on each factor. �

Our analogy to the Hausdorff condition is then the following:

Definition 5.3.6. We say that a prevariety X is a variety if the image of the diagonal mor-
phism is closed.

Example 5.3.7. Any affine variety is a variety. Indeed, ifX = Z(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))
is an affine variety in An, then

∆(X) = Z(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn), x1 − xn+1, x2 − xn+2, . . . , xn − x2n),

so is closed in A2n.

Example 5.3.8. An example of a prevariety which is not a variety is given by considering X
to be the line with the doubled origin discussed in Example 5.1.4. We can see explicitly that the
diagonal is not closed in this case: indeed, X × X has an atlas consisting of U1,1, U1,2, U2,1, U2,2

where each Ui,j is a copy of A1
k×A1

k: the diagonal ∆ in X ×X restricts to the diagonal in U1,1 and
U2,2, so is closed on these open subsets, but ∆|U1,2 and ∆|U2,1 are each equal to the complement of

the origin in the diagonal of A1
k × A1

k, so are not closed. Thus, ∆ is not closed.
Put differently, if P1, P2 denote the two origins in X, then we see from the above atlas on X×X

that while the points (P1, P1) and (P2, P2) are in the diagonal, the points (P1, P2) and (P2, P1) are
in the closure of the diagonal, but not in the diagonal.
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Definition 5.3.9. A subvariety of a variety X is a subprevariety.

The terminology is justified by the following.

Proposition 5.3.10. Let X be a variety, and Y ⊆ X a subprevariety. Then Y is a variety.

Proof. We have

∆(Y ) = ∆(X) ∩ (Y × Y ) ⊆ X ×X.
Since ∆(X) is closed and Y × Y has the subset topology in X ×X, we conclude ∆(Y ) is closed in
Y × Y . �

Corollary 5.3.11. Every quasiaffine variety is a variety.

For context, we mention the following, which says in particular that we could have defined the
variety condition in terms of the diagonal map giving an isomorphism onto a closed subprevariety
of Y × Y .

Exercise 5.3.12. Show that if Y is any prevariety, then ∆(Y ) ⊆ Y × Y is a locally closed
subset, and the diagonal morphism is an isomorphism of Y onto ∆(Y ).

The following will be useful for checking that a prevariety is a variety.

Proposition 5.3.13. A prevariety X is a variety if and only if for any two points P,Q ∈ X
there is an open subset U of X which contains P and Q and is a variety.

Proof. If X is a variety, we can take the open subset to be all of X. Conversely, suppose the
condition holds; we wish to show ∆(X) is closed. Thus, suppose (P,Q) is in the closure of ∆(X).
By hypothesis, we can choose U containing P and Q and such that ∆(U) is closed in U ×U . Since
U ×U has the subset topology in X ×X, and (P,Q) ∈ U ×U , the hypothesis that (P,Q) is in the
closure of ∆(X) implies it is in the closure of ∆(U), thus in ∆(U) ⊆ ∆(X), and since P and Q
were arbitrary, we conclude ∆(X) is closed. �

Warning 5.3.14. It is not necessarily the case that if X is a variety and P,Q ∈ X, then there
is an affine open subset U ⊆ X containing P and Q. This is closely related to the fact that not all
varieties can be imbedded into projective space.

Example 5.3.15. The projective line constructed in Example 5.1.4 is a variety. In order to see
this, we claim that if we let V be the open subprevariety obtained by removing the point (1) from
each copy of A1

k used to define P1
k, then V ∼= A1

k. This will then prove that P1
k is a variety using

Proposition 5.3.13, since any two points are contained either in one of the two copies of A1
k in the

atlas for P1
k, or in V .

Now, V is defined by gluing two copies of Y = A1
k r (0) to each other via the map t 7→ 1/t.

Denote the two copies of Y by V1 and V2. Recalling that Y is affine, isomorphic to Z(x, y) ⊆ A2
k,

we see that the Vi give an atlas for V as a prevariety. To construct an isomorphism to A1
k, consider

the regular function defined by 1/(t− 1) on V1, and by 1/(1/t− 1) = t/(1− t) on V2. This defines
a morphism to A1

k, with inverse morphism defined by sending x to (x + 1)/x in V1 for x 6= 0, and
to x/(x+ 1) in V2 for x 6= −1.

To illustrate the importance of the variety condition, we have the following:

Exercise 5.3.16. Let X be a prevariety and Y a variety, and f, g : X → Y two morphisms.
Then the subset

Z = {P ∈ X : f(P ) = g(P )}
is closed.
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Exercise 5.3.17. Show that the conclusion of Exercise 5.3.16 may fail if Y is the line with the
doubled origin of Example 5.1.4.

Exercise 5.3.18. Show that if Y is a variety, and U, V ⊆ Y open subvarieties which are each
isomorphic to affine varieties, then U ∩ V is also isomorphic to an affine variety. Show also that
this may fail if Y is an arbitrary prevariety.

We conclude by mentioning that many of the definitions we have made previously, include local
rings at a point, fields of rational functions, dimension and codimension, rational functions and
maps, and nonsingularity extend immediately to prevarieties. Although the definition makes sense
in general, we typically only consider rational maps and birational maps in the context of varieties,
due to issues related to Exercise 5.3.17.

Many of our results so far can be reduced to the affine case, and thus extend to general pre-
varieties. However, some require some extra care, again as demonstrated by Exercise 5.3.17. We
illustrate a few routine generalizations in the following exercises.

Exercise 5.3.19. Let X be a prevariety.

(a) If U ⊆ X is open, then dimU = dimX.
(b) If Z ⊆ X is closed and irreducible, then dimX = dimZ + codimX Z.

We also have the following basic fact.

Exercise 5.3.20. Let ϕ : X → Y be a morphism of varieties. Let Z ⊆ X be the closure of
ϕ(X). Then Z is a variety, and dimZ 6 dimX.
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CHAPTER 6

Projective varieties

We now move on to studying projective varieties, which we will treat as examples of the more
general abstract varieties we have defined. We will put off the proof of one basic result: that global
regular functions on a projective variety are constant. Instead of a direct algebraic proof, this result
will fall out of more general geometric ideas which we will develop in connection with the notion
of completeness.

6.1. Projective space

We will first construct projective space Pnk as a prevariety. As a set, we define

Pnk = {(a0, . . . , an) : ai 6= 0 for at least one i}/ ∼,

where (a0, . . . , an) ∼ (b0, . . . , bn) if there exists λ ∈ k∗ such that (a0, . . . , an) = λ(b0, . . . , bn).
To define the topology, we recall that a polynomial F ∈ k[X0, . . . , Xn] is homogeneous if all its

monomials have the same total degree. We then observe that if F ∈ k[X0, . . . , Xn] is homogeneous,
although F does not define a function on Pnk because of the equivalence relation, we have

F (λa0, . . . , λan) = λdF (a0, . . . , an),

where d is the degree of F . Thus, F has a well-defined zero set in Pnk , which we denote by
Zh(F ) ⊆ Pnk . More generally, if S ⊆ k[X0, . . . , Xn] consists entirely of homogeneous polynomials
(not necessarily all of the same degree), we can define

Zh(S) =
⋂
F∈S

Zh(F ) ⊆ Pnk .

Definition 6.1.1. A subset of Pnk is algebraic if it is of the form Zh(S) for some collection S
of homogeneous polynomials.

Proposition 6.1.2. We have:

(i) Zh(1) = ∅ and Zh(0) = Pnk ;
(ii)

⋂
i∈I Zh(Si) = Zh(

⋃
i∈I Si);

(iii) Zh(S1) ∪ Zh(S2) = Zh(S1S2).

The proof is the same as in the affine case, or can even be seen to follow from the affine case,
considering zero sets inside of An+1

k .
This means we can define the topology on Pnk to have closed sets consisting precisely of algebraic

subsets.
It remains to give Pnk an atlas. For this, choose an index i, and observe that if we set Ui =

Pnk r Zh(Xi), then every element of Ui has a unique representative (a0, . . . , an) with ai = 1. We
thus define ϕi : Ank → Ui by ϕi(b1, . . . , bn) = (b1, . . . , bi, 1, bi+1, . . . , bn).

To show that this gives an atlas, we need to explain a basic pair of constructions to go between
homogeneous and inhomogeneous polynomials.
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Notation 6.1.3. Given a polynomial f ∈ k[x1, . . . , xn] of degree d, let hi(f) ∈ k[X0, . . . , Xn]

be the homogeneous degree-d polynomial obtained as follows: if f =
∑

(j1,...,jn)
aj1,...,jnx

j1
1 · · ·x

jn
n ,

set
hi(f) =

∑
(j1,...,jn)

aj1,...,jnX
j1
0 · · ·X

ji
i−1X

d−
∑

` j`
i X

ji+1

i+1 · · ·X
jn
n .

If F ∈ k[X0, . . . , Xn] is homogeneous of degree d, then let di(F ) ∈ k[x1, . . . , xn] be obtained as

follows: if F =
∑

(j0,...,jn):
∑

` j`=d
aj0,...,jnX

j0
0 · · ·X

jn
n , set

di(F ) =
∑

(j0,...,jn):
∑

` j`=d

aj0,...,jnx
j0
1 · · ·x

ji−1

i x
ji+1

i+1 · · ·x
jn
n .

Exercise 6.1.4. With the above notation, show:

(a) For any f ∈ k[x1, . . . , xn], we have ϕi(Z(f)) = Zh(hi(f)) ∩ Ui.
(b) For any homogeneous F ∈ k[X0, . . . , Xn], we have ϕ−1i (Zh(F )) = Z(di(F )).

Corollary 6.1.5. The map ϕi is a homeomorphism. Moreover, for all i 6= j, the map

ϕi,j : ϕ−1i (Uj)
ϕi→ Ui ∩ Uj

ϕ−1
j→ ϕ−1j (Ui)

is a morphism.
Equivalently, {Ui, ϕi} define an atlas for Pnk as a prevariety.

Proof. The map ϕi is visibly bijective, so to see it is a homeomorphism, we need to check
that closed subsets coincide on both sides.

Since the topologies on Ank and Ui are obtained by intersecting sets of the form Z(f) and
Zh(F ) ∩ Ui respectively, we see from Exercise 6.1.4 that ϕi is a homeomorphism.

Now, for i 6= j, we verify that the transition map ϕi,j : ϕ−1i (Uj)→ ϕ−1j (Ui) is a morphism. But
from the definitions, we see that it is given by

(a1, . . . , an) 7→ (a1, . . . , ai, 1, ai+1, . . . , an)

7→

{
(a1/aj , . . . , ai/aj , 1/aj , ai+1/aj , . . . , aj−1/aj , aj+1/aj , . . . , an/aj) : i < j

(a1/aj+1, . . . , aj/aj+1, aj+2/aj+1, . . . , ai/aj+1, 1/aj+1, ai+1/aj+1, . . . , an/aj+1) : i > j.

But we also have

ϕ−1i (Uj) =

{
{(a1, . . . , an) : aj 6= 0} : i < j

{(a1, . . . , an) : aj+1 6= 0} : i > j,

so we see that ϕi,j is a morphism, as desired. �

Thus, we see that Pnk is a prevariety. In fact, it is a variety. One can check this directly from
the definitions by writing down the topology on a product of projective spaces, but we will give a
different proof in Corollary 6.2.7 below.

Having defined projective space, we can now make the following definition.

Definition 6.1.6. A projective variety is a closed subprevariety of Pnk for some n. A
quasiprojective variety is a subprevariety of Pnk for some n.

Remark 6.1.7. Since Ank is isomorphic to an open subset of Pnk , we see that quasiaffine varieties
are all isomorphic to quasiprojective varieties.

A construction which is frequently useful in studying projective algebraic sets is the following:

Definition 6.1.8. Given F1, . . . , Fm ∈ k[X0, . . . , Xn] homogeneous, let Y = Zh(F1, . . . , Fm),
and assume Y 6= ∅. Then the affine cone over Y is Z(F1, . . . , Fm) ⊆ An+1

k .
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Exercise 6.1.9. Let Y be a nonempty algebraic set in projective space, and X the affine cone
over Y .

(a) Show that X consists of the origin together with the preimage of Y under the natural map
An+1
k r (0)→ Pnk . In particular, there is a natural surjective map

ϕ : X r (0)→ Y.

(b) Show that ϕ is continuous.
(c) Show that ϕ is open (i.e., the image of an open subset of X r (0) is an open subset of Y ).
(d) Show that X is irreducible if and only if Y is irreducible.

Exercise 6.1.10. Let Y be a projective variety, and X the affine cone over Y .

(a) Show that dimPnk = n.
(b) Show that codimAn+1

k
X = codimPn

k
Y , and dimX = dimY + 1.

(c) Conclude that if codimPn
k
Y = 1, then Y = Zh(F ) for some homogeneous polynomial F .

Such a variety is a projective hypersurface.

Exercise 6.1.11. Let X,Y ⊆ Pnk be projective varieties, and suppose that codimPn
k
X +

codimPn
k
Y 6 n. Then show that X ∩ Y 6= ∅, and every irreducible component Z of X ∩ Y

satisfies

codimPn
k
Z 6 codimPn

k
X + codimPn

k
Y.

6.2. Projective varieties and morphisms

We will begin by studying regular functions on quasiprojective varieties, giving a rational func-
tion description analogous to the quasiaffine case. As we have mentioned, a homogeneous polyno-
mial F of degree d doesn’t define a function on Pnk (we instead refer to it as a form), but a quotient
of two of them does – at least, where the denominator is nonvanishing. This is compatible with
our affine charts as follows.

Exercise 6.2.1. With notation as in Exercise 6.1.4, show:

(a) For any homogeneous F,G ∈ k[X0, . . . , Xn] of equal degree, the function F/G on PnkrZ(G)
has the property that

(F/G) ◦ ϕi = di(F )/di(G)

on Ank r Z(di(G)).
(b) Given g, h ∈ k[x1, . . . , xn], the function g/h on Ank r Z(h) has the property that

(g/h) ◦ ϕ−1i = Xd
i hi(g)/hi(h)

on Ui r Z(hi(h)), where d = deg h− deg g.

Corollary 6.2.2. Let X ⊆ Pnk be a quasiprojective variety, U ⊆ X open, and f : U → k a
function. Then f is regular if and only if for all P ∈ U , there exists V an open neighborhood of P
and F,G ∈ k[X0, . . . , Xn] homogeneous of equal degree such that V ∩ Zh(G) = ∅ and f = F/G on
V .

Proof. It is immediate from Exercise 6.2.1 (a) that F/G defines a regular function on V .
Conversely, if f is regular and P ∈ Ui, then f ◦ ϕi : Ui ∩ U → k is regular, so there is some
Vi ⊆ Xi a neighborhood of ϕ−1i (P ) on which f ◦ ϕi = g/h for some g, h ∈ k[x1, . . . , xn], with

Vi ∩Z(h) = ∅. Applying Exercise 6.2.1 (b), we have f = Xd
i hi(g)/hi(h), so we can express f in the

desired form. �
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Next, recall that if Y ⊆ Ank is affine, then for any prevariety X, morphisms X → Y are the same
as n-tuples of regular functions on X such that the induced map X → Ank has image contained in
Y . A similar, but slightly more complicated statement holds in the case that Y ⊆ Pnk is projective.

In this case, if we have an (n + 1)-tuple (f0, . . . , fn) of regular functions on X, and if further
there is no point of X at which all the fi are zero, then we get a map X → Pnk . However, not every
morphism can be globally described by such an (n+ 1)-tuple. The correct statement is as follows:

Proposition 6.2.3. Given a map ϕ : X → Y , with X any prevariety and Y ⊆ Pn a projective
variety, ϕ is a morphism if and only if it is described locally by (n+ 1)-tuples of regular functions
which do not all vanish simultaneously.

We first prove the following general lemma:

Lemma 6.2.4. Let X be a prevariety, U an open subset, and f : U → k regular. Then f is a
unit in O(U) if and only if f(P ) 6= 0 for all P ∈ U .

Proof. This is clear from the definitions in the case that X is affine, and the general prevariety
case reduces to the affine case by the definition of regularity for prevarieties. �

Proof of Proposition 6.2.3. First suppose ϕ is a morphism, and let Vj = Y r Z(xj) for
j = 0, . . . , n. Then on each Vj we have the regular functions induced by xi

xj
on Pn for i = 0, . . . , n,

which gives us an (n+ 1)-tuple of regular functions on ϕ−1(Vj) by composing with ϕ. Noting that
in Pn r Z(xj) the point (c0, . . . , cn) is also represented by ( c0cj , . . . ,

cn
cj

), and that xi
xi

= 1 vanishes

nowhere on ϕ−1(Vj), we see that ϕ is represented by this (n+ 1)-tuple on ϕ−1(Vj). Letting j vary,
we find that ϕ is everywhere locally represented by (n+ 1)-tuples of regular functions which do not
all vanish simultaneously.

Conversely, suppose that we have some open cover Ui of X such that on each Ui, we can express
ϕ as an (n + 1)-tuple of regular functions which do not all vanish simultaneously. By refining the
Ui, we may assume they are affine. Since being a morphism is a local condition on X, it is enough
to see that if we consider each Ui as a prevariety, then ϕ induces a morphism Ui → Y . Moreover,
since Ui → Y is a morphism if and only if the composed map Ui → Pn is a morphism, it suffices to
treat the case Y = Pn. Thus, we have reduced to the case that X is affine, Y = Pn, and ϕ is given
globally by an (n + 1)-tuple of regular functions f0, . . . , fn on X. But if for j = 0, . . . , n we write
Uj := X r Z(fj), then by hypothesis the Uj cover X, and each Uj = ϕ−1(Pn r Z(xj)). Taking
coordinates xi

xj
(with i 6= j) on Pn r Z(xj), the map Uj → Pn r Z(xj) is then given by the n-tuple

of functions fi
fj

for i 6= j, which are regular by Lemma 6.2.4. Then our map Uj → Pn r Z(xj) is a

morphism for every j by Proposition 5.2.12, and because being a morphism is local on the target,
we conclude that ϕ is a morphism. �

In the case of maps between quasiprojective varieties, we obtain the following.

Corollary 6.2.5. Let X ⊆ Pnk and Y ⊆ Pmk be quasiprojective varieties. Given F0, . . . , Fm ∈
k[X0, . . . , Xn] homogeneous of degree d, suppose that Z(F0)∩ · · · ∩Z(Fm)∩X = ∅, and the induced
map X → Pmk has image contained in Y . Then the resulting map X → Y is a morphism.

More generally, a map X → Y is a morphism if and only if everywhere locally it can be expressed
as above.

Proof. First, we note that there is in fact an induced map X → Pmk , since scaling the Xi by λ

scales each Fi by λd. Now, given P ∈ X, by hypotheses there is some i such that Fi(P ) 6= 0, so U =
XrZ(Fi) is an open neighborhood of P on which we can represent our map by (F0/Fi, . . . , Fm/Fi).
We conclude from Corollary 6.2.2 that the map to Y is given locally on X by (m + 1)-tuples of
regular functions, and then Proposition 6.2.3 implies that we have a morphism, as desired.
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Since the condition of being a morphism is local, one direction of the second assertion follows
immediately. Conversely, if ϕ : X → Y is a morphism, Proposition 6.2.3 implies that locally
ϕ is given by (m + 1)-tuples of regular functions on X without simultaneous zeros. Applying
Corollary 6.2.2, for every P ∈ X there is an open neighborhood of P on which ϕ can be expressed
as (F0/G0, F1/G1, . . . , Fm/Gm) where P 6∈ Z(Gi) for any i, for some i we have P 6∈ Z(Fi), and
degFi = degGi for all i. Multiplying through by G0 ·G1 · · ·Gm expresses ϕ in the desired form. �

Example 6.2.6. Any linear change of coordinates is an automorphism Pnk
∼→ Pnk . Indeed, it is

given by an (n+ 1)-tuple of linearly independent homogeneous linear polynomials (F0, . . . , Fn), so
the common zero set is the origin in kn+1, and empty in Pnk . By Corollary 6.2.5, it is a morphism.
But the inverse map is of the same form, so we conclude that we have an automorphism, as desired.

In particular, we see that if H ⊆ Pnk is a hyperplane, then Pnk r H ∼= Ank , since there is an
automorphism mapping Z(x0) to H.

We can now easily conclude our previously promised result.

Corollary 6.2.7. Any quasiprojective variety is a variety.

Proof. It is enough to show that Pnk is a variety for any n. By our criterion for varieties
(Proposition 5.3.13), it is enough to show that any two points of Pnk are contained in an open
subset which is a variety. But we can always find a hyperplane H which does not contain any two
given points, and then Pnk rH ∼= Ank by Example 6.2.6, so we conclude the desired statement. �

Example 6.2.8. What if we take Example 6.2.6, but use fewer linear forms? Say we have
F0, . . . , Fm linearly independent homogeneous linear polynomials, for somem < n. Then (F0, . . . , Fm)
defines a rational map Pnk 99K Pmk , which is a morphism away from the set Z = Z(F0)∩· · ·∩Z(Fm).
We see that Z is a linear subspace of Pnk , of dimension n−m−1. This rational map is called linear
projection from Z. It can be described geometrically as follows: choose another linear subspace
Z ′ ⊆ Pnk , of dimension m, with Z ′ ∩ Z = ∅. Then given a suitable choice of coordinates on Z ′, our
map can be expressed as follows: it is the morphism Pnk r Z → Z ′ which sends a point P to the
point Q ∈ Z ′ which is the unique intersection point of Z ′ with the linear span of P and Z. (Notice
that the linear span of P and Z is a linear space of dimension n−m, so meets Z ′ in one point)

Example 6.2.9. Consider Y = Zh(X0X1 − X2
2 ) ⊆ P2

k. We claim that Y ∼= P1
k. We can

construct a morphism Y → P1
k by linear projections as follows: away from (0, 1, 0), we have

(X0, X1, X2) 7→ (X0, X2), and away from (1, 0, 0), we have (X0, X1, X2) 7→ (X2, X1). On Y , away
from both (0, 1, 0) and (1, 0, 0) we have X0/X2 = X2/X1, so we see that these two maps together
yield a morphism Y → P1

k. The inverse is given by (Y0, Y1) 7→ (Y 2
0 , Y

2
1 , Y0Y1), so we get the claimed

isomorphism.

