
General

Python Cheat Sheet
just the basics

Created By: Arianne Colton and Sean Chen

•	

Data Structures

Note :
•	 'start' index is included, but 'stop' index is NOT.
•	 start/stop can be omitted in which they default to

the start/end.

§ Application of 'step' :
Take every other element list1[::2]

Reverse a string str1[::-1]

DICT (HASH MAP)

Create Dict dict1 = {'key1' : 'value1' , 2
:[3, 2]}

Create Dict from
Sequence

dict(zip(keyList,
valueList))

Get/Set/Insert Element dict1['key1']*
dict1['key1'] = 'newValue'

Get with Default Value dict1.get('key1', defaultValue) **
Check if Key Exists 'key1' in dict1
Delete Element del dict1['key1']
Get Key List dict1.keys() ***
Get Value List dict1.values() ***

Update Values
dict1.update(dict2)

dict1 values are replaced by dict2

* 'KeyError' exception if the key does not exist.
** 'get()' by default (aka no 'defaultValue') will

return 'None' if the key does not exist.
*** Returns the lists of keys and values in the same

order. However, the order is not any particular
order, aka it is most likely not sorted.

Valid dict key types
•	 Keys have to be immutable like scalar types (int,

float, string) or tuples (all the objects in the tuple
need to be immutable too)

•	 The technical term here is 'hashability',
check whether an object is hashable with the
hash('this is string'), hash([1, 2])
- this would fail.

SET
•	 A set is an unordered collection of UNIQUE

elements.
•	 You can think of them like dicts but keys only.

Create Set set([3, 6, 3]) or
{3, 6, 3}

Test Subset set1.issubset (set2)
Test Superset set1.issuperset (set2)
Test sets have same
content set1 == set2

•	 Set operations :
Union(aka 'or') set1 | set2

Intersection (aka 'and') set1 & set2
Difference set1 - set2

Symmetric Difference (aka 'xor') set1 ^ set2

Create Tuple tup1 = 4, 5, 6 or
tup1 = (6,7,8)

Create Nested Tuple tup1 = (4,5,6), (7,8)
Convert Sequence or
Iterator to Tuple tuple([1, 0, 2])

Concatenate Tuples tup1 + tup2

Unpack Tuple a, b, c = tup1

Application of Tuple
Swap variables b, a = a, b

LIST
One dimensional, variable length, mutable (i.e.
contents can be modified) sequence of Python objects
of ANY type.

Create List list1 = [1, 'a', 3] or
list1 = list(tup1)

Concatenate Lists* list1 + list2 or
list1.extend(list2)

Append to End of List list1.append('b')
Insert to Specific
Position

list1.insert(posIdx,
'b') **

Inverse of Insert valueAtIdx = list1.pop(posIdx)
Remove First Value
from List list1.remove('a')

Check Membership 3 in list1 => True ***
Sort List list1.sort()

Sort with User-
Supplied Function

list1.sort(key = len)

sort by length

* List concatenation using '+' is expensive since
a new list must be created and objects copied
over. Thus, extend() is preferable.

** Insert is computationally expensive compared
with append.

*** Checking that a list contains a value is lot slower
than dicts and sets as Python makes a linear
scan where others (based on hash tables) in
constant time.

Built-in 'bisect module‡
•	 Implements binary search and insertion into a

sorted list
•	 'bisect.bisect' finds the location, where 'bisect.

insort' actually inserts into that location.

‡ WARNING : bisect module functions do not
check whether the list is sorted, doing so would
be computationally expensive. Thus, using them
in an unsorted list will succeed without error but
may lead to incorrect results.

SLICING FOR SEQUENCE TYPES†
† Sequence types include 'str', 'array', 'tuple', 'list', etc.

Notation list1[start:stop]

list1[start:stop:step]
(If step is used) §

Scalar Types

* str(), bool(), int() and float() are also explicit type
 cast functions.

