ELEC-E4450 Antennas (5 ECTS)

ANTENNAS AND PROPA

27 February – 4 June 2024

<u>Jari</u> Holopainen, <u>Pyry</u> Kiviharju

Aalto University School of Electrical Engineering

What is your <u>current</u> study programme & major?

- 1. microwave engineering major of the ELE master's programme
- 2. other major of the ELE master's programme
- 3. other master's programme of Aalto University
- 4. EST bachelor's studies of Aalto University
- 5. doctoral studies in Aalto University (any school)
- 6. ERASMUS exchange studies
- 7. Other

Pre-knowledge of the course

1. bachelor's level engineering mathematics

e.g., algebra, trigonometry, linear algebra, complex numbers, complex vectors, vector calculus, differential equations etc.

2. circuit theory

e.g., ELEC-C4110 Piirianalyysi I and ELEC-C4120 Piirianalyysi II or ELEC-E3120 Analysis and design of electronic circuits

3. electromagnetic field theory

> e.g., ELEC-C4140 Kenttäteoria or ELEC-E4130 Electromagnetic fields

4. microwave engineering

➢ e.g., ELEC-E4420 Microwave engineering I

5. some mathematical software, for instance, Matlab and Wolfram Mathematica

e.g., ELEC-C4140 Matematiikkaohjelmistot or ELEC-E9111 Mathematical computing

6. (EM and circuit simulations)

▶ e.g., in Period III in the course ELEC-E4410 *Electromagnetic and circuit simulations*

You need a book for studying!

- Harish Sachidananda: Antennas and Wave Propagation
 - e-book available through lib.aalto.fi
- Other famous/ suitable basic antenna books are
 - Stutzman: Antenna Theory and Design
 - Balanis: Antenna Theory: Analysis and Design
 - Kraus: Antennas for All Applications

Course content and preliminary schedules

- Today: introduction of the course and the pre-knowledge quiz
- Topic 1: Electromagnetic radiation (Ch. 1), related sessions 1.-8.3.
- Topic 2: Antenna characteristics (Ch. 2), related sessions 12.-22.3.
- Topic 3: Wire antennas (Ch. 3), related sessions 26.3.-12.4.
 - Spring break 28.3.-3.4., Evaluation week of Period IV 15.-19.4.2024
- Topic 4: Antenna arrays (Ch. 5), related sessions 23.4.-3.5.
- Topic 5: Aperture antennas (Ch. 4), related sessions 7.-17.5.
- Topic 6 Antenna measurements (Ch. 10), related sessions 21.-28.5.
- Final quiz, Fri 31.5.

Intended learning outcomes

After successful completion of the course,

- The student is able to **solve** electromagnetic fields and basic antenna parameters for simple microwave radiators.
- The student is able to **explain** fundamental antenna concepts and **calculate** common parameters used to describe their properties.
- The student can **analyse** the effect of the antenna on the performance of radio communication systems.
- The student can **describe** the operation principles of most common antenna types, such as wire antennas, array antennas, and aperture antennas. They can **compute** the far-field radiation due to known current distributions.
- The student has a readiness to **perform** basic antenna measurements such as the antenna impedance and radiation pattern measurements. The student can **analyse** the measurement results and estimate the error sources.

Taking the course requires active participation and learning

- Preliminary tasks related to each topic
 - Returned in MyCourses before Tuesday interactive lectures (first time Tue March 5)
 - > The main idea is that you are *prepared* for the lecture
- Interactive lectures Tuesdays at 12-14
 - "Interactive" means that there are activating tasks integrated to the session
- Exercise problems, we will inform further details later
 - Friday session is reserved for exercises and their return
 - > There will be 15-20 exercise problems + measurement assignment

• Final quiz tentatively on Tuesday, 31 May at 12-14

Pen & paper quiz that is "do you understand the basics" type – i.e., there are no long mathematical calculations or design problems in the final exam.

Continuous assessment is in use

- Preliminary tasks (6 times, first time on March 5) affect 15%
 > Returned in MyCourses
- Exercise problems (to be decided 15 ... 20 problems) affect 50%
 ➢ Each problem graded 0−4 points
- Measurement assignment affects 20%
 > Reporting and analyzing measurement results
- Final exam/quiz (tentatively on Tuesday 31 May at 12-14) affects 15%
- The grading of the course is **individual**, any misconduct of academic integrity is forbidden and will be handled according to the official procedure.
- Tentative grading plan: 50.0% of the maximum points \rightarrow passed (1), 60.0% \rightarrow 2, 70.0% \rightarrow 3, 80.0% \rightarrow 4, 90.0% \rightarrow 5

Maxwell predicted the existence of electromagnetic waves purely based on the equations

Maxwell noticed on "paper" that these "new" waves propagate at the same speed as the visible light

Hertz proved the existence of EM waves in 1887 with a spark-cap transmitter

"This is just an experiment that proves Maestro Maxwell was right — we just have these mysterious electromagnetic waves that we cannot see with the naked eye."

Applications? "nothing, I guess."

Karlsruhe, Germany

Alternating current in a wire induces radio waves that propagate to the surrounding free space

Microstrip patch antennas radiate from open ends

Antenna arrays allow synthetizing narrowbeam radiation

Conceptual view of a modern smartphone

Source: Quangang Zhen's doctoral thesis, "Multi-band 5G antenna designs for smartphones", 2024.