Remark 6.2.10. Most varieties which are typically studied are quasiprojective, either by con-
struction, or by coincidence. We will show in §7.2 that every nonsingular curve is (isomorphic to)
a quasiprojective variety. This turns out to be true also for singular curves, and for nonsingular
surfaces. However, it is possible to construct singular abstract surfaces and nonsingular abstract
three-dimensional varieties which are not isomorphic to any quasiprojective variety. For one such
construction, see Example 3.4.1 of Appendix B of [Har77]; one can also construct examples using
toric varieties.

As in the proof of Corollary 6.2.7, a quasiprojective variety has the property that any finite
collection points may be placed in a common affine open subset, so one way to show a variety is not
quasiprojective is to produce a finite set of points such that any affine open subset cannot contain
all of them. Conversely, a theorem of Kleiman asserts that if a nonsingular complete (see §8.2)
variety has the property that any finite set of points can be placed in a common affine open subset,
then the variety is projective.
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Exercise 6.2.11. Let Y be a projective algebraic set, and X the affine cone over it. Show that
the map ϕ : X r (0)→ Y studied in Exercise 6.1.9 is a morphism.

6.A. Homogeneous ideals and coordinate rings

Projective varieties have a theory of ideals and coordinate rings parallel to the affine case,
although there are some crucial differences (see particularly Exercise 6.A.8 below). We will not
make use of this material elsewhere, but it is fundamental to understanding projective varieties, so
we include a summary. In this appendix, let Bn = k[X0, . . . , Nn].

Definition 6.A.1. An ideal of Bn is homogeneous if it can be generated by homogeneous
elements.

Exercise 6.A.2. An ideal I ⊆ Bn is homogeneous if and only if it has the following property:
for every f ∈ I, if we write f = F0 + F1 + · · ·+ Fd as a sum of homogeneous polynomials with Fi
of degree i, then each Fi ∈ I.

Definition 6.A.3. Given S ⊆ Pnk , let I(S) be the (necessarily homogeneous) ideal generated
by F ∈ Bn homogeneous such that F (P ) = 0 for all P ∈ S.

Note that we have to take the ideal generated by the F as in the definition because the condition
only makes sense when F is homogeneous, while no (nonzero) ideal consists entirely of homogeneous
elements.

Exercise 6.A.4. Given S ⊆ Pnk , the ideal I(S) is radical.

Definition 6.A.5. If I ⊆ Bn is a homogeneous ideal, let Zh(I) ⊆ Pnk be the set of P ∈ Pnk such
that F (P ) = 0 for all homogeneous F ∈ I.

The fundamental ideal-variety correspondence is then:

Exercise 6.A.6. There is a one-to-one, inclusion-reversing correspondence

{algebraic sets Y ⊆ Pnk} ←→ {homogeneous radical ideals I ⊆ Bn, I 6= (X0, . . . , Xn)}
given by

Y 7−→ I(Y )

Zh(I) ←− [ I.

Moreover, under this correspondence, varieties correspond to prime ideals.

In the above correspondence, we do not allow I = (X0, . . . , Xn), since it corresponds to the
empty set, just as I = Bn does. We choose this convention so that the prime ideals correspond
precisely to projective subvarieties, which are by definition nonempty.

This motivates the following definition:

Definition 6.A.7. If Y ⊆ Pnk is an algebraic set, the homogeneous coordinate ring H(Y )
of Y is given by H(Y ) = Bn/I(Y ).

Thus, if X is the affine cone over Y , the homogeneous coordinate ring of Y is simply equal to
A(X). However, homogeneous coordinate rings behave quite differently from affine coordinate rings.
Morphisms of projective varieties need not induce homomorphisms of their homogeneous coordinate
rings, and in particular homogeneous coordinate rings are not invariant under isomorphisms of
projective varieties.

Exercise 6.A.8. Show that the isomorphic projective varieties considered in Example 6.2.9
(the projective line and conic plane curve) do not have isomorphic homogeneous coordinate rings.
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The above should not be too surprising: after all, different imbeddings of a given projective
variety could have very different geometry near the origin of their affine cones.

The key property of homogeneous coordinate rings is that, because they are obtained by mod-
ding out by a homogeneous ideal, they inherit the same notion of degree enjoyed by the polynomial
ring Bn. That is, there is a notion of elements of H(Y ) being homogeneous of degree d, and every
element can be written uniquely as a sum of homogeneous elements of different degrees. We then
have the following descriptions of local rings and the function field of a projective variety.

Exercise 6.A.9. Let X be a projective variety. Then:

(a) For P ∈ X, let p be the corresponding prime ideal of H(X). Then the local ring OP,X can
be identified with the subring of the local ring H(X)p consisting of elements expressible

as f
g for f, g ∈ H(X) homogeneous of equal degree.

(b) The function field K(X) can be identified with the subfield of the fraction field of H(X)

consisting of elements expressible as f
g for f, g ∈ H(X) homogeneous of equal degree.
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CHAPTER 7

Nonsingular curves

The primary goal of this chapter is to prove that every abstract nonsingular curve can be realized
as an open subset of a (unique) nonsingular projective curve. Note that this encapsulates two facts
in one: that every nonsingular abstract curve is quasiprojective, and that it can be “compactified”
into a projective curve without introducing singularities.

We start from the definitions and state the necessary background algebra.

7.1. Curves, regular functions, and morphisms

Our discussion of the abstract definition of a variety allows us to work transparently with
abstract curves.

Definition 7.1.1. A curve is a variety of dimension 1.

We first show the following.

Lemma 7.1.2. Let P be a nonsingular point of a curve C. Then there exists an open neighbor-
hood U of P and a regular function t on U such that t(Q) 6= 0 for all Q ∈ U r {P}, and for all
V ⊆ U open containing P , and f ∈ O(V ), we have f(P ) = 0 if and only if t divides f in O(V ).

Consequently, for all f ∈ O(V r {P}), we can write f = tνg, where ν ∈ Z, and g ∈ O(V )
satisfies g(P ) 6= 0. Moreover, ν is uniquely determined and independent of choice of t, and f ∈
O(V ) ⊆ K(C) if and only if ν > 0.

Proof. By definition of nonsingular, the maximal ideal mP ⊆ OP,C can be generated by
dimC = 1 elements, so let t be any generator. Then t is regular on some open neighborhood of P ;
if t is regular on some U ′, then t has finitely many zeroes on U ′. Let U be the complement of the
zeroes of t other than P . Then t vanishes only at P when considered as a regular function on U .
We claim that this implies the desired statement: given V ⊆ U and f ∈ O(V ), certainly if t divides
f in O(V ), then f(P ) = 0, but conversely, if f(P ) = 0, then f ∈ mP , so t divides f in OP,C . This
implies that f/t determines a regular function on some neighborhood of P . But since t(Q) 6= 0 for
all Q ∈ U r {P}, we have that t is a unit in O(U r {P}), so f/t is regular on V r {P}. Thus, f/t
is regular on an open cover of V , and hence it is regular on V , and we conclude that t divides f in
O(V ), as desired.

For the second assertion, if f is regular on V , then we can inductively divide out by t in OP,C

until we obtain g(P ) 6= 0; this process must eventually terminate because OP,C is Noetherian. In
this case, we see that ν > 0. If f is not regular on V , it is still an element of K(C), which is the
fraction field of OP,C . Thus, if f = h1/h2 with h1, h2 ∈ OP,C , then using the regular case on h1 and
h2 we get that in OP,C , we can write f = tνh3/h4 for some ν ∈ Z, and h3, h4 ∈ OP,C rmP = O∗P,C .

Then we can set g = h3/h4; this is in OP,C , so is regular in a neighborhood of P , but we also have
g = ft−ν , so is regular on V r {P} as well. This gives the desired assertion.

Now, if we have f = tν1g1 = tν2g2, with ν1 > ν2, then g2 = tν1−ν2g1, and since g2 ∈ O∗P,C ,
but t ∈ mP and g1 ∈ OP,C , we must have ν1 − ν2 = 0, as desired. Now, if ν > 0 then obviously
f ∈ O(V ). Conversely, if ν < 0, then ft−ν = g1, and since g1 6∈ mP , we conclude that we cannot
have f ∈ OP,C . Finally, if we have two choices t1, t2, we claim that t1 = t2g for some g ∈ O∗P,C ;
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it then follows immediately that ν is independent of the choice of t. We have t1 = tν12 g1 for some
g1 ∈ O∗P,C , and also t2 = tν21 g2 for some g2 ∈ O∗P,C , with both ν1, ν2 positive since t1 and t2 are

regular and vanishing at P . Then t1 = tν1ν21 gν22 g1, so tν1ν2−11 ∈ O∗P,C , and we must have ν1ν2 = 1,
and hence ν1 = ν2 = 1, as desired. �

Remark 7.1.3. The argument can be expressed also in terms of discrete valuation rings – if P
is a nonsingular point of a curve C, then OP,C is a DVR.

In the second part of the lemma, we intuitively think of ν as being the order of the zero (if
positive) or pole (if negative) of f at P , so we make the following definition:

Definition 7.1.4. The ν of Lemma 7.1.2 is the order of f at P , denoted ordP (f).

A fundamental result on morphisms from curves to projective varieties is the following.

Theorem 7.1.5. If C is a curve, and P ∈ C a nonsingular point, and Y a projective variety,
then every morphism C r {P} → Y extends uniquely to a morphism C → Y .

Remark 7.1.6. Exercise 5.3.16 implies that the uniqueness in the theorem is satisfied for Y any
variety, as a consequence of the condition analogous to being Hausdorff which we used to distinguish
varieties among prevarieties. Thus, we need only to prove the existence statement for the theorem.

Proof of Theorem 7.1.5. By Remark 7.1.6, it suffices to prove the existence of the desired
extension. Let ϕ : C r {P} → Y be the given morphism. Let U 3 P be an open subset such
that there exists a t as in Lemma 7.1.2, and such that on U r {P}, we can represent ϕ by an
(n + 1)-tuple of regular functions f0, . . . , fn ∈ O(U r {P}) which do not simultaneously vanish
anywhere on O(U r {P}).

By Lemma 7.1.2, we can write each fi as teigi, where ei = ordP (fi) ∈ Z and gi is regular on U ,
with gi(P ) 6= 0. Choose j with ej minimal; then since (f0, . . . , fn) represents ϕ on U r {P}, and t
is nonvanishing on this subset, scaling simultaneously by t−ej we find that (te0−ejg0, . . . , t

en−ejgn)
also represents ϕ on the same subset. But ei > ej for all i, so these functions are regular on all of U ,
and tej−ejgj is non-zero at P , so setting ϕ(P ) = (te0−ejg0(P ), . . . , ten−ejgn(P )) gives an extension
of ϕ to U .

Finally, being a morphism is a local condition, so if we have extended ϕ to a morphism on U ,
since it was already a morphism on C r {P}, we conclude that we have extended ϕ to a morphism
on all of C. �

Remark 7.1.7. Theorem 7.1.5 generalizes also to the case of higher-dimensional varieties as
follows: if X is a variety with the property that the singular points of X have every component of
codimension at least 2 in X, and Y is a projective variety, then a morphism ϕ : U → Y for U ⊆ X
open can always be extended to an open subset V ⊆ X such that every component of X r V has
codimension at least 2. The argument is similar, but a bit more involved. .

Corollary 7.1.8. A birational map between two nonsingular projective curves extends uniquely
to an isomorphism.

Proof. We have an isomorphism of open subsets, but by the theorem each map extends to a
morphism on the whole curve. By Exercise 5.3.16, these extended morphisms must still be inverse
to one another, since their compositions are the identity on open subsets. �

Remark 7.1.9. The idea of extending morphisms of nonsingular curves as in the theorem plays
an important role in algebraic geometry, more or less replacing the use of limits in metric topology.
The usual notion of limit doesn’t make sense for us. However, if we have c ∈ (a, b) ⊆ R, and
ϕ : (a, b) r c → Y for some space Y , then the statement that limx→c ϕ(x) = Q for some Q ∈ Y is
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equivalent to saying that ϕ can be extended continuously at c by setting ϕ(c) = Q. If we assume
that ϕ was continuous to start with, this is the same as saying that ϕ remains continuous if we set
ϕ(c) = Q.

This is the idea which we translate into algebraic geometry: we replace (a, b) and the point c
by a nonsingular curve and the point P , and we replace continuous maps by morphisms. From this
point of view, Theorem 7.1.5 says that in projective varieties, limits always exist. Intuitively, this
is saying that projective varieties are compact; we will explore this idea in more detail when we
discuss complete varieties.

Exercise 7.1.10. Assume that k doesn’t have characteristic 2, and consider the projective
curve X = Z(X2

1X2 −X3
0 +X0X

2
2 ).

(a) Show that X is nonsingular.
(b) Show that X is not birational to P1

k.

7.2. Quasiprojectivity

We will now prove the following theorem:

Theorem 7.2.1. If C is a nonsingular curve, then C is quasiprojective.

For the proof, we need one key background statement, which we organize into an exercise.

Exercise 7.2.2. (a) Show that if ϕ : X → Y is a morphism of varieties, and U ⊆ X is an open
subset such that the composition U → Y is an isomorphism, then U = X.

(b) Show that if ϕ : X → Y is a morphism of varieties, and U ⊆ X is an open subset such that
ϕ : U → Y is an isomorphism onto an open subset V ⊆ Y , then ϕ−1(V ) = U .

(c) Give an example to demonstrate that this is false if X is allowed to be an arbitrary prevariety.

Proof of Theorem 7.2.1. Let Ui be a cover of C by affine open subsets. Then we have
Ui ⊆ Ani ⊆ Pni , so we take Yi to be the closure of Ui in Pni . Thus Yi is projective, and Ui is
isomorphic to an open subset of Yi. By Theorem 7.1.5, we obtain unique extensions ϕi : C → Yi
for each i (note that each Ui may omit more than one point of C, but we can apply the theorem
inductively to extend over each one). These extensions may not be isomorphisms onto their images,
because we have little control over what happens when we take the closure of Ui. The trick is to
take the product over all i; we then have an induced morphism ϕ : C →

∏
i Yi ⊆

∏
i Pni . Let

Y ⊆
∏
i Yi be the closure of the image of C. We will show that C is isomorphic to an open subset

of Y . This will prove the theorem, because Y is a closed subset of
∏
i Pni , which is itself projective

via the Segre imbedding (see Exercises 2.14, 3.16 of [Har77]).
Our first task is to show that ϕ is a homeomorphism onto an open subset of Y . Now, ϕ is

injective, since given P,Q ∈ C, if P ∈ Ui, we claim ϕi(P ) 6= ϕi(Q). If Q ∈ Ui as well, this follows
from the injectivity of ϕi on Ui, but if Q 6∈ Ui, then ϕi(Q) 6∈ Ui ⊆ Yi by Exercise 7.2.2 (b), while
ϕi(P ) ∈ Ui, proving the claim, and thus injectivity. It then follows that ϕ is a homeomorphism
onto its image, since ϕ maps finite sets to finite sets and thus closed subsets of C to closed subsets
of ϕ(C). We next observe that ϕ is dominant onto Y by definition, so Y is irreducible, and we have
K(Yi) ↪→ K(Y ) ↪→ K(C). But C → Yi is birational, to K(Yi) = K(C), and we conclude that
K(Y ) = K(C), so ϕ : C → Y is birational. In particular, we conclude that K(Y ) has transcendence
degree 1, so Y is a curve, and also that ϕ(C) contains an open subset of Y . But since Y is a curve,
any subset containing a nonempty open subset is open, so ϕ(C) is open, and we have proved that
ϕ induces a homeomorphism from C onto an open subset of Y .

We now want to see that ϕ is an isomorphism of C onto its image. It suffices to show that
the induced maps on local rings are isomorphisms at every point of C, so let P ∈ C, and consider
the induced map Oϕ(P ),Y → OP,C . This is injective since C → Y is dominant. Choose i with
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P ∈ Ui. Then the map ϕi : Ui → Yi is an isomorphism onto its image, so the induced map
Oϕi(P ),Yi → OP,Ui is an isomorphism. But we can factor ϕi as Ui ↪→ C → Y → Yi, where
the last morphism is projection onto the ith factor from the product. This means that the map
Oϕi(P ),Yi → OP,Ui factors through Oϕ(P ),Y → OP,C = OP,Ui , so we conclude that the latter must be
surjective, and hence an isomorphism, as desired. �

Remark 7.2.3. In fact, as mentioned in Remark 6.2.10, the theorem holds without the non-
singularity hypothesis, but the proof is a bit more involved. One approach is to show that even on
a singular curve, one has an affine open cover such that for every open subset, the omitted points
are nonsingular. Given that, the above argument goes through unmodified.

Now that we know that every nonsingular curve is quasiprojective, we can consider the question
of projectivity. Obviously, not every nonsingular curve is projective. But we now see that every
nonsingular curve can be “compactified” as an open subvariety of a projective curve by imbedding
in projective space and taking the closure. But this closure will not in general be nonsingular. So
we can ask whether every nonsingular curve can be realized as an open subvariety of a nonsingular
projective curve. For the moment, although it is clear that every curve is birational to a nonsin-
gular curve, and also to a projective curve, it is not even clear that every curve is birational to a
nonsingular projective curve. We will prove the stronger assertion, but only after a discussion of
normalization.

7.3. Normality and normalization

We make a brief detour to discuss the notion of normality. Most of the proofs, while not
necessarily difficult, are purely algebraic, and we omit them.

Definition 7.3.1. A variety X is normal if it is covered by affine open subvarieties Ui such
that each A(Ui) is integrally closed in K(X).

Recall that given an inclusion of integral domains R ⊆ S, an element s ∈ S is integral over R
if it is a root of a monic polynomial with coefficients in R. We say R is integrally closed in S if
every element of S which is integral over R is in fact an element of R. The integers are integrally
closed in the rational numbers, by Gauss’s lemma, motivating the terminology.

Normality is a somewhat subtle condition, but it does have a fairly direct relationship to
nonsingularity. Specifically, we have:

Theorem 7.3.2. A nonsingular variety is normal. The singular locus of a normal variety has
codimension at least 2.

The proof of the first statement is difficult,1 while the second is more straightforward; see §II.5
Theorems 1 and 3 of [Sha94a]. Since any non-empty closed subset of a curve has codimension at
most 1, we conclude:

Corollary 7.3.3. A normal curve is nonsingular.

Note, however, that the corollary is quite a bit easier than Theorem 7.3.2, amounting to the
basic algebra of discrete valuation rings.

Another basic algebra statement is:

Proposition 7.3.4. X is normal if and only if every affine open subset U has A(U) integrally
closed in K(X), if and only if OP,X is integrally closed in K(X) for all points P ∈ X.

1More precisely, the proof that the local ring at a nonsingular point is a unique factorization domain is difficult,
while the deduction that a unique factorization domain is integrally closed is quite short – see Proposition 4.10 of
[Eis95].
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Remark 7.3.5. Although it is not our intent to give a complete account of normality, we
mention some basic facts for the sake of context. First, the converse to Theorem 7.3.2 holds
for hypersurfaces: if their singular locus has codimension at least 2, then they are normal – see
Proposition 2 of §III.8 of [Mum99].

Thus, a variety such as the cone Z(xy − z2) ⊆ A3
k is normal, being a surface with a unique

singularity at (0, 0, 0). On the other hand, the surface Z(w2y − x2, w3z − x3, y3 − z2) ⊆ A4
k,

which likewise has (0, 0, 0, 0) as its only singularity, is not normal – see Example K (B) of §III.8 of
[Mum99].

Finally, although this doesn’t characterize normality, an important property of normality is
that a normal variety doesn’t have multiple “branches” meeting at a point (i.e., it does not look
like a node, or any higher-dimensional analogue).

We will next consider normalization – the process of replacing a non-normal variety with a
normal one. It turns out that this can be done in a canonical way. The affine version of this process
is as follows: if an integral domain R is not integrally closed in its field of fractions, we can take
the integral closure, which is the set of all elements of the field which are integral over R. More
generally, if R ⊆ S is not integrally closed in S, we can take its integral closure in S. It is a basic
algebra fact (Theorem 4.2 of [Eis95]) that the integral closure is again a subring, and it is integrally
closed in the field of fractions. One proof is related to the fact that f is integral over R if and only
if the ring R[f ] is a finitely-generated R-module. More difficult is the theorem of Emmy Noether
(Theorem 4.14 of [Eis95]) that if R is a finitely-generated k-algebra which is an integral domain,
and L a finite extension of the fraction field of R, then the integral closure of R in L is still finitely
generated over k. Putting these statements together gives normalization in the affine case.

In order to apply the affine case, we will want to use the following algebra results as well:

Proposition 7.3.6. Let R ⊆ S be an integral ring extension. Then every maximal ideal m of
R is realized as the intersection of R with a maximal ideal of S. Moreover, if m = p ∩R for some
prime ideal p ⊆ S, then p is maximal.

Recall that R ⊆ S is integral if every element of S is a root of a monic polynomial with
coefficients in R. This result is more or less the “going up” theorem in commutative algebra; see
Proposition 4.15 and Corollary 4.17 of [Eis95].

Proposition 7.3.7. Given a ring extension R ⊆ S and f ∈ R nonzero, if R′ is the integral
closure of R in S, then (R′)f is the integral closure of Rf in Sf .

See Proposition 4.13 of [Eis95].
The following fact is frequently useful.

Exercise 7.3.8. Let X be a prevariety, and U, V affine open subsets. Then U ∩ V can be
covered by open subsets which are each simultaneously of the form U r Z(f) for f ∈ A(U) and
V r Z(g) for g ∈ A(V ).

We will also want to know the following.

Exercise 7.3.9. If R is an integral domain with fraction field K, and L an algebraic extension
of K, then the integral closure of R in L has fraction field L.