5.	 NoneType(None) - Python 'null' value (ONLY
one instance of None object exists)
•	 None is not a reserved keyword but rather a

unique instance of 'NoneType'
•	 None is common default value for optional

function arguments :

def func1(a, b, c = None)

•	 Common usage of None :
 if variable is None :

6.	 datetime - built-in python 'datetime' module
provides 'datetime', 'date', 'time' types.
•	 'datetime' combines information stored in 'date'

and 'time'

Create datetime
from String

dt1 = datetime.
strptime('20091031',
'%Y%m%d')

Get 'date' object dt1.date()

Get 'time' object dt1.time()
Format datetime
to String

dt1.strftime('%m/%d/%Y
%H:%M')

Change Field
Value

dt2 = dt1.replace(minute =
0, second = 30)

Get Difference
diff = dt1 - dt2

diff is a 'datetime.timedelta' object

Note : Most objects in Python are mutable except
for 'strings' and 'tuples'

Scalar Types

Note : All non-Get function call i.e. list1.sort()
examples below are in-place (without creating a new
object) operations unless noted otherwise.

TUPLE
One dimensional, fixed-length, immutable sequence
of Python objects of ANY type.

Data Structures

•	 Python is case sensitive
•	 Python index starts from 0
•	 Python uses whitespace (tabs or spaces) to indent

code instead of using braces.

HELP

Help Home Page help()
Function Help help(str.replace)
Module Help help(re)

MODULE (AKA LIBRARY)
Python module is simply a '.py' file
List Module Contents dir(module1)

Load Module import module1 *
Call Function from Module module1.func1()

* import statement creates a new namespace and
executes all the statements in the associated .py
file within that namespace. If you want to load the
module's content into current namespace, use 'from
module1 import * '

Check data type : type(variable)

SIX COMMONLY USED DATA TYPES
1.	 int/long* - Large int automatically converts to long
2.	 float* - 64 bits, there is no 'double' type
3.	 bool* - True or False
4.	 str* - ASCII valued in Python 2.x and Unicode in Python 3

•	 String can be in single/double/triple quotes
•	 String is a sequence of characters, thus can be

treated like other sequences
•	 Special character can be done via \ or preface

with r
str1 = r'this\f?ff'

•	 String formatting can be done in a number of ways
template = '%.2f %s haha $%d';
str1 = template % (4.88, 'hola', 2)

Exception Handling

1.	 Basic Form :
try:
 ..
except ValueError as e:
 print e
except (TypeError, AnotherError):
 ..
except:
 ..
finally:
 .. # clean up, e.g. close db

2.	 Raise Exception Manually
raise AssertionError # assertion failed
raise SystemExit # request program exit
raise RuntimeError('Error message :
..')

Functions

Created by Arianne Colton and Sean Chen
data.scientist.info@gmail.com

Based on content from
'Python for Data Analysis' by Wes McKinney

Updated: May 3, 2016

Control and Flow

1.	 Operators for conditions in 'if else' :

Check if two variables are
same object var1 is var2

. . . are different object var1 is not var2

Check if two variables have
same value

var1 == var2

WARNING : Use 'and', 'or', 'not' operators for
compound conditions, not &&, ||, !.

2.	 Common usage of 'for' operator :
Iterating over a collection (i.e. list
or tuple) or an iterator

for element in
iterator :

. . . If elements are sequences,
can be 'unpack'

for a, b, c in
iterator :

3.	 'pass' - no-op statement. Used in blocks where no
action is to be taken.

4.	 Ternary Expression - aka less verbose 'if else'
•	 Basic Form :

value = true-expr if condition
else false-expr

5.	 No switch/case statement, use if/elif instead.

•	 Application :
sorted(set('abc bcd')) => [' ',
'a', 'b', 'c', 'd']

returns sorted unique characters

3.	 Zip pairs up elements of a number of lists, tuples or
other sequences to create a list of tuples :
zip(seq1, seq2) =>

[('seq1_1', 'seq2_1'), (..), ..]

•	 Zip can take arbitrary number of sequences.
However, the number of elements it produces is
determined by the 'shortest' sequence.