Exercise 7.3.10. Let ϕ : X → Y be a morphism, with Y a variety and X a prevariety.

(a) Show that if P,Q ∈ X have (P,Q) in the closure of ∆(X), then ϕ(P ) = ϕ(Q).
(b) Suppose that there is an open cover {Vi} of Y such that each Vi is isomorphic to an affine

variety, and also each ϕ−1(Vi) is isomorphic to an affine variety. Show that X is a variety.
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We are now ready to define the normalization. It will be useful to give a slightly more general
form than is immediately necessary.

Definition 7.3.11. If X is a prevariety, and L is a finite field extension of K(X) (in particular,

algebraic over K(X)) the normalization νL : X̃L → X of X in L is the prevariety constructed as

follows: if {ϕi : Xi → Ui} is an atlas for X, for each i let X̃L,i be the affine variety with coordinate
ring equal to the integral closure of A(Xi) in L, and νi the corresponding morphism to Xi. For i, j,
set

Ui,j = ν−1i (ϕ−1i (Uj)),

and let ϕi,j : Ui,j → Uj,i be the isomorphism induced by the identifications K(X̃L,i) = L (Exercise

7.3.9). Then let X̃L be the prevariety obtained by gluing the X̃L,i (Exercise 5.1.5). Let νL be the
morphism induced by the νi.

In particular, the normalization ν : X̃ → X of X is the normalization of X in K(X).

Proposition 7.3.12. Definition 7.3.11 describes a well-defined prevariety X̃L and morphism

νL : X̃L → X. Moreover, νL is surjective, with finite fibers, and the induced map on function fields

is K(X) ↪→ K(X̃L) = L.

If Ui ⊆ X is part of the atlas for X, then ν−1L (Ui) is the Ũi used to define X̃L.

Finally, if X is a variety, then X̃L is a variety.

The proof is fairly straightforward using Proposition 7.3.7 to show that the ϕi,j are indeed
(iso)morphisms, Proposition 7.3.6 to check surjectivity and finiteness of fibers, and Exercise 7.3.10

to see that if X is a variety, then X̃L is also a variety.
Note that in particular, the normalization of X yields a birational morphism.

Remark 7.3.13. We start to see the utility of having a notion of abstract variety: while it is true
that the normalization of a projective variety is projective, the proof isn’t trivial, and something
of a distraction from the basic idea, that we are simply gluing together integral closures. A priori,
the construction of the normalization depends on a choice of atlas, but we will see in 7.3.15 below
that in fact it is independent.

We see that normalization is universal for (dominant) morphisms from normal varieties:

Proposition 7.3.14. Suppose ϕ : Y → X is a dominant morphism, with Y normal. Then ϕ

factors through the normalization map X̃ → X.
More generally, if L/K(X) is a finite extension, and we are given an inclusion L ↪→ K(Y ) of

extensions of K(X), then ϕ factors through the normalization X̃L → X.

Proof. Let {ϕi : Xi → Ui} be the atlas of X used to define the normalization; we will identify
Xi with Ui. Also let Vj be an affine open cover of Y such that each Vj is contained in some ϕ−1(Ui).

Let Ũi be the preimages of Ui in X̃L. Fix i, j with Vj ⊆ ϕ−1(Ui). Note that the dominance of

ϕ implies that we have an induced inclusion A(Ui) ↪→ A(Vj). Also A(Ui) ⊆ A(Ũi) by definition.
Using the inclusion L ↪→ K(Y ), we can consider both these inclusions to hold inside K(Y ).

We claim that in fact A(Ũi) ⊆ A(Vj) in K(Y ). This follows immediately from the definitions;

A(Ũi) is the set of elements of L which are integral over A(Ui), and by the hypothesis that Vi
is normal implies that A(Vj) contains all elements of K(Y ) which are integral over A(Vj). But
because L ⊆ K(Y ) and A(Ui) ⊆ A(Vj), any element of L integral over A(Ui) is in particular an

element of K(Y ) integral over A(Vj), so must lie in A(Vj). We conclude that A(Ũi) ⊆ A(Vj), so

the morphisms Vj → Ui factor through Ũi → Ui. Thus, for each Vj we get that Vj → X factors

through X̃L.
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But given j, j′ the resulting morphisms Vj → X̃L and Vj′ → X̃L both induce the same inclusion
L→ K(Y ) of function fields by construction, so they define the same rational maps, and agree on

Vj ∩ Vj′ . We can thus glue them all together to obtain the desired morphism Y → X̃L. �

Corollary 7.3.15. The normalization X̃L of X in L is independent of the choice of atlas.

If U ⊆ X is open, and X̃L → X and ŨL → U the respective normalizations, then ŨL is naturally

identified with the preimage of U in X̃L.

Proof. Let νL : X̃L → X and ν ′L : X̃ ′L → X be normalizations of X with respect to two
different atlases. Then Proposition 7.3.14 implies that νL and ν ′L factor through one another, nec-

essarily inducing the identity on L. It follows that X̃L and X̃ ′L are isomorphic, via an isomorphism
commuting with νL and ν ′L.

The second statement then follows by construction and Proposition 7.3.12, since given an atlas
on X and U ⊆ X open and affine, we can always make a new atlas by adding a chart which uses
U . �

Example 7.3.16. Consider the cuspidal curve C ⊆ A2 given by y2 = x3. This is a singular curve,
so not normal. We have studied the morphism A1 → C given by t 7→ (t2, t3), corresponding to the
injective homomorphism k[x, y]/(y2 − x3)→ k[t] sending x to t2 and y to t3. This homomorphism
induces an isomorphism on fraction fields (this follows from the observation t is the image of yx). We

see that t is integral over A(C), since it satisfies z2−x (and also z3−y). But k[t] is integrally closed
in its fraction field (one may check this directly, or invoke that nonsingularity implies normality),
so we conclude that the morphism A1 → C is in fact the normalization of C.

Remark 7.3.17. In our discussion of normality and normalization, it is important that we are
working with (pre)varieties, and not arbitrary algebraic sets. Otherwise, we wouldn’t have the field
of functions in which to consider integral closure.

On the other hand, it turns out to be useful to work with normalizations also for reducible
algebraic sets, and in this case one uses the convention that the normalization should be the
disjoint union of the normalizations of the irreducible components.

7.4. Projective curves

The main utility of normalization for us is that it provides a method of desingularizing curves,
and we see that it preserves projectivity.

Theorem 7.4.1. The normalization of a projective curve is a nonsingular projective curve.

Proof. Let C be the projective curve, and C̃ its normalization. Nonsingularity of C̃ is imme-

diate from Corollary 7.3.3, while we know that C̃ is quasiprojective from Theorem 7.2.1. We claim

that if we have C̃ ⊆ Pn, it must be closed, so that C̃ is projective, as desired. Let Y be the closure

of C̃ in Pn. Given P ∈ Y , let U be an affine neighborhood of P in Y , and Ũ its normalization. Then

since Ũ is a nonsingular curve and C is projective, by Theorem 7.1.5 the birational map Ũ 99K C
induced by

Ũ → U ↪→ Y 99K C̃ → C

extends to a morphism Ũ → C.

Because Ũ is normal, it follows from Proposition 7.3.14 that this morphism factors through

C̃ → C. By construction, the induced morphism Ũ → C̃ ↪→ Y agrees with the composed morphism

Ũ → U ↪→ Y on an open subset, and hence on all of Ũ . But by surjectivity of normalization, there

is some P̃ ∈ Ũ mapping to P ∈ U , and if we let Q be its image in C̃, we conclude Q = P in Y , so

P ∈ C̃. Since P was arbitrary in Y , we conclude that C̃ = Y , and C̃ is projective, as desired. �
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Remark 7.4.2. It is true more generally that the normalization of a projective variety is again
projective, but this is a harder result.

Corollary 7.4.3. Let C be a nonsingular curve. Then there is a nonsingular projective curve
C̄ (necessarily unique) such that C is isomorphic to an open subvariety of C̄.

Proof. By Theorem 7.2.1, we can realize C as a quasiprojective curve. Let Y be its closure in
projective space. By Theorem 7.4.1, if C̄ is the normalization of Y , it is a projective nonsingular
curve. Finally, since C is a nonsingular open subset of Y (and using the assertion on restriction to
open subsets in Theorem 7.3.15), the normalization map C̄ → Y is an isomorphism on C, so we
have that C is isomorphic to an open subvariety of C̄, as desired. �

Corollary 7.4.4. Every curve is birational to a unique nonsingular projective curve.

Proof. The uniqueness is Corollary 7.1.8. Given any curve C, we know it has a non-empty
open subset U of nonsingular points, so applying Theorem 7.4.3 to U , we can imbed it into a
nonsingular projective curve, which is then birational to C. �

We can rephrase what we’ve done in more abstract language as follows:

Corollary 7.4.5. The following categories are equivalent:

(a) Projective nonsingular curves, and nonconstant morphisms between them;
(b) Curves, and dominant rational maps between them;
(c) Finitely generated field extensions of k of transcendence degree 1, and field inclusions

between them.

This is a powerful tool for studying projective nonsingular curves, as we’ll see soon.
Another consequence of the normalization construction is the following:

Corollary 7.4.6. If C is a projective curve, X is any variety, and ϕ : C → X a non-constant
morphism, then ϕ(C) is a closed subset of X, which is a curve.

If further C is nonsingular, then for every affine open subset U of ϕ(C), we have that ϕ−1(U)
is also affine, and the induced homomorphism A(U)→ A(ϕ−1(U)) makes A(ϕ−1(U)) into a finitely
generated A(U)-module.

Note that in particular, if X itself is a curve, then ϕ is surjective. For the significance of the
second part of the corollary statement, see Remark 7.4.9.

Proof. Let D be the closure of ϕ(C); then by Exercise 5.3.20, we have that D is a variety of
dimension at most 1. Since ϕ is non-constant, we conclude that D is a curve, and we now restrict
our attention to ϕ : C → D, which we wish to show is surjective. By construction, ϕ maps C
dominantly onto D, so it induces an injection K(D) ↪→ K(C), and since both function fields have
transcendence degree 1, we conclude K(C) is algebraic over K(D). Since they are both finitely
generated over k, K(C) is finitely generated over K(D), so is a finite extension. We can thus let

D̃C be the normalization of D in K(C). Now, D̃C is birational to C, so we have a rational map

ψ : D̃C 99K C such that ϕ ◦ ψ is equal to the normalization map (considered as a rational map).

But because D̃C is nonsingular and C is projective, ψ extends to a morphism which must satisfy
the same relation that ϕ◦ψ is equal to the normalization. But the normalization map is surjective,
so we conclude that ϕ is likewise surjective.

Now, if C is nonsingular, we have that ψ is an isomorphism by Corollary 7.1.8, so since the
second statement of the corollary is invariant under isomorphisms, it follows from the corresponding
properties of normalization (Corollary 7.3.15). �

As an easy consequence, we deduce the following.
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Corollary 7.4.7. If ϕ : C → D is a nonconstant morphism of curves, then ϕ(C) is an open
subset of D.

Proof. Since D has the cofinite topology, it is enough to show that ϕ(C) contains an open
subset of D. We may therefore restrict to the sets of nonsingular points of both C and D, so we
reduce to the case that C and D are nonsingular. Now let C̄ and D̄ be the nonsingular projective
compactification of C and D provided by Corollary 7.4.3. Then ϕ extends to a morphism C̄ → D̄,
which we know is surjective by Corollary 7.4.6. But C̄rC consists of a finite set of points, so ϕ(C)
contains all but a finite set of points of D̄, and in particular of D, so we conclude it is an open
subset of D, as desired. �

Remark 7.4.8. The first part of Corollary 7.4.6 generalizes to higher-dimensional varieties as
the statement that the image of a morphism from a projective variety to a variety is always closed.
Corollary 7.4.7 also generalizes, to the statement that the image of any dominant morphism of
varieties contains an open subset of the target. The latter (in a slightly strengthened form) is
known as Chevalley’s theorem. We will prove both statements shortly, in Corollary 8.3.3 (ii) and
Theorem 8.1.2 below.

Remark 7.4.9. The conclusion of the last part of Corollary 7.4.6 may appear technical, but
as with the notion of normality, it has strong geometric consequences. In general, a morphism
ϕ : X → Y of varieties is called finite if it has the property that for every affine open V ⊆ Y ,
we have ϕ−1(V ) also affine, making A(ϕ−1(V )) into a finitely generated A(V )-module. There
are a number of equivalent characterizations of finiteness, but it implies in particular that ϕ has
finite fibers, and that ϕ is closed. We will apply this notion to develop a criterion for imbedding
nonsingular projective curves in other varieties in Corollary 9.4.3 below.
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CHAPTER 8

Chevalley’s theorem and complete varieties

In this chapter, we investigate the concept which plays the role of compactness for varieties –
completeness. We prove that completeness can be characterized in terms of existence of extensions
of morphisms from nonsingular curves, and conclude that projective varieties are complete. As a
prelude to this, we also prove Chevalley’s theorem on images of morphisms.

8.1. Chevalley’s theorem

We have already seen that the image of a morphism of a variety need not be a subvariety (that
is, it need not be a closed subset of an open subset). We recall the example:

Example 8.1.1. Consider the morphism A2 → A2 determined by (x, y) 7→ (x, xy). Its image is
A2 r Z(x) ∪ {(0, 0)}.

Chevalley’s theorem asserts that this example is typical: the image of a morphism is always a
finite union of subvarieties.

Theorem 8.1.2 (Chevalley). Let ϕ : X → Y be a morphism of prevarieties. Then ϕ(X) can
be written as a finite disjoint union of (not necessarily closed) subprevarieties of Y .

Note that ϕ(X) must be irreducible, so there is a unique subvariety of Y contained in ϕ(X)
which is dense in ϕ(X); the other subvarieties of the theorem are all in its closure. The key
statement to prove is:

Proposition 8.1.3. If ϕ : X → Y is a dominant morphism of prevarieties, then ϕ(X) contains
an open subset of Y .

The first step is to show that any dominant morphism factors as a composition of two particular
types of dominant morphisms, which will be easier to analyze.

Lemma 8.1.4. If ϕ : X → Y is a dominant morphism of affine varieties, and r is the tran-
scendence degree of the induced field extension K(X)/K(Y ), then ϕ factors as a composition of
dominant morphisms X → Y × Ar → Y , where the second morphism is the projection morphism.

Proof. Let f1, . . . , fm be generators of A(X) over A(Y ). Then the fi also generate K(X)
over K(Y ), so we can reorder indices such that f1, . . . , fr are algebraically independent over K(Y ).
Let R = A(Y )[f1, . . . , fr] ⊆ A(X). Since the fi are algebraically independent over K(Y ) they are
algebraically independent over A(Y ), so R is isomorphic to an r-variable polynomial ring, which
is to say that R ∼= A(Y × Ar). Then the inclusions A(Y ) ↪→ R ↪→ A(X) induce the desired
factorization. �

We can now prove that the image of a dominant morphism contains an open subset.

Proof of Proposition 8.1.3. Let V be an affine open subset of Y , and U an affine open
subset of X such that ϕ(U) ⊆ V . Then it clearly suffices to prove ϕ(U) contains an open subset of
V , so we have reduced to the affine case. Applying Lemma 8.1.4, it suffices to prove that the image
of X in Y × Ar contains an open subset, and that the projection morphism Y × Ar → Y is open.
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For the first assertion, we have that the transcendence degrees of K(X) and K(Y × Ar) are
equal, so the morphism makes K(X) into an algebraic extension of K(Y ×Ar). Suppose f1, . . . , fm
generate A(X) over A(Y × Ar). Then each fi is a root of some polynomial gi =

∑
j ci,jt

j over

K(Y ×Ar), which can assume to be monic. Let h be the product over all i, j of the denominators
of ci,j (considering K(Y ×Ar) as the fraction field of A(Y ×Ar)). We have the induced morphism
of open subsets Xh → (Y × Ar)h, and we see that A(Xh) = A(X)h is still generated by the fi
over A((Y × Ar)h) = A(Y × Ar)h. But each fi is integral over A(Y × Ar)h by construction, so by
Proposition 7.3.6 and the ideal-variety correspondence, we have that Xh surjects onto (Y × Ar)h,
and thus the image of X contains the open subset (Y × Ar)h ⊆ Y × Ar.

It remains to prove that for any U ⊆ Y ×Ar open, the image of U under the projection morphism
Y ×Ar → Y is open (we only need to prove it contains an open subset, but the stronger statement
is no harder). Any such U is a union of open subsets of the form (Y × Ar)f , for some nonzero
f ∈ A(Y ×Ar) = A(Y )[t1, . . . , tr], so we may thus assume that U is of this form. Let I ⊆ A(Y ) be
the ideal generated by the coefficients of f . We claim that the image of U is precisely A(Y )rZ(I).
Indeed, givenQ ∈ Y , if we let ZQ be the preimage ofQ in Y×Ar, we have ZQ ∼= Ar, and the inclusion
ZQ → Y × Ar is induced by the ring homomorphism A(Y )[t1, . . . , tr] → k[t1, . . . , tr] obtained by
sending g ∈ A(Y ) to g(Q). We thus see that f |ZQ

is obtained by evaluating the coefficients of f at
Q, and so ZQ ∩U = ZQ rZ(f) is non-empty if and only if f remains nonzero when its coefficients
are evaluated at Q, which is precisely equivalent to the condition that Q 6∈ Z(I). But Q is in the
image of U if and only if ZQ ∩ U 6= ∅, so we conclude that the image of U is the complement of
Z(I), as desired. �

Chevalley’s theorem then follows easily.

Proof of Theorem 8.1.2. Given ϕ : X → Y , let Z ⊆ Y be the closure of ϕ(X); our proof is
by induction on dim(Z). If dim(Z) = 0, then ϕ is constant and there is nothing to show. Otherwise,
assume dim(Z) = d > 0, and we have the theorem already for dimensions smaller than d.

Now, we have a dominant morphism X → Z, so let U ⊆ Z be the maximal open subset of Z
contained in ϕ(X); this is nonempty by Proposition 8.1.3. Then let Z ′ = ZrU ; this has dimension
less than d, and is not necessary a prevariety, but can be write it as a finite union of prevarieties
Z1, . . . , Zm. Similarly, ϕ−1(Zi) is not necessarily a prevariety, but can be written as a finite union
of prevarieties Xi,1, . . . , Xi,mi ⊆ X. We have

ϕ(X) = U ∪ ϕ(ϕ−1(Z1)) ∪ · · · ∪ ϕ(ϕ−1(Zm))

= U ∪
⋃
i,j

ϕ(Xi,j),

and by the induction hypothesis each ϕ(Xi,j) is a finite union of subprevarieties of Zi ⊆ Y , so we
conclude the theorem. �

8.2. Completeness

We now apply our discussion of curves to give a definition for varieties which is analogous to
the notion of compactness for topological spaces. We have the opposite problem that we had with
the Hausdorff condition: every variety is compact in the Zariski topology, because its underlying
topological space is Noetherian. However, the fix is the same as before: we give a rephrasing of the
compactness condition in topology which will turn out to agree better with our intuition when we
apply it to varieties.

Exercise 8.2.1. A topological space X is compact if and only if for every topological space Y ,
the projection map X × Y → Y is a closed map.
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Motivated by this, we define:

Definition 8.2.2. A variety X is complete if for all varieties Y , the projection morphism
X × Y → Y is a closed map.

Remark 8.2.3. One can apply the definition of completeness to prevarieties as well, but it is
traditional to reserve the term “complete” for varieties. This is related to the French tradition that
compactness should incorporate the Hausdorff condition as well. But see Exercise 8.2.10 below.

Example 8.2.4. Ank is not complete for n > 0. Indeed, if we take Y = A1
k in the definition of

complete, we have Ank × A1
k
∼= An+1

k , which contains the closed subvariety x1xn+1 = 1. The image
of this under projection to A1

k is the complement of the origin, which is not closed.

One reason for this definition is its relation to closed morphisms:

Proposition 8.2.5. If X is complete, any closed subvariety of X is complete.
If we also have Y an arbitrary variety, and ϕ : X → Y a morphism, then ϕ is closed.

Proof. The first assertion is immediate from the definition, since if Z is closed in X, we have
Z × Y closed in X × Y for any Y .

For the second assertion, let Γ = {(x, ϕ(x) : x ∈ X} ⊆ X×Y be the graph of ϕ. We can express
Γ as the preimage of the diagonal ∆(Y ) ⊆ Y × Y under the morphism ϕ × id : X × Y → Y × Y .
Since Y is a variety, ∆(Y ) is closed, so Γ is closed. But ϕ(X) is precisely the image of Γ under
the projection X × Y → Y , so we conclude from the completeness hypothesis on X that ϕ(X) is
closed. �

Remark 8.2.6. This is a natural property for complete varieties to have, since a continuous map
from a compact topological space to a Hausdorff space is closed. In fact, this property characterizes
complete varieties – Nagata proved that every variety can be realized as an open subset of a complete
variety, so in particular if X is not complete, the inclusion as an open subset of a complete variety
is not a closed mapping. However, the proof of Nagata’s theorem is beyond the scope of this book.

A key property of complete varieties is that (in stark contrast to the quasiaffine case) their
global regular functions are all constant.

Proposition 8.2.7. Let X be a complete variety. Then every regular function on X is constant;
that is, O(X) = k.

Proof. A regular function f on X yields a morphism X → A1
k. We can compose with the

inclusion A1
k ⊆ P1

k to obtain a morphism ϕ : X → P1
k. Now, X is complete and P1

k is a variety,
so by Proposition 8.2.5, we have ϕ(X) closed in P1

k. On the other hand, X is irreducible, and the
continuous image of an irreducible space is irreducible, so ϕ(X) is closed and irreducible in P1

k. The
only closed irreducible subsets of P1

k are all of P1
k or points, and since ϕ(X) ⊆ A1

k, we cannot have
ϕ(X) = P1

k, so ϕ(X) is a point, and the original regular function was constant, as desired. �

Example 8.2.8. We now see that if X is both affine and complete, then it must be a single
point, since the only affine variety with A(X) ∼= k is the point.

More generally, we see that we cannot imbed any positive-dimensional complete variety into
affine space. In fact, we have the following.

Corollary 8.2.9. If X is complete, and Y is affine, then any morphism X → Y is constant.

Proof. Imbed Y ⊆ Ank , a morphism X → Y induces a morphism X → Ank , which we know is
determined by an n-tuple of regular functions. But these are all constant by Proposition 8.2.7, so
the morphism is constant, as claimed. �
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Exercise 8.2.10. One could define a prevariety X to be universally closed if for all pre-
varieties Y , the projection map X × Y → Y is closed. Thus, if X is universally closed and is
also a variety, then X is complete. Show that conversely, if X is a complete variety, then X is
universally closed. Show the stronger statement that a prevariety X is universally closed if and
only if X × Ank → Ank is closed for all n.

8.3. A limit-based criterion

We wish to give a more intuitive necessary and sufficient criterion for completeness. Because the
ideas are closely related, we will also give a more intuitive criterion for a prevariety to be a variety.
In the informal language of limits we discussed in Remark 7.1.9, we will show that a prevariety is
a variety if and only if limits are unique when they exist, and that a variety is complete if and only
if limits always exist. In a related but more general form, this theorem gives what are typically
called valuative criteria.

Theorem 8.3.1. A prevariety X is a variety if and only if for all nonsingular curves C, and
points P ∈ C, and morphisms ϕ : Cr{P} → X, there is at most one extension of ϕ to a morphism
C → X.

A variety X is complete if and only if for all nonsingular curves C, and points P ∈ C, and
morphisms ϕ : C r {P} → X, there exists a (necessarily unique) extension of ϕ to a morphism
C → X.

Before giving the proof, we observe some consequences. We will immediately conclude from
Theorems 8.3.1 and 7.1.5:

Corollary 8.3.2. Any projective variety is complete.

From Propositions 8.2.5 and 8.2.7, and Corollary 8.2.9, we then conclude:

Corollary 8.3.3. Let X be a projective variety. Then:

(i) O(X) = k;
(ii) any morphism from X to an arbitrary variety is closed;
(iii) any morphism from X to an affine variety is constant.

In order to prove Theorem 8.3.1, an important lemma is the following:

Lemma 8.3.4. Suppose ϕ : X → Y is a morphism of prevarieties, and Q ∈ Y is in the closure

of ϕ(X). Then there exists a nonsingular curve C and P ∈ C, and morphisms ψ̃ : C r {P} → X

and ψ : C → Y such that ϕ ◦ ψ̃ = ψ|Cr{P}, and and ψ(P ) = Q.

An intermediate lemma is the following.

Lemma 8.3.5. Suppose X is a prevariety, U a nonempty open subset, and P ∈ X r U . Then
there exists a subprevariety Z of X which is a curve, such that P ∈ Z, and U ∩ Z 6= ∅.

Proof. It suffices to produce such a Z inside any open neighborhood of P in X, so let V ⊆ X
be an affine open neighborhood of Q. We prove the statement by induction on dimX; if dimX = 1,
we simply let Z = X. For dimX > 1, let mP be the maximal ideal of A(V ) corresponding to P ,
and let I ⊆ A(V ) be the radical ideal with V r U = Z(I). Then by Exercise 4.3.8, there exists
f such that f(P ) = 0, but f does not vanish uniformly on any irreducible component of Z(I)
having codimension 1. Now, let X ′ be an irreducible component of Z(f) which contains P . Then
dimX ′ = dimX − 1, and since Z(f) doesn’t contain any component of Z(I) of codimension 1, we
find that X ′ cannot be contained in Z(I), so X ′ ∩U 6= ∅. Replacing X by X ′ and U by X ′ ∩U , we
apply the induction hypothesis to find the desired curve. �
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We can now prove the first lemma.

Proof of Lemma 8.3.4. Our first claim is that there is a subprevariety D ⊆ Y which is a
curve containing Q, and such that D ∩ ϕ(X) is dense in D. But by Proposition 8.1.3, if Y ′ is the
closure of ϕ(X) in Y , we know that ϕ(X) contains an open subset of Y ′, so this follows immediately
from Lemma 8.3.5. Now, let Z ⊆ X be the preimage of D under ϕ. Since D ∩ ϕ(X) is dense in
D, some irreducible component X ′ of Z maps dominantly to D. Choose Q′ ∈ D ∩ ϕ(X ′); then
ϕ−1(Q′)∩X ′ is closed in X ′, and cannot be all of X ′. Again using Lemma 8.3.5, there is a curve C ′

in X ′ which meets ϕ−1(Q′) ∩X ′ but is not contained in it. We then see that C ′ maps dominantly

to D, since its image must be irreducible and strictly contains Q′. Let C̃ be the normalization of

D inside K(C ′), and let P ∈ C̃ be a point mapping to Q. By construction, K(C̃) ∼= K(C ′), so we

get a birational map C̃ 99K C ′ commutes with the given morphisms to D. Let U ⊆ C̃ be the open
subset on which the rational map is defined. We can set C = U ∪{P}, which is still an open subset

of C̃, and we obtain morphisms C → D ⊆ Y and C r {P} → C ′ ⊆ X ′ ⊆ X satisfying the desired
conditions. �

Before proving the theorem, we give one more lemma.

Lemma 8.3.6. Let ϕ : C → D be a birational morphism of curves, with D nonsingular. Then
ϕ is an isomorphism of C onto the open subset ϕ(C) of D.

Proof. Let ν : C̃ → C be the normalization, and let C̄ and D̄ be the nonsingular projective

curves having C̃ and D as open subsets, respectively. Then ϕ ◦ ν induces a birational map C̄ → D̄,

which is necessarily an isomorphism. But then both C̃ and D are identified as open subsets

of a given curve, compatibly with the morphism ϕ ◦ ν, so we conclude that ϕ ◦ ν must map C̃
isomorphically onto an open subset of D. By the surjectivity of ν, this open subset is ϕ(C), and

then the morphism ϕ(C)→ C̃ → C show that ϕ is an isomorphism onto ϕ(C), as desired. �

We now prove the promised theorem.

Proof of Theorem 8.3.1. For the first statement, we already know that if X is a variety,
then the stated condition holds. Conversely, suppose the condition holds, and consider the diagonal
morphism ∆ : X → X×X. Let Q ∈ X×X be in the closure of ∆(X). Then by Lemma 8.3.4, there

is a nonsingular curve C and a point P ∈ C, with morphisms ψ̃ : Cr{P} → X and ψ : C → X×X
such that ψ(P ) = Q, and ψ = ∆ ◦ ψ̃ on C r {P}. We then get two extensions of ψ̃ to all of C by
composing ψ with the projection morphisms p1, p2. By hypothesis, these extensions are unique, so
we conclude that p1(ψ(P )) = p2(ψ(P )), so Q = ψ(P ) ∈ ∆(X), and ∆(X) is closed.

Now, suppose X is a complete variety. Given C, the point P ∈ C, and ϕ : C r {P} → X,
consider the product X × C. Let Z be the closure of {(ϕ(P ), P ) : P ∈ C} ⊆ X × C. Then we
have dominant morphisms C r {P} → Z → C, and the image of Z is closed in C by hypothesis,
so we must have Z → C surjective. By Lemma 8.3.6, we conclude that Z → C is an isomorphism.
Inverting the isomorphism, it follows that we have a morphism C → Z extending C r {P} → Z,
and taking the first projection we get the desired extension of ϕ to all of C.

Conversely, suppose X satisfying the stated condition. Given any variety Y , let Z be a closed
subset ofX×Y . LetQ ∈ Y be in the closure of the image of Z under the projection morphism p2. By

Lemma 8.3.4, there is a nonsingular curve C and a point P ∈ C, with morphisms ψ̃ : Cr{P} → Z

and ψ : C → Y such that ψ(P ) = Q, and ψ = p2◦ψ̃ on Cr{P}. By hypothesis, we can extend p1◦ψ̃
to a morphism ψ′ : C → X, and we see that if we take the product morphism ψ′×ψ : C → X×Y , it

extends ψ̃, and must therefore have image contained in Z, since Z is closed. Moreover, by definition
we have that Q = p2((ψ

′ × ψ)(P )), so Q ∈ p2(Z), and we conclude p2(Z) is closed. �
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Remark 8.3.7. There are direct, algebraic proofs of Corollary 8.3.2. See for instance Theorem
2 of Chapter I, §5.2 of [Sha94a]. However, the point of our approach is to show that if one builds
up enough foundational tools, one can start to prove interesting results more geometrically, without
resorting to going back to definitions and using algebra to prove each result.

Exercise 8.3.8. In this exercise, we give a proof of Chow’s Lemma. It is clear that every
complete variety is birational to some projective variety. However, Chow’s Lemma asserts that a
much stronger statement is true: given a complete variety X, there exists a projective variety X ′

together with a birational morphism X ′ → X (which is necessarily surjective, by Corollary 8.3.3
(ii)).

Let {Ui} be an affine open cover of X, and let Yi be the closures of the Ui in projective space.
Let U be the intersection of the Ui, and

ϕ : U → X × Y1 × · · · × Yn
the morphism induced by the inclusions of U into X and the Yi. Let X ′ be the closure of ϕ(U).
Let p1 : X ′ → X be the morphism induced by the first projection, and p2 : X ′ → Y1 × · · · × Yn be
the morphism induced by projection to the remaining factors.

(a) Show that p1 gives an isomorphism p−11 (U) → U . Hint: first prove that ϕ(U) is an open
subset of X ′.

(b) Show that p2 induces an isomorphism of X ′ onto a closed subvariety of Y1× · · · ×Yn. Hint:
first prove that

X ′ ∩X × Y1 × · · · × Ui × · · · × Yn = X ′ ∩ Ui × Y1 × · · · × Yn,

by considering the projections to X and to Yi for each.
(c) Conclude Chow’s lemma.

8.4. Irreducibility of polynomials in families

In this section, we give an application of the ideas we have discussed, studying how irreducibility
behaves in families of polynomials. We further apply this to prove a theorem on existence of chains
of curves connecting any two points of a prevariety.

The key input involves the fact that projective varieties are complete, from which we are able
to conclude the following.

Lemma 8.4.1. Given integers n,m, n1, . . . , nm, suppose a morphism

ϕ :
∏
i

Ani
k → Ank

is given by nonconstant polynomials

f1, . . . , fn ∈ k[xi,j ]16i6m,16j6ni ,

such that:

(i) there exist d1, . . . , dm such that each fi is homogeneous of degree dj in the variables
xj,1, . . . , xj,nj ;

(ii) we have

ϕ−1({0}) ⊆
m⋃
i=1

An1
k × · · · × Ani−1

k × {0} × Ani+1

k × · · · × Anm
k .

Then the image of ϕ is closed.
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Proof. The hypotheses imply that ϕ induces a morphism ϕ̄ :
∏
i P

ni−1
k → Pn−1k such that

p2◦ϕ = p2, which has closed image by Proposition 8.2.5, together with Corollary 8.3.2. Again using
homogeneity, the image of ϕ contains {0}. But using the canonical morphisms πr : Arkr{0} → Pr−1k ,
we see that the image of ϕ on the complement of {0} is precisely the preimage under πn of the
image of ϕ̄. Thus, the image of ϕ is closed after restriction to the complement of {0}, and it
contains {0}, so it must be closed. �

We now describe our application to irreducibility of polynomials in families. A natural situation
to consider a family of polynomials in algebraic geometry is to give ourselves an affine variety
X, and an element f ∈ A(X)[x1, . . . , xn]. Then for every point P of X, we get a polynomial
f(P ) ∈ k[x1, . . . , xn], and the condition that the coefficients of f be regular functions on X ensures
that the family reflects the geometry of X. In this setting, we have the following basic result.

Corollary 8.4.2. Let X be an affine variety, and f ∈ A(X)[x1, . . . , xn] a polynomial of degree
d. Let

Z = {P ∈ X : f(P ) is reducible or deg f(P ) < d.}.
Then Z is a closed subset.

In the above definition of Z, if f(P ) is the zero polynomial, we consider it to have degree strictly
less than d.

Proof. Given any d′ > 0, let An,d′ denote the affine space whose coordinates are identified
with the coefficients of a general polynomial of degree d′ in the variables x1, . . . , xn. Thus, the
points of An,d′ correspond to elements of k[x1, . . . , xn] having degree at most d′. More precisely, we
have a polynomial fn,d′ ∈ A(An,d′)[x1, . . . , xn] of degree d′, with the coefficient of each monomial
in the xi’s being the corresponding coordinate of An,d′ , and having the property that for every
g ∈ k[x1, . . . , xn] of degree at most d′, there is a unique point P of An,d′ such that fn,d′(P ) = g.

We first consider the “universal” case that X = An,d, and f = fn,d′ . In this case, write
Zuniv ⊆ An,d for the Z of the statement. For every d1, d2 positive with d1 + d2 = d, we have a
morphism

µd1,d2,n : An,d1 × An,d2 → An,d
corresponding to polynomial multiplication. This morphism is given by polynomials which are
homogeneous (indeed, linear) in the variables coming from the first and second factors. Moreover,
because a product of two polynomials is zero if and only if one of the polynomials is zero, we see
that the hypotheses of Lemma 8.4.1 are satisfied, so the image of µd1,d2,n is closed. On the other
hand, it is clear by construction that Zuniv is the union of the µd1,d2,n as d1, d2 vary, so we conclude
that Zuniv is closed.

In the case that X and f are arbitrary, we observe that the coefficients of f determine a
morphism X → An,d with the property that Z ⊆ X is exactly the preimage of Zuniv ⊆ An,d, so we
conclude that Z is also closed, as desired. �

Remark 8.4.3. The argument for Corollary 8.4.2 illustrates a common technique in algebraic
geometry: reduction to a suitable universal situation. Frequently, a general statement can be
reduced to proving the same statement in a single, universal instance, and the universal case, being
more explicit, is more amenable to direct analysis. As in the above argument, usually once the
universal situation is correctly described, the processing of reducing to that case is more or less a
formality.

Example 8.4.4. The statement of Corollary 8.4.2 would be false if we simply defined Z to be
the set of points P such that f(P ) is reducible. For instance, we could take X = A1

k with coordinate
t, and f = tx2 + x. This is reducible for all t 6= 0, but irreducible for t = 0.
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We now refine Corollary 8.4.2 to the following theorem.

Theorem 8.4.5. Let X be an affine variety, and f ∈ A(X)[x1, . . . , xn] a polynomial of degree
d. Let

Z = {P ∈ X : f(P ) is reducible or deg f(P ) < d.}.
Then Z is a closed subset.

Moreover, if f is irreducible over K(X), then Z 6= X.

The main additional ingredient is a technique which we have not used elsewhere: extension of
base field. Given an algebraically closed field k′ extending k, and an affine algebraic set X over k,
then X is defined by polynomials with coefficients in k, so the extension k′/k canonically gives us
an affine variety X ′ over k′ defined by the same polynomials. Given also Y another affine algebraic
set over k, and ϕ : X → Y a morphism, then we know that ϕ is likewise given by polynomials with
coefficients in k, so we also get a canonical morphism ϕ′ : X ′ → Y ′ defined by the same polynomials.
Similarly, if Z ⊆ Y is a closed algebraic subset, we get a closed algebraic subset Z ′ ⊆ Y ′ defined by
the same polynomials as Z. The key fact for us is that if ϕ(X) ⊆ Z, then also ϕ′(X ′) ⊆ Z ′. Indeed,
suppose Z is defined by polynomials f1, . . . , fn. Then to say that ϕ(X) ⊆ Z is equivalent to saying
that fi ◦ ϕ = 0 in A(X) for i = 1, . . . , n, or fi ◦ ϕ ∈ I(X). But I(X) ⊆ I(X ′) by definition, so
fi ◦ϕ ∈ I(X ′), and since ϕ′ is defined by the same polynomials as ϕ, we conclude that ϕ(X ′) ⊆ Z ′,
as desired.

Proof of Theorem 8.4.5. Following the above discussion, set k′ = K(X). Extending from
k to k′, and following the setup of the proof of Corollary 8.4.2, we have a morphism X ′ → A′n,d and

a closed algebraic subset Z ′univ ⊆ A′n,d. Now, the polynomials defining X have a canonical solution

over A(X) just by the definition of A(X), using the images in A(X) of the coordinate functions
themselves. Using the inclusions A(X) ⊆ K(X) ⊆ k′, we find that X ′ has a canonical point. By
construction, the image of this point in A′n,d corresponds precisely to considering f over k′. Since

f is assumed irreducible over k′, the image of this point is not in Z ′univ, so we conclude that the
image of X ′ is not contained in Z ′univ, and hence by the above discussion that the image of X is
not contained in Zuniv, meaning that Z 6= X, as desired. �

Example 8.4.6. In the statement of Theorem 8.4.5, it would not be enough to assume that f
is irreducible in A(X)[x1, . . . , xn]. Indeed, consider the case n = 1: since K(X) is not algebraically
closed, there are irreducible nonlinear polynomials in A(X)[x1, . . . , xn]. But when evaluated at P ,
none of these can remain irreducible, since k is algebraically closed.

Remark 8.4.7. Theorem 8.4.5, while classical, is best understood in the scheme setting. Indeed,
if one modifies the definition of Z appropriately (specifically, by always considering irreducibility
over the appropriate algebraic closures), then the argument of Corollary 8.4.2 shows that Z is

still closed in the corresponding scheme. The condition that f remains irreducible over K(X)
says exactly that the generic point of the scheme corresponding to X is not in Z, so it follows
immediately that the complement of Z is a nonempty open subset.

We next have the following generalization of Theorem 3.3.14.

Theorem 8.4.8. If X is a variety of dimension d, then given any n with 0 6 n 6 d, there
exists an affine variety Y of dimension n, and an irreducible polynomial f ∈ A(Y )[x1, . . . , xd+1−n]

such that Z(f) is birational to X, and f remains irreducible over K(Y ).

Note that Theorem 3.3.14 is the special case n = 0. We will apply Theorem 8.4.8 in the case
n = 1 in order to make arguments regarding general varieties which induct on dimension.
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Proof. As in the proof of Theorem 3.3.14, there exist algebraically independent y1, . . . , yd ∈
K(X) such that K(X) is a finite, separable extension of k(y1, . . . , yd). LetK be the algebraic closure
of k(y1, . . . , yn) inside K(X) – that is, the set of elements of K(X) algebraic over k(y1, . . . , yn).
Then K is necessarily separable over k(y1, . . . , yn), and we claim that it is a finite extension, so
in particular, finitely generated over k. Observe that the primitive element theorem implies that
a separable algebraic extension which is not finite contains elements of arbitrarily high degree.
But one checks that if α ∈ K(X) is algebraic over k(y1, . . . , yn), then its minimal polynomial over
k(y1, . . . , yd) is the same as its minimal polynomial over k(y1, . . . , yn), and because K(X) is a finite
extension of k(y1, . . . , yd), the elements of K(X) have bounded degree over k(y1, . . . , yd). We thus
conclude that the elements of K have bounded degree over k(y1, . . . , yn), and that K is finite over
k(y1, . . . , yn), as desired.

Consequently, we can write K = K(Y ) for some affine variety Y of dimension n. By con-
struction, we can realize K(X) as a finite separable extension of the purely transcendental ex-
tension K(Y )(yn+1, . . . , yd) of K(Y ), so using the primitive element theorem again, we have
K(X) ∼= K(Y )(yn+1, . . . , yd)[t]/f for some irreducible f ∈ K(Y )(yn+1, . . . , yd)[t]. We can clear
denominators to assume that f ∈ A(Y )[yn+1, . . . , yd, t] (still irreducible), and we have Z(f) bira-

tional to X by construction. Finally, the fact that f remains irreducible over K(Y ) is a consequence
of the fact that K(X) is separably generated over K(Y ), and K(Y ) is algebraically closed in K(X);
see Exercise A.1.2 of [Eis95] for a more general statement. �

Putting together Theorems 8.4.5 and 8.4.8, we are able to conclude the following.

Corollary 8.4.9. Let X be a variety of dimension d. Then for any n with 0 < n < d, there
exists a variety Y of dimension n, a nonempty open subset U ⊆ X, and a dominant morphism
ϕ : U → Y such that all nonempty fibers of ϕ are irreducible of dimension d− n.

Note that Chevalley’s theorem implies that the image of X in Y contains a nonempty open
subset of Y , so if we restrict to this subset we can also require that the fibers of ϕ are all nonempty.

Proof. First, let Y ′ and f ∈ A(Y ′)[x1, . . . , xd+1−n be as given to us by Theorem 8.4.8. We are

given that f remains irreducible over K(Y ′), so according to Theorem 8.4.5, there is a nonempty
open subset V of Y ′ such that f(P ) is irreducible of the same degree for all P ∈ V . If we let Y be
an affine open subset of Y ′ contained in V , we can consider f to be in A(Y )[x1, . . . , xd+1−n], and
we have that if Z = Z(f) ⊆ Y × Ad+1−n, the fibers of Z over Y are all irreducible of dimension
d − n. But by construction, Z is birational to X, so letting U ⊆ X be an open subset which is
isomorphic to an open subset of Z gives the desired morphism to Y . �

Finally, we can conclude that any two points on a (pre)variety can be connected by a chain of
curves.

Theorem 8.4.10. Let X be a prevariety of positive dimension, and P, P ′ ∈ X. Then there
exist closed one-dimensional subprevarieties Z1, . . . , Zn ⊆ X such that P ∈ Z1, P ′ ∈ Zn, and
Zi ∩ Zi+1 6= ∅ for i = 1, . . . , n− 1.