•	 Application : Simultaneously iterating over multiple
sequences :

for i, (a, b) in

enumerate(zip(seq1, seq2)):

•	 Unzip - another way to think about this is
converting a list of rows to a list of columns.

seq1, seq2 = zip(*zipOutput)

4.	 Reversed iterates over the elements of a sequence
in reverse order.

list(reversed(range(10))) *

* reversed() returns the iterator, list() makes
it a list.

Syntactic sugar that makes code easier to read and write
1.	 List comprehensions

•	 Concisely form a new list by filtering the elements
of a collection and transforming the elements
passing the filter in one concise expression.

•	 Basic form :

[expr for val in collection if condition]

A shortcut for :
result = []
for val in collection:
 if condition:
 result.append(expr)

The filter condition can be omitted, leaving only the
expression.

2.	 Dict Comprehension
•	 Basic form :

{key-expr : value-expr for value in
collection if condition}

3.	 Set Comprehension
•	 Basic form : same as List Comprehension except

with curly braces instead of []

4.	 Nested list Comprehensions
•	 Basic form :

[expr for val in collection for
innerVal in val if condition]

List, Set and Dict
Comprehansions

Python is pass by reference, function arguments
are passed by reference.

•	 Basic Form :
def func1(posArg1, keywordArg1 =
1, ..):

Note :
•	 Keyword arguments MUST follow positional

arguments.
•	 Python by default is NOT "lazy evaluation",

expressions are evaluated immediately.

•	 Function Call Mechanism :
1.	 All functions are local to the module level

scope. See 'Module' section.
2.	 Internally, arguments are packed into a tuple

and dict, function receives a tuple 'args' and
dict 'kwargs' and internally unpack.

•	 Common usage of 'Functions are objects' :
def func1(ops = [str.strip, user_
define_func, ..], ..):
 for function in ops:
	 value = function(value)

RETURN VALUES
•	 None is returned if end of function is reached

without encountering a return statement.
•	 Multiple values return via ONE tuple object

return (value1, value2)
value1, value2 = func1(..)

ANONYMOUS (AKA LAMBDA) FUNCTIONS

•	 What is Anonymous function?
A simple function consisting of a single statement.
lambda x : x * 2
def func1(x) : return x * 2

•	 Application of lambda functions : 'curring' aka
deriving new functions from existing ones by
partial argument application.
ma60 = lambda x : pd.rolling_mean(x,
60)

USEFUL FUNCTIONS (FOR DATA STRUCTURES)

1.	 Enumerate returns a sequence (i, value) tuples
where i is the index of current item.
for i, value in enumerate(collection):

•	 Application : Create a dict mapping of value
of a sequence (assumed to be unique) to their
locations in the sequence.

2.	 Sorted returns a new sorted list from any sequence
sorted([2, 1, 3]) => [1, 2, 3]

1.	 'object' is the root of all Python types
2.	 Everything (number, string, function, class, module,

etc.) is an object, each object has a 'type'. Object
variable is a pointer to its location in memory.

3.	 All objects are reference-counted.
sys.getrefcount(5) => x

a = 5, b = a

This creates a 'reference' to the object on the
right side of =, thus both a and b point to 5
sys.getrefcount(5) => x + 2

del(a); sys.getrefcount(5) => x + 1

4.	 Class Basic Form :
class MyObject(object):

 # 'self' is equivalent of 'this' in Java/C++
 def __init__(self, name):

 self.name = name

 def memberFunc1(self, arg1):

 ..

 @staticmethod

 def classFunc2(arg1):

 ..

obj1 = MyObject('name1')

obj1.memberFunc1('a')

MyObject.classFunc2('b')

5.	 Useful interactive tool :

dir(variable1) # list all methods available on
the object

Object-Oriented
Programming

Common String
operations

Concatenate
List/Tuple with
Separator

', '.join(['v1', 'v2',
'v3']) => 'v1, v2, v3'

Format String

string1 = 'My name is {0}
{name}'

newString1 = string1.
format('Sean', name =
'Chen')

Split String
sep = '-';
stringList1 =
string1.split(sep)

Get Substring start = 1; string1[start:8]

String Padding
with Zeros

month = '5';
month.zfill(2) => '05'
month = '12';
month.zfill(2) => '12'