Proof. The proof is by induction on the dimension d of X, with the case d = 1 being trivial.
By Lemma 8.3.5, we are free to restrict to open subsets of X, so by Corollary 8.4.9 in the case
n = 1, we may assume we have a one-dimensional variety Y and a morphism ϕ : X → Y whose
nonempty fibers are irreducible of dimension d− 1. Now, given any P ∈ X, applying Lemma 8.3.5
again to the complement of ϕ−1(ϕ(P )), we find a curve Z ⊆ X not contained in ϕ−1(ϕ(P )). Then
ϕ must map Z dominantly to Y , so ϕ(Z) ⊆ Y is open, and replacing X with ϕ−1(ϕ(Z)), we may
assume that Z surjects onto Y . Then Z connects the fibers ϕ−1(ϕ(P )) to every other fiber of ϕ,
and applying the induction hypothesis to the fibers (and taking the closure of Z), we conclude that
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P can be connected to any other point of X by a chain of closed one-dimensional subprevarieties,
as desired. �
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CHAPTER 9

Divisors on nonsingular curves

We now begin a closer study of the behavior of projective nonsingular curves, and morphisms
between them, as well as to projective space. To this end, we introduce and study the concept of
divisors.

9.1. Morphisms of curves

Suppose ϕ : X → Y is a nonconstant morphism of curves. Then we know that ϕ is dominant.
The induced field extension K(Y ) ↪→ K(X) must be algebraic, since K(X) and K(Y ) have the
same transcendence degree, and indeed it must be finite, since K(X) is finitely generated over k.

Definition 9.1.1. The degree of a morphism ϕ : X → Y of curves is 0 if ϕ is constant, and
is [K(X) : K(Y )] otherwise.

In the case that X,Y are projective, nonsingular curves and ϕ is nonconstant, we already know
that ϕ is necessarily surjective, but we will prove (more accurately, sketch a proof of) a much
stronger result.

Definition 9.1.2. Suppose ϕ : X → Y is a nonconstant morphism of nonsingular curves, and
P ∈ X any point. The ramification index eP of ϕ at P is defined as follows: let t ∈ Of(P ),Y be
a local coordinate at P (equivalently, an element with ordf(P )(t) = 1); then eP = ordP (ϕ∗P (t)).

Observe that eP is well defined, since ϕ∗P is injective, and a different choice of t will differ by
multiplication by a unit, which doesn’t affect ordP (ϕ∗P (t)). Also, eP > 1 always, since ϕ∗P t must
vanish at P .

Definition 9.1.3. Suppose ϕ : X → Y is a morphism of nonsingular curves, and P ∈ X any
point. Then P is a ramification point of ϕ if eP > 2. In this case, we say ϕ(P ) is a branch
point of ϕ. If eP = 1, we say that ϕ is unramified at P .

Remark 9.1.4. Conceptually (and in fact precisely, when one is working over C), a ramification
point is a critical point of ϕ (i.e., a point where the derivative of ϕ vanishes), and a branch point is
a critical value. We will discuss a closely related version of this statement after we have introduced
differential forms.

The fundamental result in the case that X,Y are projective is:

Theorem 9.1.5. Let ϕ : X → Y be a nonconstant morphism of projective, nonsingular curves,
having degree d, and let Q ∈ Y any point. Then∑

P∈ϕ−1(Q)

eP = d.

Sketch of proof. We use the projectivity hypothesis only to apply Corollary 7.4.6, conclud-
ing that if V ⊆ Y is an affine open neighborhood of Q, then U := ϕ−1(V ) is also affine, and
furthermore A(U) is a finitely generated A(V )-module.
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The desired result now follows from a standard result in algebra on the behavior of extensions
of Dedekind domains. In our case, if we use the notation

OQ,X :=
⋂

P∈ϕ−1(Q)

OP,X ,

the main idea is to show that by the classification of finitely generated modules over principal
ideal domains, we have OQ,X a free module over OQ,Y of rank d, and then (if t ∈ OQ,Y is a local
coordinate) to use the Chinese remainder theorem to relate OQ,X/(ϕ

∗t) to the various OP,X/(ϕ
∗t),

each of which one can show is eP -dimensional. �

The geometric intuition behind the theorem is that at most points, the morphism ϕ is a d : 1
cover, but that at certain points (the ramification points), some of the d sheets come together.

Example 9.1.6. Suppose X = Y = P1, and ϕ is given by (X0, X1) 7→ (Xd
0 , X

d
1 ). Away from

X0 = 0, we can normalize so that X0 = 1, and the morphism is the morphism A1 → A1 given
by x 7→ xd. We first assume that we are not in the situation that char k = p and p|d. If c 6= 0,
the preimage of x = c consists of d distinct points, so we see that each of these d points must be
unramified. However, over c = 0, we have only a single preimage, so the ramification index at 0
must be d. The situation is symmetric for x1 6= 0, so we find that the ramification points are (1, 0)
and (0, 1), each with ramification index d, and all the other points are unramified.

Now, suppose that char k = p and p|d. Write d = prd′, with p not dividing d′. In this case, we
see that all points are ramified; (1, 0) and (0, 1) still have ramification index d, while the rest all
have ramification index pr.

Remark 9.1.7. Theorem 9.1.5 has a parallel result in classical algebraic number theory, de-
scribing how prime ideals in a ring of integers factor when one extends to a larger ring of integers.
It is one of the appealing aspects of Grothendieck’s theory of schemes that it allows one to phrase
a single theorem which simultaneously encompasses both results.

Exercise 9.1.8. Show that a nonconstant morphism ϕ : P1 → P1 is ramified at all points of
P1 if and only if it factors through the Frobenius morphism.

Exercise 9.1.9. Let X,Y be nonsingular curves, and ϕ : X → Y a nonconstant morphism.
For P ∈ X, show that ϕ is unramified at P if and only if the induced map TP (X) → Tϕ(P )(Y ) is
injective.

Our next goal is to study the behavior of such morphisms in more detail. In order to do so, we
will have to introduce the concepts of divisors and differential forms.

9.2. Divisors on curves

An important topic in classical algebraic geometry is the study of divisors. They play a crucial
role in understanding morphisms to projective space, and will also be important for us in our study
of morphisms between curves. We will restrict our treatment to the case of nonsingular curves,
although most of the basic definitions generalize rather easily to the case of higher-dimensional
nonsingular varieties (with points being replaced by closed subvarieties of codimension 1). We will
assume throughout this section that X is a nonsingular curve.

Definition 9.2.1. A divisor D on X is a finite formal sum
∑

i ci[Pi], where ci ∈ Z, and each
Pi is a point of X. Given also D′ =

∑
i c
′
i[Pi], we write D > D′ if ci > c′i for each i. We say D is

effective if D > 0. The degree degD of D is defined to be
∑

i ci.

We can define pullbacks of divisors under morphisms as follows:
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Definition 9.2.2. If X,Y are nonsingular curves, and ϕ : X → Y is a nonconstant morphism,
and D =

∑
ci[Qi] a divisor on Y , we define the pullback of D under ϕ, denoted ϕ∗(D), to be the

divisor
∑

i

∑
P∈ϕ−1(Qi)

eP ci[P ] on X.

We then have the following corollary, which is an immediate consequence of Theorem 9.1.5.

Corollary 9.2.3. Let ϕ : X → Y be a morphism of projective nonsingular curves, of degree
d. Then for any divisor D on Y , we have

degϕ∗(D) = ddegD.

Divisors are closely related to the study of rational functions.

Definition 9.2.4. Given f ∈ K(X)∗, the associated divisor D(f) is
∑

P∈X ordP (f)[P ]. A
divisor D is principal if D = D(f) for some f ∈ K(X)∗.

Note that D(f) is indeed a divisor: f is regular away from a finite number of points, and where
f is regular, it only vanishes at a finite numbers of points.

Remark 9.2.5. The terminology of principal divisor is suggestive, and indeed there is a close
relationship between principal divisors and principal ideals. One can develop this connection in
the context of affine varieties, but the most satisfying treatment, involving a single definition
encompassing both principal ideals of rings of integers and principal divisors on projective curves,
requires the theory of schemes.

If we stick to projective curves, we find that principal divisors are quite well behaved. In
particular:

Proposition 9.2.6. A principal divisor on a projective nonsingular curve has degree 0.

Proof. Let D(f) be a principal divisor on the projective nonsingular curve X. If f is constant,
then D(f) = 0, so the degree is visibly 0. If f is nonconstant, we have seen that it defines
a dominant rational map to A1, which we may extend to a morphism f : X → P1. We claim
that D(f) = f∗([0] − [∞]). But this is clear: the morphism f : X → P1 is induced by the field
inclusion k(t) → K(X) sending t to f , and ord(0) t = 1, so the definition of ramification index
gives us precisely that the part of D(f) with positive coefficients are the ramification indices of
zeroes of f . But similarly, ord∞

1
t = 1, and maps to 1

f , so the negative part of D(f) is given by

ordP ( 1
f ) = − ordP (f) at points P with f(P ) =∞.

The desired statement then follows immediately from Corollary 9.2.3, since deg([0] − [∞]) =
0. �

Example 9.2.7. Consider the case that X = P1, and write P1 = A1 ∪ {∞}, with coordinate t
on A1. Then a rational function f ∈ K(X)∗ is a quotient of polynomials g, h ∈ k[t]. At any point
λ ∈ A1, the coefficient of [λ] in D(f) is simply the difference of the orders of vanishing of g and h
at t = λ. On the other hand, at ∞ we have that 1

t is a local coordinate, and one then checks that

the coefficient of [∞] in D(f) is equal to deg h− deg g. The sum of the coefficients of points on A1

is deg g − deg h, so we see that the degree of D(f) is 0, as asserted by Proposition 9.2.6.

We use divisors to study rational functions on a curve by considering all functions which vanish
to certain prescribed orders at some points, and are allowed to have poles of certain orders at
others. Formally, we have the following definition.

Definition 9.2.8. Given a divisor D on X, define

L(D) = {f ∈ K(X)∗ : D(f) +D > 0} ∪ {0}.
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Thus, if D =
∑

i ci[Pi]−
∑

j dj [Qj ] where ci, dj > 0, and Pi 6= Qj for any i, j, then L(D) is the
space of all rational functions which vanish to order at least dj at each Qj , but are allowed to have
poles of order at most ci at each Pi. This is visibly a k-vector space, and we will next prove that
it is finite-dimensional when X is projective.

Lemma 9.2.9. Given a divisor D on X, and P ∈ X any point, the quotient space L(D)/L(D−
[P ]) has dimension at most 1.

Proof. First observe that L(D − [P ]) is indeed a subspace of L(D), consisting precisely of
those rational functions vanishing to order (possibly negative) strictly greater than required to
be in L(D). The quotient vector space thus makes sense. If L(D − [P ]) = L(D) (which can
certainly occur), there is nothing to prove. On the other hand, if L(D − [P ]) ( L(D), let f be in
L(D)rL(D− [P ]), and let t be a local coordinate on X at P . Then we know that f = teg for some
e ∈ Z, and some g regular and nonvanishing in a neighborhood of P . Since f 6∈ L(D− [P ]), we see
that −e must be the coefficient of [P ] in D. We claim that f spans L(D)/L(D − [P ]). Indeed, for

any other f ′ ∈ L(D), we can write f ′ = te
′
g′ with g′ regular and nonvanishing at P , and we must

have e′ − e > 0, so e′ > e. Then we observe that

f ′ − te
′−e(P )g′(P )

g(P )
f

vanishes to order strictly greater than e at P , so is therefore in L(D− [P ]), proving our claim and
the lemma. �

Corollary 9.2.10. For any divisor D on a projective nonsingular curve X, we have that L(D)
is finite-dimensional over k, and in fact

dimk L(D) 6 degD + 1.

Proof. We see immediately from Proposition 9.2.6 that if degD < 0, then L(D) = 0. The
statement then follows immediately from Lemma 9.2.9 by induction on degD. �

This dimension will be very important to us, so we give it its own notation.

Notation 9.2.11. We denote by `(D) the dimension of L(D) over k.

Example 9.2.12. Again consider the case X = P1, continuing with the notation of Example
9.2.7, and let D = d[∞]. Then if f ∈ K(X)∗ is written as g

h , where g, h have no common factors,
we see that for f to be in L(D), we must have h constant, since we cannot have any poles away
from ∞. Then we have deg h− deg g = −deg g 6 −d, so we conclude that f must be a polynomial
of degree at most d. Conversely, any polynomial of degree less than or equal to d is in L(D), so we
see that `(D) = d+ 1. In particular, sometimes the bound of Corollary 9.2.10 is achieved.

9.3. Linear equivalence and morphisms to projective space

Closely related to the study of divisors and rational functions is the study of morphisms to
projective space. In this section, we suppose throughout that X is a nonsingular projective curve.

Suppose we have a morphism ϕ : X → Pr, which we assume to be non-degenerate, meaning
that ϕ(X) is not contained in any hyperplane H of Pr. We then see that for any such H, we have
H ∩ ϕ(X) a proper closed subset of ϕ(X), hence a finite set of points. In fact, there is a natural
way to associate an effective divisor on X to H ∩ ϕ(X). Suppose P ∈ X such that ϕ(P ) ∈ H, and
choose i such that ϕ(P ) ∈ Ui = Pr r Z(Xi). If H = Z(

∑
j cjXj), then we identify Ui with Ar in

the usual way by setting coordinates yj =
Xj

Xi
for j 6= i, and on Ui we have Z(H) = Z(

∑
j cjyj),

where yi = 1. Then
∑

j cjyj is a regular function on Ui, so ϕ−1(
∑

j cjyj) is regular at P , and we
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take its order at P to determine the coefficient of P in the divisor associated to H ∩ ϕ(X). One
checks easily that this is independent of the choice of i and of the equation for H (which is unique
up to scaling).

Notation 9.3.1. If ϕ : X → Pr is a nondegenerate morphism, and H ⊆ Pr a hyperplane, we
denote by ϕ∗(H) the effective divisor on X associated to H ∩ ϕ(X).

Obviously, ϕ∗(H) depends on H. However, if we choose a different hyperplane H ′, we find that
ϕ∗(H) and ϕ∗(H ′) are closely related.

Proposition 9.3.2. Given ϕ : X → Pr a nondegenerate morphism, and H,H ′ ⊆ Pr two
hyperplanes, then ϕ∗(H)− ϕ∗(H ′) = D(f) for some rational function f on X.

Proof. The basic idea is that if H = Z(
∑

i ciXi), and H ′ = Z(
∑

i c
′
iXi), then even though

the defining equations do not give functions on Pr, the quotient
∑

i ciXi∑
i c
′
iXi

defines a rational function

on Pr, which by non-degeneracy is regular and non-vanishing on a nonempty open subset of ϕ(X),
and thus pulls back under ϕ to give a rational function f on X. We need only verify that D(f) =
ϕ∗(H)− ϕ∗(H ′).

However, following the notation of the above discussion, if the ith coordinate of P is non-zero,
we can divide through both the numerator and denominator by Xi and find∑

j cjXj∑
j c
′
jXj

=

∑
j cjyj∑
j c
′
jyj

,

so the definition of D(f) is visibly equal to ϕ∗(H)− ϕ∗(H ′). �

This motivates the following definition:

Definition 9.3.3. Two divisors D,D′ on X are linearly equivalent if D − D′ = D(f) for
some rational function f on X.

From Proposition 9.2.6, we see immediately:

Corollary 9.3.4. Two linearly equivalent divisors have the same degree.

We can thus define:

Definition 9.3.5. The degree of a nondegenerate morphism ϕ : X → Pr is degϕ∗(H) for any
hyperplane H ⊆ Pr.

Remark 9.3.6. In fact, if ϕ(X) is injective, then the degree is equal to the number of points in
ϕ(X) ∩H for a “sufficiently general” hyperplane H. That is, if H is not too special, all the points
of ϕ∗(H) will have multiplicity 1.

There is one situation of overlap between this definition and our earlier definition of degree for
morphisms between curves. We verify that the two definitions agree in this case.

Proposition 9.3.7. Let ϕ : X → P1 be a nonconstant morphism. Then degϕ∗H = [K(X) :
K(P1)], where H is any hyperplane (that is to say, point) in P1.

Proof. This is not obvious from the definitions, but it follows easily from Theorem 9.1.5.
Indeed, we see immediately from the definitions that

ϕ∗H =
∑

P∈ϕ−1(H)

eP [P ],

so the desired identity follows. �
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Linear equivalence also arises in the spaces L(D). If f ∈ K(X)∗ is in L(D), then instead of
looking at the zeroes and poles of f as a rational function, we could ask what its “extra vanishing”
is as an element of L(D); that is, we could look at the divisor D(f) + D, which is effective by
definition. We have:

Proposition 9.3.8. Given a divisor D, the set D(f) + D for nonzero f ∈ L(D) is precisely
the set of effective divisors linearly equivalent to D.

Proof. Suppose D′ is effective, and linearly equivalent to D. Then by definition, there is some
f ∈ K(X)∗ with D′ −D = D(f), or equivalently, D′ = D(f) +D. Thus f ∈ L(D), and we get one
inclusion. Conversely, we have already observed that D(f)+D is effective by definition if f ∈ L(D)
is nonzero, but it is also visibly linearly equivalent to D. �

We can thus think of the following definition in terms of families of effective, linearly equivalent
divisors:

Definition 9.3.9. A linear series is a vector subspace of L(D) for some D. A linear series is
complete if it is equal to all of L(D). We say that the linear series has degree d and rank r if
degD = d, and the subspace has dimension r + 1.

Associated to a linear series we get a family of effective divisors, but the linear series language
is useful because the condition of being a subspace is easier to understand than the corresponding
condition on the associated divisors. The discrepancy of 1 in the rank terminology will be explained
shortly.

We now return to considering morphisms to projective space. As above, we suppose we have
ϕ : X → Pr. We observe that the associated family of divisors ϕ∗(H) for hyperplanes H in Pr have
the property that there is no point P ∈ X such that [P ] appears with positive coefficients in every
ϕ∗(H): indeed, we can choose H to be any hyperplane in Pr such that ϕ(P ) 6∈ H, and then the
coefficient of [P ] in ϕ∗(H) will be 0.

Definition 9.3.10. Given a linear series V ⊆ L(D), a point P ∈ X is a basepoint of V if
for all nonzero f ∈ V , the coefficient of [P ] in D(f) +D is strictly positive. The linear series V is
basepoint-free if no P ∈ X is a base point of V .

Lemma 9.3.11. Suppose that D and D′ are linearly equivalent divisors on a projective nonsin-
gular curve X. Then there is an isomorphism α : L(D) → L(D′), unique up to scaling, such that
D(α(f)) +D′ = D(f) +D for all nonzero f ∈ L(D).

Proof. By definition, there is some g ∈ K(X)∗ with D−D′ = D(g). Because X is projective,
only constant functions have D(g) = 0, we see that g is unique up to scaling by a (nonzero) constant.
Multiplication by g then defines the desired isomorphism L(D)→ L(D′). �

Definition 9.3.12. We say that two linear series V ⊆ L(D) and V ′ ⊆ L(D′) are equivalent
if D is linearly equivalent to D′ and V is mapped to V ′ under the isomorphism of Lemma 9.3.11.

Proposition 9.3.13. Linear series V and V ′ are equivalent if and only if the sets of effective
divisors {D(f) +D : f ∈ V r {0}} and {D(f) +D′ : f ∈ V ′ r {0}} are equal.

Proof. It is clear from the definition and Lemma 9.3.11 that if V and V ′ are equivalent, the
sets of effective divisors are equal. Conversely, if the sets of effective divisors have any elements in
common, we immediately conclude that D is linearly equivalent to D′, and because the isomorphism
α of Lemma 9.3.11 doesn’t change the corresponding effective divisors D(f) + D, and D(f) + D
determines f up to nonzero scalar, we conclude that if the two sets of divisors are equal, then α
must map V into V ′. �
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The main theorem relating linear series to morphisms to projective space is the following:

Theorem 9.3.14. Let V ⊆ L(D) be a basepoint-free linear series on X of rank r and degree
d. Then V is associated to a nondegenerate morphism ϕ : X → Pr, unique up to linear change of
coordinate on Pr, such that the set D(f) + D for nonzero f ∈ V is equal to the set of ϕ∗(H) for
hyperplanes H ⊆ Pr. In particular, ϕ has degree d.

Moreover, this construction gives a bijection between equivalence classes of linear series of rank
r and degree d on X, and nondegenerate morphisms ϕ : X → Pr of degree d, up to linear change
of coordinates.

Lemma 9.3.15. Suppose a morphism ϕ : X → Pr is described on an open subset U ⊆ X
by a tuple (f0, . . . , fr) of functions regular and not simultaneously vanishing on U . Then ϕ is
nondegenerate if and only if the fi are linearly independent in K(X) over k, and if H ⊆ Pr is the
hyperplane Z(

∑
i ciXi) for some ci ∈ k, and

D = −
∑
P∈X

min
i

(ordP (fi))[P ],

then
ϕ∗(H) = D(

∑
i

cifi) +D.

Proof. The assertion of nondegeneracy is clear, since if ϕ(U) were contained in a hyperplane,
we would obtain a linear dependence among the fi, and conversely. To check the desired identity
of divisors, fix P ∈ X, and suppose the ith coordinate of ϕ(P ) is nonzero; then the coefficient of

[P ] in ϕ∗(H) is defined to be the order of vanishing at P of ϕ∗(
∑

j cj
Xj

Xi
). Let e be the coefficient

of [P ] in D. Then each fj has order at least −e at P by hypothesis, and in fact at least one fj has
order exactly −e.

We know that ϕ is defined at P by multiplying all the fj by te, for a local coordinate t at P ,
so that near P , the morphism ϕ is given by (tef0, . . . , t

efn), and so we see in particular that fi has
minimum order −e at P . Furthermore, near P we have

ϕ∗(
Xj

Xi
) =

tefj
tefi

=
fj
fi
,

so the coefficient of [P ] in ϕ∗(H) is

ordP (
∑
j

cj
fj
fi

) = ordP (
∑
j

cjfj) + e,

proving the desired statement. �

Proof of Theorem 9.3.14. If we choose a basis f0, . . . , fr for V , by linear independence and
Lemma 9.3.15, the tuple (f0, . . . , fr) defines a nondegenerate morphism ϕ : X → Pr, which satisfies
the desired relationship. Now, in constructing ϕ, we chose the basis {fi} for V . It is clear that
change of basis corresponds precisely to to modifying ϕ by composing Pr by the corresponding
linear change of coordinates. We thus wish to prove that aside from this ambiguity, ϕ is uniquely
determined by the set of ϕ∗(H). But we see that if ϕ : X → Pr is any nondegenerate morphism,
we obtain effective divisors D0, . . . , Dn with Di := ϕ∗(Z(Xi)), which by hypothesis are each of
the form D(gi) + D for some gi ∈ L(D). But if ϕ is given by (f0, . . . , fr), and we let D′ =
−
∑

P∈X mini(ordP (fi)), then by Lemma 9.3.15 we see that D(fi) + D′ = D(gi) + D for each

i, so D(fi/gi) = D − D′. If we replace each gi by f0
g0
gi, then we don’t change ϕ, and we have

D(fi) = D(gi), so the fi and gi are each related by nonzero scalars, and we conclude the desired
uniqueness.
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Now, because the associated morphisms ϕ are characterized by the effective divisors D(f) +D,
we immediately see that equivalent linear series yield the same (equivalence classes of) morphisms
to projective space. For the final bijectivity assertion, it is thus enough to show that every nonde-
generate morphism to projective space arises in the manner described. However, every morphism
ϕ : X → Pr is described on some open subset U by a tuple (f0, . . . , fr) of regular functions on U ,
and from Lemma 9.3.15 we then see that if we set D as in the lemma statement, the fi span a
linear series in L(D) which satisfies the desired conditions. �

Exercise 9.3.16. Let X ⊆ Pnk be a nonsingular projective variety, and P ∈ Pnk rX. Then the

linear projection from P defines a morphism ϕ : X → Pn−1k .

(a) In terms of the geometry of X in Pnk , describe which points Q have the property that the

induced map TQ(X)→ Tϕ(Q)Pn−1k is injective.
(b) Assuming that ϕ is nondegenerate and X is a curve, describe the same set of points as in

(a) in terms of the family of divisors on X corresponding to ϕ.

Exercise 9.3.17. Given X ⊆ P2
k a nonsingular projective plane curve, and P ∈ P2

k r X, the
linear projection from P defines a morphism ϕ : X → P1

k.

(a) In terms of plane geometry, describe the ramification points of ϕ and their ramification
indices.

(b) If P = (0, 1, 0), describe the ramification points of ϕ in terms of a suitable partial deriva-
tive.

Exercise 9.3.18. Suppose that F,G ∈ k[X0, X1, X2] are homogeneous polynomials with no
common factors.

(i) Given P ∈ Z(F ) ∩ Z(G) suppose that P ∈ Ui ⊆ P2
k. Show that dimk OP,P2

k
/(di(F ), di(G))

is finite, and independent of the choice of i (Notation as in 6.1.3).
If F and G have no multiple factors, we let X = Z(F ) and Y = Z(G) be the corre-

sponding (possibly reducible) projective plane curves. In this case, we define the inter-
section multiplicity of X and Y at P to be

iP (X · Y ) := dimk OP,P2
k
/(di(F ), di(G)).

(ii) Suppose further that X is nonsingular and F is irreducible. Given any homogeneous poly-
nomialG′ such thatX 6⊆ Z(G′), and P ∈ X∩Z(G′), show that dimk OP,P2

k
/(di(F ), di(G

′)) =

ordP (di(G
′)|X).

(iii) Under the hypotheses of (b), define a divisor D(G′|X) on X by

D(G′|X) =
∑

P∈X∩Z(G′)

ordP (di(G
′)|X)[P ].

Show that if G′′ satisfies the same hypotheses as G′, and has the same degree, then
D(G′′|X) is linearly equivalent to D(G′|X).

Exercise 9.3.19. Suppose X ⊆ P2
k is a nonsingular plane curve, with X = Z(F ) for F homo-

geneous of degree d. Show that the inclusion X ↪→ P2
k corresponds to a linear series on X of degree

d.

Exercise 9.3.20. (A special case of Bezout’s theorem) Suppose that F,G ∈ k[X0, X1, X2] are
distinct, irreducible and homogeneous, of degrees d, e respectively. Write X = Z(F ), Y = Z(G),
and suppose further that X is nonsingular. Then∑

P∈X∩Y
iP (X · Y ) = d · e.
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The same formula holds even if X is not nonsingular; see for instance Corollary 7.8 of [Har77].

9.4. Imbeddings of curves

We consider when a morphism defines an isomorphism onto its image. We have:

Theorem 9.4.1. Let ϕ : X → Y be a morphism of prevarieties. Then ϕ induces an isomorphism
onto a closed subset of Y if and only if the following conditions are satisfied:

(i) ϕ is injective;
(ii) ϕ induces injective maps TP (X)→ Tϕ(P )(Y ) of tangent spaces for all P ∈ X;

(iii) Y has an open cover {Vi} by affine varieties such that for each i, the open subset ϕ−1(Vi)
is affine, and the induced ring homomorphism makes A(ϕ−1(Vi)) into a finitely generated
A(Vi)-module.

Proof. Let Z ⊆ Y be a closed subset containing ϕ(X). Then for any affine open subset
U ⊆ Y , we have that Z ∩ U is also affine, with A(Z ∩ U) being a quotient ring of A(U).

Now, suppose that Z = ϕ(X) and ϕ induces an isomorphism onto Z. Then we see immediately
that (i)-(iii) are satisfied. Conversely, suppose (i)-(iii) are satisfied, and let Z ⊆ Y be the closure of
ϕ(X). Then (i) and (ii) are also satisfied for the induced morphism X → Z. Additionally, because
A(Vi ∩ Z) is a quotient of A(Vi), we see that generators of A(ϕ−1(Vi)) over A(Vi) will still be
generators over A(Vi∩Z), so (iii) is also satisfied if we replace Y by Z. Thus, it suffices to prove the
theorem in the case ϕ is dominant, in which case we simply wish to prove that ϕ is an isomorphism.
It is then enough to show that for each i, the induced morphism ϕ−1(Vi)→ Vi is an isomorphism.
We know that it is injective by (i). Moreover, we know it is surjective by (iii) and Proposition 7.3.6.
It is then enough to show that the induced homomorphisms ϕP : OY,ϕ(P ) → OX,P are isomorphisms
for all P ∈ X. Because ϕ is dominant, each ϕP is injective. Furthermore, because ϕ is injective,
we have that

OX,P = A(ϕ−1(Ui))mP = A(ϕ−1(Ui))mϕ(P )
,

where the last term means that we consider A(ϕ−1(Ui)) as an A(Ui)-module, and invert the com-
plement of mϕ(P ). Since OY,ϕ(P ) = A(Ui)mϕ(P )

, this means that generators of A(ϕ−1(Ui)) over

A(Ui) also induce generators of OX,P over OY,ϕ(P ). The desired statement then follows from the
below algebra lemma together with hypotheses (ii) and (iii). �

Lemma 9.4.2. Let f : R→ S be a homomorphism of Noetherian local rings, such that

(i) f(mR) ⊆ mS;
(ii) the map R/mR → S/mS induced by f is an isomorphism;
(iii) the map mR/m

2
R → mS/m

2
S induced by f is surjective;

(iv) f makes S into a finitely-generated R-module.

Then f is surjective.

This is a relatively easy application of Nakayama’s lemma; see Lemma 7.4 of Chapter II of
[Har77].

Applying Theorem 9.4.1 together with Corollary 7.4.6, we conclude the following.

Corollary 9.4.3. Let X be a projective nonsingular curve, Y a variety, and ϕ : X → Y a
morphism. Then ϕ induces an isomorphism of X onto a closed subset of Y if and only if ϕ is
injective, and induces injective maps on tangent spaces at all points of X.

Remark 9.4.4. We see that projectivity is a crucial hypothesis in Corollary 9.4.3. Otherwise,

let Y be a curve with one node, let Ỹ → Y be the normalization, and let X ⊆ Ỹ be the open subset

omitting one of the two points of Ỹ lying over the node of Y . Then it is straightforward to check
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that the morphism X → Y is bijective and induces injections on tangent spaces, but ϕ is not an
isomorphism.

In contrast, the hypothesis that X is a nonsingular curve is not necessary (see Proposition 7.3
of Chapter II of [Har77] for a closely related statement), and we make use of it only to simplify the
proof that hypothesis (iii) of Theorem 9.4.1 is satisfied. In fact, the latter hypothesis is satisfied for
any morphism ϕ : X → Y where X is projective, Y is a variety, and ϕ has finite fibers. However, the
proof is quite a bit more involved; compare Theorem 5.19 of Chapter II of [Har77]. Furthermore,
instead of taking X projective, it suffices to suppose X is complete, but this makes the proof even
more difficult.

We now rephrase Corollary 9.4.3 in the special case of morphisms to projective space.

Corollary 9.4.5. Let X be a projective nonsingular curve, and V ⊆ L(D) a basepoint-free
linear series of rank r on X. Then the induced morphism ϕ : X → Prk gives an isomorphism of X
onto a closed curve in Prk if and only if for all P,Q ∈ X (possibly equal), we have

dimk(V ∩ L(D − [P ]− [Q])) = dimk V − 2.

By Lemma 9.2.9, we see that for any P,Q, we have dimk(V ∩L(D− [P ]− [Q])) > dimk V −2, so
the hypothesis is that V ∩L(D− [P ]− [Q]) is as small as possible for all P,Q. Additionally, from the
definition of a base point (and Lemma 9.2.9 again), we have that dimk(V ∩L(D−[P ])) = dimk V −1
for any P ∈ X, so the condition can be rephrased as saying that V ∩L(D−[P ]−[Q]) 6= V ∩L(D−[P ])
for all P,Q ∈ X. When P,Q are distinct, this is equivalent to the condition that ϕ(P ) 6= ϕ(Q),
while when P = Q, this turns out to be the same as injectivity on tangent spaces.

9.5. Secant varieties and curves in projective space

We have seen that every nonsingular curve is quasiprojective. We now elaborate on this by
studying what kind of morphisms we can construct into specific projective spaces. Specifically, we
will prove:

Proposition 9.5.1. Suppose C is a nonsingular curve. Then there exists an injective morphism
ϕ : C → P3. Given any Q ∈ C, there also exists a morphism ϕ′ : C → P2 such that

(ϕ′)−1(ϕ′(Q)) = {Q}.

This statement will be useful in analyzing the topology of complex varieties, and it follows
immediately from the following two more general results.

Proposition 9.5.2. Suppose X is a quasiprojective variety of dimension d. Then there exists
an injective morphism ϕ : X → P2d+1.

Proposition 9.5.3. Given Q ∈ X any point on a quasiprojective variety of dimension d, there
exists a morphism ϕ′ : X → Pd+1 such that (ϕ′)−1(ϕ′(Q)) = {Q}.

The idea of the argument is that we start with a realization of X as a subvariety of some
Pn, and then show we can project inductively to smaller-dimensional projective spaces. The key
construction is:

Definition 9.5.4. Given a subvariety X ⊆ Pn, the secant variety Sec(X) of X is the Zariski
closure of the set of points P of Pn such that there exist distinct points Q1, Q2 ∈ X with P lying
on the line through Q1, Q2.

Proposition 9.5.5. The secant variety of X is a variety, of dimension less than or equal to
2 dimX + 1.
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Proof. Let d be the dimension of X. We first consider the auxiliary variety S̃ec(X) ⊆ Pn ×
Pn×Pn defined by triples of points (Q1, Q2, P ) with Q1, Q2 ∈ X distinct, and P on the line between

Q1 and Q2. By definition, Sec(X) is the closure of the image of S̃ec(X) under the third projection

morphism. It thus suffices to prove that S̃ec(X) is a variety of dimension equal to 2d+ 1.
We first see that it is an open subset of a closed subset of Pn × Pn × Pn. Indeed, it is the

intersection of X ×X × Pn with the set of triples of points (Q1, Q2, P ) ∈ (Pn × Pn r ∆(Pn))× Pn)
such that P lies on the line between Q1 and Q2. The latter set can be described by the condition
that the coordinate vectors of Q1, Q2 and P are linearly dependent, which is a polynomial condition
in the coordinates of the three points given by the vanishing of the 3× 3 minors of the associated
3× (n+ 1) matrix (the matrix is defined only up to nonzero scaling of each row, but this will not

affect whether or not a given minor vanishes). Thus S̃ec(X) is an open subset of a closed subset,
and it suffices to see that it is irreducible of dimension 2d+ 1.

We prove both statements at once as follows: let U0, . . . , Un+1 be the affine open cover of X

with Ui = XrZ(xi). For any i, j, let Ui,j ⊆ S̃ec(X) be the preimage of Ui×Uj under the projection
morphism to the first two factors; that is,

Ui,j = {(Q1, Q2, P ) ∈ S̃ec(X) : Q1 ∈ Ui, Q2 ∈ Uj}.

It is clear that the Ui,j form an open cover of S̃ec(X). We claim that Ui,j ∼= (Ui×Uj r∆(X))×P1.
For each Ui, we normalize coordinates in Pn so that xi = 1. We then obtain a morphism

ψi,j : (Ui × Uj r ∆(X))× P1 → Ui,j

by sending ((x0, . . . , xn), (y0, . . . , yn), (s, t)) to (x0, . . . , xn), (y0, . . . , yn), (sx0 + ty0, . . . , sxn + tyn).
Note that ψi,j is well defined because we have normalized coordinates on Ui, Uj and simultaneously
scaling (s, t) will scale the last (n + 1)-tuple. Furthermore, ψi,j is visibly bijective, so we wish to
show that the inverse is a morphism. In order to do so, we may restrict to the open cover Va,b of Ui,j
consisting of points ((x0, . . . , xn), (y0, . . . , yn), (z0, . . . , zn)) on which (xa, xb) is linearly independent
from (ya, yb). Recall that (x0, . . . , xn) 6= (y0, . . . , yn), so this does in fact form a cover. On Va,b, we

see that ψ−1i,j is expressed by setting

s = ybza − yazb, t = xazb − xbza;

after composition, (s, t) is scaled by xayb − xbya, which doesn’t change the point in P1. Thus ψ−1i,j
is also a morphism, and ψi,j is an isomorphism.

Since Ui×Uj ×P1 is a variety of dimension 2d+ 1, we conclude the same for Ui,j . Since S̃ec(X)
is covered by the Ui,j , the only point that remains is to check irreducibility. We observe that given
i′, j′, we have Ui ∩ Ui′ 6= ∅ and Uj ∩ Uj′ 6= ∅, so Ui,j ∩ Ui′,j′ 6= ∅. Since the Ui,j form an open cover,

and each is irreducible, we conclude that S̃ec(X) does not contain any pair of disjoint non-empty
open subsets, and thus is irreducible, as desired. �

Remark 9.5.6. The technique used in the proof of Proposition 9.5.5 arises frequently in alge-
braic geometry. When one has a subset defined in terms of the existence of certain objects (as the
secant variety is defined in terms of existence of the points Q1, Q2), it can be difficult to analyze the
subset directly. Instead, we construct an auxiliary set in terms of choices of the objects in question,
so that our original subset is the image of the new set under a natural forgetful map. Typically,
the auxiliary set will be easier to analyze, and often better behaved (for instance, less singular).

Remark 9.5.7. Sometimes, Sec(X) is defined without taking the Zariski closure, but then it
requires more care to check that it is in fact a subvariety.

We can now prove the main propositions.
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Proof of Proposition 9.5.2. By hypothesis, we can realize X ⊆ Pn for some n. We prove
by downward induction that there is an injective morphism ϕ : X ↪→ P2d+1. It suffices to show that
given an injective morphism ϕm : X → Pm, if m > 2d + 1 we can produce an injective morphism
ϕm−1 : X → Pm−1. Let Xm be the Zariski closure of ϕm(X); then it is also a variety of dimension
at most (in fact, exactly) d. Now choose P ∈ Pm r Sec(Xm), which is nonempty since m > 2d+ 1
and dim Sec(Xm) 6 2d + 1 by Proposition 9.5.5. Let H be any hyperplane not containing P , and
let ϕm−1 = πP ◦ ϕm, where πP : Pm r {P} → H is the projection morphism sending a point Q to
the point of H lying on the line through P and Q. Note that Xm ⊆ Sec(Xm), so πP is defined on
Xm. Since ϕm is injective by hypothesis, it suffices to see that πP |Xm is injective. But two points
Q1, Q2 ∈ Xm have πP (Q1) = πP (Q2) if and only if the line through P and Q1 is the same as the
line through P and Q2, which can only happen if Q1 = Q2 by the hypothesis that P 6∈ Sec(Xm).
Thus we have produced the desired ϕm−1. �

Proof of Proposition 9.5.3. We mimic the argument of Proposition 9.5.2. Suppose that
ϕm : X → Pm is a morphism such that (ϕm)−1(ϕm(Q)) = {Q}, and m > d+ 1 (as before, we can
start with any imbedding of X in some Pn). Arguing as in Proposition 9.5.5, it is clear that for
any Y ⊆ Pm of dimension d, and Q1 ∈ Y , the set of points P ∈ Pm such that P lies on the line
connecting Q1 to some Q2 6= Q1 on X has dimension at most d + 1. Thus if we choose P not in
this set, and H any hyperplane not containing P , and we set ϕm−1 = πP ◦ ϕm, we find that ϕm−1
satisfies (ϕm−1)

−1(ϕm−1(Q)) = {Q}. Inducting downwards, we obtain the desired ϕ′. �

Remark 9.5.8. The nonsingularity hypothesis in Proposition 9.5.1 is in fact unnecessary; we
include it only because we have not proved that arbitrary curves are quasiprojective. However,
an elaboration of the techniques used above allows one to prove that every nonsingular curve is
isomorphic to a curve in P3, and birational to a nodal curve in P2. These statements do require
nonsingularity. See Chapter IV, Corollary 3.6 and Theorem 3.10 of [Har77].
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CHAPTER 10

Differential forms

Differentials are an important topic in algebraic geometry, allowing the use of some classical
geometric arguments in the context of varieties over any field. We will use them to define the genus
of a curve, and to analyze the ramification of morphisms between curves. Although differentials
remain important for arbitrary varieties, we will restrict our treatment to the case of nonsingular
varieties. This treatment is taken primarily from Shafarevich [Sha94a].

10.1. Differential forms

A differential form is not a function, but can be defined in an analogous manner.

Definition 10.1.1. Let X be a nonsingular variety, and U ⊆ X an open subset. A differential
form on U associates to each point P ∈ U an element of the Zariski cotangent space T ∗P (X).

Differential forms as defined above play a role analogous to that of arbitrary functions: we need
to restrict to a much smaller collection of them in order to obtain a useful concept. We do this by
observing that for every regular function, we have an associated differential form.

Definition 10.1.2. Given U ⊆ X an open subset of a nonsingular variety, and f ∈ O(U), the
differential form df associated to f is defined as follows: for P ∈ U , let df(P ) ∈ mP /m

2
P be the

equivalence class of (U, f − f(P )).
A differential form ω on U is regular if for every P ∈ U , there exist an open neighborhood

V ⊆ U of P and regular functions f1, . . . , fm, g1, . . . , gm ∈ O(V ) such that ω|V =
∑

i fidgi.

Notation 10.1.3. We denote by Ω(U) the set of regular differential forms on U .

It is clear that Ω(U) is a module over O(U). Moreover, d defines a map O(U) → Ω(U) which
is visibly k-linear, but not O(U)-linear. Instead, we have the Leibniz rule:

Exercise 10.1.4. Show that for any f, g ∈ O(U), we have d(fg) = fdg + gdf .

This in turn gives us a chain rule for differential forms.

Exercise 10.1.5. Suppose that g ∈ k(t1, . . . , tn), and f1, . . . , fn are regular on U ⊆ X. Then
away from the zero set of the denominator of g, we have

d(g(f1, . . . , fn)) =

n∑
i=1

∂g

∂ti
(f1, . . . , fn)dfi.

Because of the nonsingularity hypothesis, locally on X the modules of differential forms are
free of rank equal to the dimension of X.

Lemma 10.1.6. Given P ∈ X, if (f1, . . . , fn) are a system of local coordinates for X at P ,
there exists an open set U 3 P on which all the fi are regular, and such that for every open subset
V ⊆ U , every ω ∈ Ω(V ) can be written uniquely as∑

i

gidfi

87



for some gi ∈ O(V ). For every Q ∈ U , we have that the fi − fi(Q) give a basis of mQ/m
2
Q.

Proof. First let U ′ be an affine open neighborhood of P in X on which all the fi are regular.
Then extending f1, . . . , fn to a set of generators of A(U ′), we obtain an imbedding U ′ ⊆ Am with
coordinates t1, . . . , tm such that ti|U ′ = fi for i = 1, . . . , n. Let g1, . . . , gd be a set of generators of
I(U ′) ⊆ Am. Then for each i, if we restrict to U ′ we have

0 = dgi =
∑
j

∂gi
∂tj

dtj .

Because X is nonsingular at P , we have by Corollary 4.3.2 that the rank of the Jacobian matrix
(∂gi/∂tj(P )) is equal to m − n, and by our hypothesis that the fj = tj |U ′ generate mP /m

2
P , we

find that every dtj |U ′ can be expressed in terms of df1, . . . , dfn, with coefficients that are rational
functions on X, regular at P . If we let U ⊆ U ′ be an open neighborhood of P on which all the
coefficient functions are regular, we claim that for any V ⊆ U open, and ω ∈ Ω(V ), there exist
unique gi ∈ O(V ) with

ω =
∑
i

gidfi.

We observe that at any point Q ∈ U ′, the dtj |U ′ for j = 1, . . . ,m span mQ/m
2
Q, and it follows that

if Q ∈ U ′, in fact the dfj for j = 1, . . . , n span mQ/m
2
Q, so they must be a basis. We conclude

that the desired gi are unique, if they exist. On the other hand, since every regular function on
any open subset of U ′ is a rational function in the ti, using Exercise 10.1.5 we know that ω can be
written locally near any point Q ∈ V as a sum of the form∑

i

hidti,

where the hi are rational functions in the tj , regular at Q. But we can similarly express each dti
for i > n as a combination of the dt1, . . . , dtn with coefficients being rational functions in the tj ,
regular at Q, so we obtain the desired express. �

It is then clear that we have:

Corollary 10.1.7. Given fi and U as in Lemma 10.1.6, we have that ω =
∑

i gidfi vanishes
at Q ∈ U if and only all the gi vanish at Q.

In particular, for any U open in X, the locus on which any regular differential form ω ∈ Ω(U)
vanishes is closed in U .

We conclude immediately from the second statement that regular differential forms satisfy the
same rigidity property as regular functions.

Lemma 10.1.8. Suppose U ⊆ V ⊆ X are open subsets. If two regular differential forms on V
are equal after restriction to U , then they are equal on V .

We can thus define a rational differential form just as we did a rational function.

Definition 10.1.9. A rational differential form on X is an equivalence class of pairs (U, ω)
where U ⊆ X is open, and ω is a regular differential form on U . The equivalence relation is that
(U, ω〉 ∼ (V, ω′) if ω|U∩V = ω′|U∩V .

The rational differential forms are clearly a vector space over K(X). We conclude our general
discussion of differentials with a description of the rational differential forms on X.

Proposition 10.1.10. The rational differential forms on X have dimension over K(X) equal
to dimX, and indeed if P ∈ X is any point, and (t1, . . . , tn) is a system of local coordinates for X
at P , then dt1, . . . , dtn form a basis of the rational differential forms on X over K(X).
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Proof. We know from Lemma 10.1.6 that there exists an open neighborhood U of P on which
every ω ∈ Ω(U) can be written uniquely as

∑
i fidti for fi ∈ O(U), and that in fact the same holds

for every V ⊆ U . But then the desired statement is clear, since every rational differential form has
a representative on some V ⊆ U , as does every rational function. �

10.2. Differential forms on curves

Just as with rational functions, if X is a nonsingular curve, and ω a rational differential form
on X, we have a notion of order of zeroes or poles of ω at points on X, and we can associate a
divisor D(ω) to ω. We assume throughout this section that X is a nonsingular.

Definition 10.2.1. If ω is a nonzero rational differential form on X, we define the associated
divisor D(ω) on X as follows: for any P ∈ X, let t be a local coordinate, and write ω = fdt for
some f ∈ K(X)∗. Then the coefficient of [P ] in D(ω) is ordP (f).

Proposition 10.2.2. The divisor D(ω) is a well-defined divisor on X. It has nonnegative
coefficient at P if and only if ω is regular in a neighborhood of P , and strictly positive coefficient
at P if and only if ω vanishes at P .

Proof. By Proposition 10.1.10 we have that ω = fdt for a uniquely determined f , and by
Lemma 10.1.8 if t, t′ are two local coordinates, then dt and dt′ can each be written as regular
multiples of one another, so we must have dt′ = gdt for some g regular and nonvanishing at P , and
we find that D(ω) is well-defined at each point.

If D(ω) has nonnegative coefficient at P , then f is regular at (and therefore in a neighborhood
of) P , so ω is as well. Conversely, if ω is regular at P , we know from Lemma 10.1.6 that ω can
be written as fdt for f regular on a neighborhood of P , so D(ω) has nonnegative coefficient at P .
Corollary 10.1.7 says that ω vanishes at P if and only if f does, and we know that ordP (f) > 0 if
and only f(P ) = 0.

Finally, we see that D(ω) is indeed a divisor, because it can have nonzero coefficient at only
finitely many points: the points at which ω is not regular, and the points at which ω vanishes. �

We can thus define particular spaces of rational differential forms subject to vanishing condi-
tions:

Definition 10.2.3. Denote by Ω(D) the k-vector space of rational differential forms ω on X
such that ω = 0 or D(ω) +D > 0.

We have the following easy consequence of the definition of D(ω):

Proposition 10.2.4. Given any f ∈ K(X)∗ and nonzero rational differential form ω, we have

D(fω) = D(f) +D(ω).

Two key facts, both following from Proposition 10.1.10, are the following:

Corollary 10.2.5. Given any two nonzero rational differential forms ω, ω′ on X, we have that
D(ω) and D(ω′) are linearly equivalent.

Proof. Given Proposition 10.2.4, this follows immediately from Proposition 10.1.10 which
implies that ω′ = fω for some f ∈ K(X)∗. �

Corollary 10.2.6. For any divisor D, the space Ω(D) is finite-dimensional over k.

Proof. Let K = D(ω) for some nonzero rational differential form ω on X. By Proposition
10.1.10, every other such form ω′ can be written uniquely as fω for some f ∈ K(X)∗, and by
Proposition 10.2.4 we have D(ω′) = D(f) +K. It follows immediately that Ω(D) is isomorphic to
L(K +D) via the map ω′ 7→ f . �
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In particular, we are now able to make the following fundamental definition.

Definition 10.2.7. If X is a nonsingular projective curve, we define the genus of X to be the
dimension over k of Ω(X).

Example 10.2.8. If X = P1, let t be a coordinate on A1 ⊆ P1. Then a differential form regular
on A1 is of the form fdt for some f ∈ k[t], but one checks easily that dt has a pole of order 2 at
∞, and therefore no matter what f is, the form fdt cannot be regular at ∞. Thus P1 has genus
0. In fact, we will see later that up to isomorphism, P1 is the only nonsingular projective curve of
genus 0.

10.3. Differential forms and ramification

We next want to study the structure of ramification of morphisms of curves.

Definition 10.3.1. A nonconstant morphism ϕ : X → Y of curves is separable if the induced
field extension K(X)/K(Y ) is separable. Otherwise, we say ϕ is inseparable.

In particular, if k has characteristic 0, every (nonconstant) morphism is separable. We aim
to prove a fundamental theorem relating ramification to separability. In order to so, we have to
investigate the behavior of differential forms under morphisms. We make the following definition:

Definition 10.3.2. Given a morphism ϕ : X → Y , and a differential form ω on V ⊆ Y , let
ϕ∗(ω) be the pullback differential form on ϕ−1(V ) induced by ω and ϕ using the linear maps
T ∗ϕ(P ) → T ∗P for every P ∈ ϕ−1(V ).

Now, we see that

ϕ∗
∑
i

gidfi =
∑
i

ϕ∗gidϕ
∗fi,

so if ω is regular, then ϕ∗ω is likewise regular. In particular, if ϕ is nonconstant, then ϕ∗ gives a
map from rational differential forms on Y to rational differential forms on X.

Theorem 10.3.3. Let ϕ : X → Y be a nonconstant morphism of nonsingular curves. Then the
following are equivalent:

(a) ϕ is inseparable;
(b) infinitely many points of X are ramifications points of ϕ;
(c) every P ∈ X is a ramification point of ϕ;
(d) for every rational differential form ω on Y , we have ϕ∗ω = 0.

As suggested by the theorem statement, we will be interested in the behavior of pullback of
differential forms for morphisms of nonsingular curves. An important preliminary definition is:

Definition 10.3.4. A nonconstant morphism ϕ : X → Y of curves is wildly ramified at P if
char k = p > 0 and p|eP . If P is a ramification point at which ϕ is not wildly ramified, we say ϕ is
tamely ramified at P . We say ϕ is tamely ramified if every P is either unramified or tamely
ramified.

We can then state the relationship between ramification and pullback of differential forms as
follows.

Proposition 10.3.5. Given a nonconstant morphism ϕ : X → Y of nonsingular curves, and
P ∈ X, and t a local coordinate at ϕ(P ), then P is a ramification point of ϕ if and only if ϕ∗dt
vanishes at P .

More precisely, if ϕ∗dt is not uniformly zero, then it vanishes to order at least eP − 1 at P , and
ϕ is wildly ramified at P if and only if we either have strict inequality, or ϕ∗dt = 0. In addition,
the order of vanishing of ϕ∗dt is independent of the choice of t.
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Proof. By definition, we have ϕ∗dt = dϕ∗t. On the other hand, ϕ∗t = gseP , where s is a local
coordinate at P , and g is a nonvanishing regular function on a neighborhood of P . Thus,

ϕ∗dt = d(gseP ) = seP dg + eP s
eP−1gds.

We see that if this is nonzero, it vanishes to order at least eP − 1, as claimed. Morever, seP dg
vanishes to order at least eP , and seP−1gds vanishes to order exactly eP − 1, so we conclude that
ϕ∗dt is either identically zero or vanishes to order strictly greater than eP − 1 if and only if eP = 0
in k, which is exactly the case of wild ramification. �

Remark 10.3.6. The first part of Proposition 10.3.5 can be rephrased as saying that ϕ is
ramified at P if and only if the induced linear map TP (X)→ Tϕ(P )(Y ) is equal to 0.

The following notation isn’t standard, but it will be convenient.

Notation 10.3.7. In the situation of Proposition 10.3.5, if ϕ∗dt is not uniformly zero, write
dordP ϕ := ordP ϕ

∗dt.

The basic behavior of inseparable extensions in the case of transcendence degree 1 is the fol-
lowing:

Exercise 10.3.8. Suppose L/K is an algebraic extension of fields of characteristic p > 0, and
f ∈ L has a minimal polynomial h(t) ∈ K[t] such that each coefficient of h is a pth power in K,
then f = gp for some g ∈ L.

Proposition 10.3.9. Given f ∈ K(X) r k, we have df = 0 if and only if char k = p > 0 and
f = gp for some g ∈ K(X).

Proof. If f = gp, we have df = pgp−1dg = 0 in characteristic p, by Exercise 10.1.5. For the
converse, let t be a local coordinate at any point of X, so that we know from Proposition 10.1.10
that dt is a basis over K(X) for the rational differential forms on X; in particular, gdt = 0 on
any open subset if and only if g = 0. Now, k(t) has transcendence degree 1, so K(X) is algebraic
over k(t); in particular, f satisfies a polynomial relation h(f) = 0 for some h ∈ k(t)[z]. We may
assume that h is the minimal polynomial of f , and in particular irreducible. Since f 6∈ k, and k is
algebraically closed, we have that at least one coefficient of h is not in k. Clearing denominators if
necessary, we may assume that the coefficients of h are in k[t], with no common factors. Writing
h(z) =

∑
i hiz

i and applying Exercise 10.1.5 (considering h as a polynomial in t and z) and the
hypothesis that df = 0, we have

0 = d(h(f)) =
dh

dz
(f)df +

dh

dt
(f)dt =

∑
i

dhi
dt
f idt,

so
∑

i
dhi
dt f

i = 0. We conclude that
∑

i
dhi
dt z

i is a polynomial having f as a root, but it has at most
the same degree as the minimal polynomial for f , and the degree in t of the coefficients is strictly
smaller, which by uniqueness of the minimal polynomial is not possible unless dhi

dt = 0 for all i. We
conclude that each hi has nonzero coefficients only for powers of t which are multiples of p; since
k is algebraically closed, each hi is a pth power. Thus, we conclude f = gp for some g ∈ K(X) by
Exercise 10.3.8. �

Exercise 10.3.10. Suppose k has characteristic p > 0, and K is finitely generated of transcen-
dence degree 1 over k.

(a) Prove that Kp is a subfield of K, and K has degree p over Kp.
(b) Prove that if L is a subfield of K, also of transcendence degree 1 over k, then K/L is

inseparable if and only if L ⊆ Kp.
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Remark 10.3.11. The geometric content of Exercise 10.3.10 is that a nonconstant morphism
X → Y of nonsingular curves is inseparable if and only if it factors through a certain Frobenius
map X → X(p).

We can now prove the theorem.

Proof of Theorem 10.3.3. It follows from Exercise 10.3.10 that if ϕ is inseparable, then for
any f ∈ K(Y ), there exists g ∈ K(X) such that ϕ∗f = gp. By Proposition 10.3.9, we conclude
that ϕ∗df = dϕ∗f = 0; since f was arbitrary, it follows that ϕ∗ω = 0 for all rational differential
forms on Y , so (a) implies (d). Now, for any P ∈ X, applying this to the case that ω = dt for t
a local coordinate at ϕ(P ), we see from Proposition 10.3.5 that P is a ramification point of X, so
(d) implies (c).

(c) implies (b) trivially, so it remains to see that if ϕ is separable, it is ramified at only finitely
many points of X. Let t be a local coordinate at some point Q ∈ Y ; then since t has valuation 1 at
Q, we have that t is not a pth power in K(Y ). It follows from separability of K(X) over K(Y ) that
ϕ∗t is not a pth power in K(X), and thus ϕ∗dt = dϕ∗t 6= 0 by Proposition 10.3.9. Now, we know
that t−t(Q′) is a local coordinate at Q′ for Q′ in some open neighborhood V of Q, so by Proposition
10.3.5, on ϕ−1(V ) the ramification of ϕ is determined by the vanishing of ϕ∗d(t − t(Q′)) = ϕ∗dt.
But because ϕ∗dt 6= 0, it vanishes at only finitely many points of ϕ−1(V ), and we conclude that ϕ
can only be ramified at those points or in X r ϕ−1(V ), which is also a finite set. �

Since we cannot have inseparable extensions in characteristic 0, we conclude the following
immediately from Theorem 10.3.3.

Corollary 10.3.12. If char k = 0, and ϕ : X → Y is a nonconstant morphism of nonsingular
curves, then ϕ has only finitely many ramification points.
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CHAPTER 11

The Riemann-Roch and Riemann-Hurwitz theorems

We state without proof the Riemann-Roch theorem, and give some basic applications, including
a proof of the Riemann-Hurwitz theorem. We use throughout the convention that all curves are
projective and nonsingular.

11.1. The Riemann-Roch theorem

With all the preliminaries out of the way, we can state one of the most fundamental theorems
in the study of algebraic curves, the Riemann-Roch theorem.

Theorem 11.1.1. Let X be a curve of genus g, and D a divisor on X of degree d. Then

`(D)− dimk Ω(−D) = d+ 1− g.

One immediate consequence is:

Corollary 11.1.2. Let ω be a non-zero rational differential form on a curve X of genus g.
Then D(ω) has degree 2g − 2.

Proof. We apply the Riemann-Roch theorem in the case that D = D(ω). We know that
Ω(−D) is isomorphic to L(D(ω)−D), so Ω(D(ω)) is isomorphic to L(0) = k. On the other hand,
L(D(ω)) is isomorphic to Ω(0), so `(D(ω)) = g. We conclude that

g − 1 = degD(ω) + 1− g,
giving the desired identity. �

However, the Riemann-Roch theorem has a wide range of applications. For instance, we see
that every curve of genus 0 is isomorphic to P1.

Exercise 11.1.3. Let X be a curve. Suppose X has a divisor D of degree d > 0, such that
`(D) = d+ 1. Prove that X ∼= P1. Conclude that if X has genus 0, then X ∼= P1.

Hint: for the first part, begin with the case that d = 1.

The Riemann-Roch theorem also tells us that for divisors D of high enough degree, there is no
difficulty in understanding `(D):

Corollary 11.1.4. Let X be a curve, and D a divisor of degree d > 2g − 2. Then `(D) =
d+ 1− g.

Proof. If ω is a rational differential form, we know that Ω(−D) ∼= L(D(ω) − D) = 0, since
degD(ω)−D < 0. The statement then follows from the Riemann-Roch theorem. �

We can also use the Riemann-Roch theorem to study imbeddings of curves into projective
spaces. For instance, using Corollary 11.1.4 and Corollary 9.4.5, we conclude:

Corollary 11.1.5. If X is a projective nonsingular curve of genus g, and D is a divisor with
degD > 2g, then the complete linear series L(D) induces a morphism X → PdegD−g which is an
isomorphism onto its image.
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Example 11.1.6. IfX has genus 1, andD is any divisor of degree 3, then L(D) gives a morphism
X → P2

k of degree 3 which is an isomorphism onto its image. Taking into account Exercise 9.3.19,
this is the well-known fact that every curve of genus 1 can be realized as a curve in the plane of
degree 3.

Exercise 11.1.7. Let X be a projective nonsingular curve, and K the divisor of a rational
differential form on X. Show that the complete linear series L(K) is basepoint free, and that the
associated morphism ϕ : X → Pg−1 defines an isomorphism of X onto its image if and only if there
does not exist a morphism X → P1

k of degree 2.

We will see another direction of application of the Riemann-Roch theorem in the next section,
where we will treat the Riemann-Hurwitz theorem.

Remark 11.1.8. The proof of the Riemann-Roch theorem is rather difficult, but we can at least
explain why the statement is reasonable. We first observe that because `(0) = 1 and dimk Ω(0) = g
by definition, the desired statement holds for D = 0. Now, given any divisor D and P ∈ X, we
know that `(D+P )− `(D) and dimk Ω(−D)−dimk Ω(−D−P ) are both equal to 0 or 1, and what
we want to show is that one is equal to 1 if and only if the other is equal to 0 – the theorem then
follows by induction on the number of points in D (counted in terms of the absolute value of their
coefficients).

To see why this makes sense, let VP be the one-dimensional vector space described as follows:
if c is the coefficient of [P ] in D, set

VP = ({0} ∪ {f ∈ K(X)∗ : ordP (f) > −c− 1}) / ({0} ∪ {f ∈ K(X)∗ : ordP (f) > −c}) .
Then clearly we have an exact sequence

0→ L(D)→ L(D + P )→ VP ,

and this is surjective on the right exactly when `(D+P )−`(D) = 1. On the other hand, if we take the
dual of the natural injection Ω(−D−P ) ↪→ Ω(−D), we obtain a surjection Ω(−D)∗ � Ω(−D−P )∗.

We will define a map VP → Ω(−D)∗ using the idea of residues, for which we only need the
simplest case: if ω is a rational differential form with at worst a simple pole at P , then we can write
ω = gdt, where t is a local coordinate at t and ordP (g) > −1. We then set resP (ω) = (tg)(P ). In
this case, it is very straightforward to check the following basic properties:

(i) resP (ω) doesn’t depend on the choice of t;
(ii) resP (ω) is k-linear in ω;
(iii) resP (ω) = 0 if and only if ω is in fact regular at P .

Now, given f ∈ K(X)∗ with ordP (f) > −c − 1, and ω ∈ Ω(−D) nonzero, we note that fω has at
worst a simple pole at P , so resP (fω) gives an element of k. If in fact ordP (f) > −c, we get that
resP (fω) = 0, so we see that we have constructed the desired k-linear map VP → Ω(−D)∗. We see
that the resulting sequence

VP → Ω(−D)∗ → Ω(−D − P )∗ → 0

is exact: indeed, it is clear that the image from the left is contained in the kernel, but both of these
are either 0 or 1-dimensional, and we see that the map on the left is nonzero if and only if Ω(−D)
contains some ω with order exactly c at P , if and only if the second map has nonzero kernel.

We thus have a sequence

0→ L(D)→ L(D + P )→ VP → Ω(−D)∗ → Ω(−D − P )∗ → 0,

which is exact everywhere except possibly at VP , and in order to prove the Riemann-Roch theorem,
it is enough to prove exactness at VP . Now, it is not hard to see why we have a complex at VP : if
we have f ∈ L(D + P ) and ω ∈ Ω(−D), then fω is regular except possibly for a simple pole at P ,
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and then the residue theorem (for algebraic curves) implies that resP (fω) = 0. The core of the
proof of the Riemann-Roch theorem is then to prove that the image of the map to VP contains the
kernel of the map to Ω(−D)∗.

11.2. The Riemann-Hurwitz theorem

As another application of the Riemann-Roch theorem, we prove the Riemann-Hurwitz theorem
(also sometimes called the Hurwitz theorem), which relates the ramification of a separable morphism
to its degree, as well as the genus of the curves. We give some basic applications, and also use it
to prove the degree-genus formula in Exercise 11.2.6.

Theorem 11.2.1. Let ϕ : X → Y be a separable morphism of curves, of degree d. Let gX and
gY be the genus of X and Y respectively. Then we have

2gX − 2 > d(2gY − 2) +
∑
P∈X

(eP − 1),

with equality if and only if ϕ is tamely ramified.
More precisely, using Notation 10.3.7 we have

2gX − 2 = 2(2gY − 2) +
∑
P∈X

dordP ϕ >
∑
P∈X

(eP − 1),

with equality if and only if ϕ is tamely ramified.

Proof. First, in the more precise statement, the inequality and criterion for equality is imme-
diate from Proposition 10.3.5, so it suffices to prove the first equality. Let ω be a nonzero rational
differential form on Y , such that ϕ∗ω is also nonzero; this exists by separability, using Theorem
10.3.3. By Corollary 11.1.2, we know that D(ω) has degree 2gY −2, and D(ϕ∗ω) has degree 2gX−2.
We claim that

D(ϕ∗ω) = ϕ∗D(ω) +
∑
P∈X

(dordP ϕ)[P ].

The desired result then follows by taking degrees, using Corollary 9.2.3 to conclude that degϕ∗D(ω) =
ddegD(ω). Given P ∈ X, let s be a local coordinate at P , and t be a local coordinate at ϕ(P ),
and write ω = ftndt for some f ∈ O∗ϕ(P ),Y , and n is by definition the coefficient of [P ] in D(ω).

Then the coefficient of [P ] in ϕ∗ω = (ϕ∗ftn)ϕ∗dt is its order of vanishing at P , which is the sum
of ordP ϕ

∗ftn and the order of vanishing of ϕ∗dt at P . The latter is dordP ϕ by definition, while
we also have ordP ϕ

∗ftn = n ordP ϕ
∗t = ePn by definition of the ramification index. The latter is

also equal to the coefficient of [P ] in ϕ∗D(ftn), which in turn is by definition the coefficient of [P ]
in ϕ∗D(ω). This proves the claim, and the theorem. �

One immediate consequence is the following:

Corollary 11.2.2. Let ϕ : X → Y be a tamely ramified morphism of curves. Then
∑

P∈X(eP−
1) is even.

Example 11.2.3. Suppose k has characteristic p, and consider the morphism P1 → P1 given
on A1 by x 7→ x2p − x. Then one checks that this is unramified on A1, and ramified to order 2p at
∞; thus, Corollary 11.2.2 is false without the tame ramification hypothesis.

Corollary 11.2.4. Let ϕ : X → Y be a separable morphism of curves of genus gX and gY ,
respectively. Then gX > gY , and equality is only possible if gY = 0, 1 or d = 1.

Proof. For gY = 0, there is nothing to prove. For gY = 1, the righthand side of the Riemann-
Hurwitz formula is nonnegative, so gX > 1. But for gY > 1, we have gX − 1 > d(gY − 1) > gY − 1,
with equality only possible if d = 1, so we conclude the desired statement. �
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Remark 11.2.5. In fact, Corollary 11.2.4 holds for arbitrary nonconstant morphisms: one
reduces to the separable case using that any such morphism factors as a composition of Frobenius
morphisms followed by a separable morphism, and noting that the Frobenius morphisms leave the
genus unchanged.

Exercise 11.2.6. Let X = Z(F ) ⊆ P2
k be a nonsingular plane curve, with F ∈ k[X0, X1, X2]

irreducible of degree d. We will prove the degree-genus formula, that the genus g of X is given
by

g = (d− 1)(d− 2)/2.

(a) First suppose that (0, 1, 0) 6∈ X. Let ϕ : X → P1
k be the morphism induced by projection

from (0, 1, 0). Show that for any P ∈ X, we have

dordP ϕ = iP (X · Z(
∂F

∂X1
)),

with notation as in Exercise 9.3.18.
(b) Using the Riemann-Hurwitz theorem and Exercise 9.3.20, prove the degree-genus formula.

Remark 11.2.7. Given our definition of genus, it is natural to wonder how easy it is to see
that it agrees with the topological notion of genus in the case k = C. One way to verify that these
indeed agree is to prove the Riemann-Hurwitz theorem also for branched covers of surfaces, using
the topological definition of genus, and then use that every curve has a nonconstant morphism to
P1
k to conclude that the definitions of genus must coincide.

11.3. Brill-Noether theory and applications

We conclude with a description of Brill-Noether theory and its application to the study of
moduli spaces of curves. Although many of these ideas go back to the 19th century, many of the
central results in the field were proved in the 1980’s, with some questions remaining open.

A natural question to consider is the following:

Question 11.3.1. For a curve X, given d, r > 0, when does there exist a divisor D on X of
degree d with `(D) = r + 1?

Because of the close connection between divisors and maps to projective space, its answer can
be very important for understanding the geometry of X. In particular, it is very helpful to know
how X may be imbedded into projective space on the one hand, and on the other what is the
smallest degree of a nonconstant morphism X → P1

k.
As stated, the question is too hard to answer for arbitrary curves X, but it turns out if we ask

what happens on a “general” curve X of genus g, the problem becomes more approachable, and
we have the following:

Theorem 11.3.2. Given a triple (g, r, d) of nonnegative integers, every curve X of genus g has
a divisor D of degree d with `(D) > r + 1 if and only if

ρ := g − (r + 1)(r + g − d) > 0.

In fact, one can make a parameter space Br
d(X) for such divisors, and the theorem further

states that if ρ > 0, the minimal dimension of Br
d(X) as X varies over curves of genus g is equal to

ρ.
This theorem is commonly known as the “Brill-Noether” theorem; it was stated in the 1870’s

by Brill and Noether, but it took a century before a full proof was provided, due to work of
Castelnuouvo, Severi, Kempf, Kleiman, Laksov and Griffiths and Harris.

One of the striking applications of this theory was to the geometry of moduli spaces of curves.
To explain this, we begin with some simple examples.
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Any curve of genus 0 is isomorphic to P1
k, the projective line. Any curve of genus 1 can be

realized as a plane cubic, and conversely every nonsingular plane cubic is a curve of genus 1. The
genus-2 curves can all be written in the form y2 = f(x) where f(x) is a polynomial of degree 5,
without repeated roots. Curves of genus 3 break into two types: some can be written as in the
genus-2 case, with f(x) of degree 7 instead of 5, while the rest can be written as a curve of degree
4 in P2

k. The common thread among these examples is that we can write down all such curves
explicitly. In fact, in each case, we can write down a single family of one or more polynomials with
freely varying coefficients whose zero sets give all (or almost all, in a suitable sense) curves of the
given genus. This can be expressed as saying that “the moduli space Mg parametrizing curves of
genus g is unirational,” a statement which we now explain.

A variety X is unirational if there exists a map from an open subset of Ank to X which has
dense image. We will not be able to properly develop the theory of Mg, but for now we only need
to know a couple of its properties: first, it is a variety (or something of that nature) whose points
correspond to curves of genus g, and second, given a family of curves of genus g, parametrizing by
the points of a variety X, we obtain a morphism X →Mg induced by, for each point of X, taking
the corresponding curve in the family. Now, if we have a family of polynomials with freely varying
coefficients, we can think of their zero sets as a family parametrized by Ank , where n is the number
of coefficients. In the cases above, we’ll have to throw away some choices of coefficients if we want
the zero sets to give nonsingular curves, but the ‘bad’ choices will be a closed subset, so we still
obtain a family of curves parametrized by an open subset of Ank , and as a result, we get a map from
an open subset of Ank to Mg. The above examples show that Mg is unirational for g 6 3.

It is then natural to ask:

Question 11.3.3. Is Mg unirational for all g?

Famously, Severi erroneously claimed an affirmative answer to this question, but work of Harris,
Mumford and Eisenbud in the 1980’s proved that in fact, Mg is not unirational for g > 23. In
practice, this means that it is not possible to explicitly write down a “general” curve of large
genus. Remarkably, their work was based on Brill-Noether theory, as follows: it turns out that
the main thing one has to do is to write down effective divisors on Mg itself, and carry out some
computations regarding these divisors. One of the two classes of divisors considered by Eisenbud
and Harris were obtained by choosing r and d so that ρ = −1, and consisting the collection of
curves of genus g having a linear series of degree d and rank r; the second class was similar, but
slightly more complicated.

There have been further results since then, but it is not yet settled precisely which values of g
haveMg unirational, and this (along with refined variants of the same question) remains an active
subject of research.

97





APPENDIX A

Complex varieties and the analytic topology

Classical algebraic geometers studied algebraic varieties over the complex numbers. In this
setting, they didn’t have to worry about the Zariski topology and its many pathologies, because
they already had a better-behaved topology to work with: the analytic topology inherited from the
usual topology on the complex numbers themselves. In this appendix, we introduce the analytic
topology, and explore some of its basic properties. We also investigate how it interacts with
properties of varieties which we have already defined. The definitions would go through just as well
without the irreducibility hypothesis, but since we have developed abstract (pre)varieties assuming
irreducibility, we will restrict ourselves to that context.

A.1. Affine complex varieties

An affine variety X ⊆ AnC over the complex numbers is the zero set of a system of polynomials in
n variables. Unlike the Zariski topology, the analytic topology on X corresponds to our topological
intuition for what X “looks like.” We define:

Definition A.1.1. The analytic topology on X is the topology induced by the inclusion
X ↪→ AnC ∼= Cn, using the usual topology on Cn. The topological space of X endowed with the
analytic topology is denoted by Xan.

We will continue to use X to denote the variety together with its Zariski topology. Because zero
sets of (multivariate) polynomials are closed in Cn, the analytic topology is finer than the Zariski
topology: that is, a closed subset in the Zariski topology is closed in the analytic topology, but not
in general vice versa. This may be rephrased into the following conclusion:

Proposition A.1.2. The map of topological spaces Xan → X induced by the identity on points
is continuous.

Similar arguments also prove the following basic facts.

Exercise A.1.3. (a) A regular function X → C gives a continuous map Xan → C, where C is
equipped with the analytic topology.

(b) If also Y ⊆ AmC is an affine complex variety, and X → Y is a morphism, then the induced
map Xan → Yan is continuous.

(c) The analytic topology on X is an isomorphism invariant, independent of the particular
imbedding of X into affine space.

We will need one elementary result on the continuity of roots of a single-variable complex
polynomial.

Theorem A.1.4. Let f(x) = a0 + a1x + · · · + adx
d be a nonzero complex polynomial, and let

c ∈ C be a root of f . Then for any ε > 0, there exists δ > 0 such that for any b0, . . . , bd ∈ C with
|ai−bi| < δ for all i, there is a root c′ of the polynomial g(x) = b0 +b1x+ · · ·+bdx

d with |c−c′| < ε.

Proof. Let γ be a circle of radius less than ε around c, chosen so that there are no other zeros
of f(x) inside (or on) γ. Let w be the minimum value of |f(x)| on γ, which is strictly positive
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by hypothesis. For δ sufficiently small, we have that if b0, . . . , bd ∈ C satisfy |ai − bi| < δ, then
|f(x)−g(x)| < w for all x ∈ γ, where g(x) = b0 +b1x+ · · ·+bdx

d. It follows from Rouche’s theorem
that f and g have the same number of roots inside the circle γ, which gives the desired statement.

�

We can now begin to make statements about the analytic topology of varieties, at least in some
special cases.

Corollary A.1.5. Let C ⊆ A2
C be a curve in the affine plane. Then Can has no isolated points.

Proof. Since C has codimension 1 in A2
C, we know it can be expressed as the zero set of a

single polynomial, say f(x, y) ∈ C[x, y], with deg f = d. Then f(x, y) has degree at most d when
considered as a polynomial in y, and its coefficients are themselves continuous functions of x. We
may assume that f(x, y) is not constant in y, since otherwise by irreducibility of C we must have
f = x − c for some c, so C is a vertical line and certainly has no isolated points. Thus, given
(x0, y0) ∈ C, it follows from Theorem A.1.4 that for any ε > 0, there is some δ > 0 such that for
every x with |x − x0| < δ, there is some y with |y − y0| < ε and f(x, y) = 0. We conclude that
(x0, y0) is not an isolated point of C. �

A.2. The analytic topology on prevarieties

Having defined the analytic topology on affine varieties, we can now define it on prevarieties,
since they are glued together from affine varieties.

Definition A.2.1. Let X be a prevariety with atlas {ϕi : Xi → Ui}. The analytic topology
on X, denoted by Xan, is the topology such that for each i, the map (Xi)an → (Xan)|Ui induced by
ϕi is a homeomorphism.

Once again, there are some basic properties to check for the analytic topology:

Exercise A.2.2. (a) The analytic topology Xan on a prevariety X is well defined.
(b) For any U ⊆ X an affine open subset, Xan|U = Uan.
(c) The map of topological spaces Xan → X induced by the identity on points is continuous.
(d) Given another prevariety Y with atlas {ψi : Yi → Vi}, and a morphism ϕ : X → Y , the

induced map Xan → Yan is continuous.
(e) The analytic topology on a prevariety X is an isomorphism invariant.
(f) If Z ⊆ X is a subprevariety, then Zan has the subspace topology inside Xan.

Example A.2.3. Complex projective space PnC is compact in the analytic topology. Indeed, we

have the morphism An+1
C r {0} → PnC defined by (x0, . . . , xn) 7→ (x0, . . . , xn), which by Exercise

A.2.2 (d) induces a continuous map (An+1
C r {0})an → (PnC)an Inside (An+1

C r {0})an we have the

closed subset consisting of elements of norm 1; identifying An+1
C with R2n+2, this subset is precisely

the unit sphere, and hence compact. Moreover, it surjects onto (PnC)an, and since the continuous
image of a compact set is compact, we conclude that (PnC)an is compact.

As an immediate consequence of Example A.2.3 and Exercise A.2.2, we conclude:

Corollary A.2.4. If X is a projective variety, then Xan is compact.

We know that if X,Y are prevarieties, the Zariski topology on X × Y is not the product
topology. However, (again confirming that the analytic topology behaves closer to our intuition)
for the analytic topology we have:
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Exercise A.2.5. If X,Y are prevarieties, then

(X × Y )an = (Xan)× (Yan),

where the righthand side denotes the product topology of the analytic topologies on X and Y .

We then conclude:

Corollary A.2.6. If X is a variety, then Xan is Hausdorff.

Proof. For Xan to be Hausdorff is equivalent to the image ∆(Xan) in Xan×Xan to be closed.
Since X is a variety, ∆(X) is closed in X × X in the Zariski topology, so ∆(Xan) is closed in
(X ×X)an by Exercise A.2.2 (c). But (X ×X)an = Xan ×Xan by Exercise A.2.5, so we conclude
that Xan is Hausdorff by Exercise 5.3.1. �

In fact, we will see in Corollary A.3.3 that the converse also holds: if X is a complex prevariety
and Xan is Hausdorff, then X is a variety. However, this requires putting together some of the
deeper results which we have developed.

We can then generalize Corollary A.1.5 as follows:

Corollary A.2.7. Let X be a complex one-dimensional prevariety. Then Xan has no isolated
points.

Proof. We prove the statement in several steps. We first prove it for projective nonsingular
curves X ⊆ PnC. Given P ∈ X, we know by Proposition 9.5.1 that there exists a morphism
ϕ : X → P2

C such that ϕ−1(ϕ(P )) = {P}. Then ϕ(X) is a projective (possibly singular) curve. If
P were isolated in Xan, then its complement would be a closed subset, hence compact by Corollary
A.2.4. Then, by Corollary A.2.6 we would have ϕ(X r P ) = ϕ(X) r ϕ(P ) is closed in ϕ(X), so
that ϕ(P ) is isolated in ϕ(X)an. But if U ∼= A2

C is an open neighborhood of ϕ(P ), then ϕ(X) ∩ U
is an affine plane curve, and by Corollary A.1.5 we conclude that ϕ(P ) is not an isolated point of
(ϕ(X) ∩ U)an. We conclude that P could not have been isolated in Xan.

The case of an arbitrary nonsingular curve X then follows, since we know that X can be realized
as a Zariski open subset of some nonsingular projective X̄, and X̄ r X consists of finitely many
points, so if X̄an has no isolated points then Xan cannot have any isolated points either. Note that
an alternate proof of the statement for nonsingular curves is given by Corollary A.4.1 below.

We conclude the statement of the corollary for an arbitrary curve X by considering the nor-

malization morphism ν : X̃ → X; this is a surjective morphism, with X̃ a nonsingular curve. For

any P ∈ X, we have ν−1(P ) a closed set, hence a finite set of points, which cannot be open in X̃an

since we know it has no isolated points. Thus {P} is not an open subset of Xan, so Xan does not
have any isolated points.

Finally, if X is any one-dimensional prevariety, every point has an affine open neighborhood
which is a curve, so applying the previous case we conclude that Xan has no isolated points. �

A.3. Fundamental results

There are a number of basic and important facts relating the ideas we have introduced for
varieties to standard topological properties applied to the analytic topology. The main ingredient
for proving these statements is the following:

Theorem A.3.1. Let X be a prevariety, and U a Zariski open subset. Then U is dense in Xan.

Proof. We first observe that the statement of the theorem in the case that X is a curve is
precisely Corollary A.2.7. Now, for any X, given P ∈ X r U , by Lemma 8.3.5 there exists a curve
Z in X with P ∈ Z and Z ∩U 6= ∅. By Exercise A.2.2 (f), we have Zan = (Xan)|Z , and P is in the
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(analytic) closure of Zan ∩ U since we already that the result hold for curves. It thus follows that
P is in the closure of U in Xan, and we conclude that U is dense, as asserted. �

The theorem is particularly powerful in combination with Chevalley’s theorem, which together
yield:

Corollary A.3.2. Let ϕ : X → Y be a morphism of prevarieties, and suppose ϕ(X) is closed
in the analytic topology. Then ϕ(X) is closed in the Zariski topology.

Proof. Let Z be the Zariski closure of ϕ(X) in Y . By Theorem 8.1.2, we have that ϕ(X)
contains a Zariski open subset U of Z. By Theorem A.3.1, we have that U is dense in Zan, so we
conclude that ϕ(X) = Z, and ϕ(X) is Zariski-closed, as desired. �

We can now prove two basic statements on the analytic topology.

Corollary A.3.3. A complex prevariety X is a variety if and only if Xan is Hausdorff.

Proof. One direction was proved already in Corollary A.2.6. Conversely, suppose Xan is
Hausdorff, so that the diagonal ∆(X) is closed in the analytic topology. Then by Corollary A.3.2,
we have ∆(X) closed also in the Zariski topology, so X is a variety. �

Corollary A.3.4. A complex variety X is complete if and only if Xan is compact.

Proof. First suppose that Xan is compact. We wish to show that for every prevariety Y , the
projection morphism p2 : X × Y → Y is closed (in the Zariski topology). Since Xan is compact,
Exercise 8.2.1 implies that Xan×Yan → Yan is closed, and by Exercise A.2.5 Xan×Yan = (X×Y )an.
Let Z ⊆ X × Y be Zariski closed. Then it is also closed in (X × Y )an, so p2(Z) in Yan is closed.
But it follows from Corollary A.3.2 that p2(Z) is closed in Y the Zariski topology, which means
that X is complete.

For the converse, first suppose that X is projective. Then Xan is closed subset of (PnC)an, and
is thus compact by Example A.2.3. Now suppose that X is complete. Then by Chow’s Lemma
(Exercise 8.3.8), there is a surjective morphism X ′ → X for some projective variety X ′. Thus, Xan

is the continuous image of the compact space (X ′)an, and is therefore compact. �

A.4. Nonsingularity and complex manifolds

In order to conclude our study of the complex topology, we will need to know an important and
basic fact: a nonsingular complex curve has the natural structure of a (one-dimensional) complex
manifold. We will prove the more general statement for complex varieties of any dimension, as a
corollary of the Jacobian criterion.

Corollary A.4.1. Let X be a complex prevariety, and P ∈ X a nonsingular point. If
(t1, . . . , td) is a system of local coordinates for X at P , there exists a neighborhood U of P in
Xan on which all the ti induce sections of OX , and such that the induced map U → Cd defines a
homeomorphism of Uan onto an open neighborhood V of the origin in Cd, with every element of
OX corresponding to an analytic function on the image of its domain of definition in V .

In particular, if X is a nonsingular variety of dimension d, then Xan has the structure of a
complex manifold of dimension d, with sections of OX giving rise to analytic functions on Xan.

Proof. The first statement being local on X, we may assume that X is affine and the ti are
global sections of OX . Then for some n we can extend the ti to a set of n generators of A(X)
over C, and let I be the corresponding ideal of definition for X in AnC. Reindexing and applying
Corollary 4.3.2 and Exercise 4.3.6, we conclude that I is generated in a neighborhood of P by some

f1, . . . , fn−d, and that
(
∂fi
∂tj

)
16i,j6n−d

is invertible at P . By the implicit function theorem, there

102



exist neighborhoods U of P in Xan, V of the origin in Cd and an analytic function g : V → Cn−d
such that id×g : V → Cn maps onto U and is inverse to the projection map Cn → Cd. This gives
the desired homeomorphism. In addition, g expresses all the ti as analytic functions of t1, . . . , td,
and since sections of OX are expressed locally as rational functions in the ti with denominators
nonvanishing on their domain of definition, we conclude that they are analytic on their domain of
definitions.

For the final statement, if X is a variety Xan is Hausdorff by Corollary A.2.6. The first statement
gives us a complex atlas on an open cover of Xan, and to conclude that the induced transition
maps are analytic, we need only use that algebraic isomorphisms are analytic under the above
correspondence, which follows easily from the fact that sections of OX yield analytic functions.

�

Remark A.4.2. Recall that every complex manifold is naturally oriented. Indeed, Cd inherits
an orientation from C, and this orientation is necessarily preserved under holomorphic transition
maps, so local orientations from charts induce global orientation on the manifold.

A.5. Connectedness

We conclude our discussion of the complex topology with the following foundational theorem:

Theorem A.5.1. Let X be a prevariety over C. Then X is connected in the Zariski topology.

As we shall see, this theorem is quite a bit deeper than the corresponding statements for
properness and separatedness. This difficulty should perhaps not be surprising: if we consider the
analogous statement over R, it remains true that a variety is Hausdorff in the real analytic topology,
and a complete variety is compact, but it is not true that a variety is connected in the real analytic
topology, as we see already with hyperbolas in the affine plane, or elliptic curves in the projective
plane. Nonetheless, with the tools we have developed the proof of the theorem will not be very
difficult.

Proof. We begin by proving that the desired result holds in the case that X is a nonsingular
projective curve. Given P ∈ X, the Riemann-Roch theorem implies that there exists a (noncon-
stant) rational function f with a pole only at P . We know by Corollary A.3.4 and Corollary A.4.1
that Xan is a compact one-dimensional complex manifold, and f (being a quotient of analytic func-
tions) induces a meromorphic function on Xan. If Xan is disconnected, let C ⊆ Xan be a connected
component not containing P . Then f is analytic on C, so the maximum modulus principle implies
that f is constant on C. But then subtracting this constant we obtain a non-zero rational function
with infinitely many zeroes on X, which is impossible. Thus, Xan is connected.

Next, if X is an arbitrary nonsingular curve, we know that it may be imbedded as an open
subset of a nonsingular projective curve X. We now know that Xan is a connected complex manifold
of dimension 1. But the complement of Xan in Xan is a finite set of points, so we conclude that
Xan is likewise connected, as desired.

Now suppose that X is any curve, and let X̃ → X be the normalization. Then we have shown

that X̃an is connected, but X̃an surjects onto Xan, so we conclude that Xan is likewise connected.
Finally, if X is any one-dimensional prevariety, and U ⊆ X a nonempty affine open subset,

then U is a curve, so Uan is connected. On the other hand, by Corollary A.2.7, Uan is dense in Xan,
so we conclude that Xan is likewise connected.

For the higher-dimensional case, suppose that X is arbitrary. By Theorem 8.4.10, any two
points of X are connected by a connected chain of closed one-dimensional subprevarieties. Since
we know each of the latter is connected in the analytic topology, it follows that Xan is connected,
as desired. �
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Remark A.5.2. Under our running irreducibility hypothesis, X is always connected. However,
if we had developed the analytic topology without any irreducibility hypothesis, then we could
prove with much the same argument that in fact X is connected if and only if Xan is connected.
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