ANT 2024 Exercise session 1

Matilde Costa, Aalto University matilde.costa@aalto.fi

February 29, 2024

References

- Stewart, I. and Tall, D. Algebraic Number Theory and Fermat's Last Theorem (Third Edition). Chapman and Hall. (pp. 22–34)
- Hungerford, T. W. Algebra. Vol. 73. Springer Science & Business Media (in case you are interested in reviewing some algebra)

Table of Contents

2 1.5 Modules

3 1.6 Free abelian groups

Permutation of polynomials

Let *R* be a ring and consider the ring of polynomials $R[t_1, \ldots, t_n]$. Denote by S_n the group of permutations of $\{1, 2, \ldots, n\}$. For $f \in R[t_1, \ldots, t_1]$ and $\pi \in S_n$, we define

$$f^{\pi}(t_1,\ldots,t_n)\coloneqq f(t_{\pi(1),\ldots,\pi(n)}).$$

Example

Let $f(t_1, t_2, t_2) = t_1 + t_2 t_3$ and $\pi = (123)$. Then, $f^{\pi}(t_1, t_2, t_n) = t_2 + t_1 t_3$.

Symmetric polynomials

We say $f \in R[t_1, \ldots, t_n]$ is symmetric if $f^{\pi} = f$ for all $\pi \in S_n$.

Example

- $f(t_1,...,t_n) = t_1 + ... + t_n$ is symmetric.
- The previous example, $f(t_1, t_2, t_3) = t_1 + t_2 t_3$, is not symmetric since $f^{\pi} = t_2 + t_1 t_3 \neq t_1 + t_2 t_3$.

Elementary symmetric polynomials

Let $n \ge 1$. For every $1 \le r \le n$, the *elementary symmetric* polynomial $s_r(t_1, \ldots, t_n)$ is the sum of all possible **distinct** products of r **distinct** t_i 's:

$$s_{1}(t_{1},...,t_{n}) = t_{1} + ... + t_{n}$$

$$s_{2}(t_{1},...,t_{n}) = t_{1}t_{2} + t_{1}t_{3} + ... + t_{1}t_{n} + t_{2}t_{3} + ... + t_{n-1}t_{n}$$

$$\vdots$$

$$s_{n}(t_{1},...,t_{n}) = t_{1}...t_{n}$$

These are called elementary for a reason: every symmetric polynomial can be written in terms of the elementary symmetric polynomials.

Elementary symmetric polynomials

Theorem (Theorem 1.12)

Let R be a ring. Every symmetric polynomial $p \in R[t_1, ..., t_n]$ can be written as a polynomial in $R[s_1, ..., s_n]$.

Sketch of proof.

 $p \in R[t_1, \ldots, t_n] \implies$ monomials of p are of the form $at_1^{\alpha_1} \ldots t_n^{\alpha_n}$.

- 1. Order the monomials of p by a lexicographic order.
- 2. Since p is symmetric, the leading term of p (under the lexicographic order) is of the form $at_1^{\alpha_1} \dots t_n^{\alpha_n}$ with $\alpha_1 \ge \dots \ge \alpha_n$.
- 3. The leading term of $as_1^{k_1} \dots s_n^{k_n} = a(t_1 + \dots + t_n)^{k_1} \dots (t_1 \dots t_n)^{k_n}$ is $at_1^{k_1 + \dots + k_n} t_2^{k_2 + \dots + k_n} \dots t_n^{k_n}$ for all positive integers k_1, \dots, k_n .

Elementary symmetric polynomials

- 4. If we put $k_1 = \alpha_1 \alpha_2, \ldots, k_{n-1} = \alpha_{n-1} \alpha_n, k_n = \alpha_n$, the leading term of p is equal to the leading term of $as_1^{k_1} \ldots s_n^{k_n}$.
- 5. So consider $p_1 = p as_1^{k_1} \dots s_n^{k_n}$ with $k_1 = \alpha_1 \alpha_2, \dots, k_{n-1} = \alpha_{n-1} \alpha_n, k_n = \alpha_n$. The leading term of p is canceled and we get a smaller degree symmetric polynomial $p_1 \in R[t_1, \dots, t_n]$.
- 6. Apply step 5 to p_1 . After a finite amount m of iterations we get $p_{m+1} = p_m g_m = 0$ for some $g_m \in R[s_1, \ldots, s_n]$.

 $p_m - g_m = 0 \implies p_m \in R[s_1, \ldots, s_n]$. Note that $p_{j-1} = p_j + g_{j-1}$ with $g_{m-1} \in R[s_1, \ldots, s_n]$ so by reverse induction we conclude $p \in R[s_1, \ldots, s_n]$.

 $\frac{E_{xample}}{P(t_1, t_2, t_3)} = t_2^2 t_3 + t_1 t_2^2 + t_1^2 t_2 + t_2 t_3^2 + t_1 t_3^2 + t_1^2 t_3}$

- 1. Lexicographic order $p(t_1, t_2, t_3) = t_1^2 t_2 + t_1^2 t_3 + t_1 t_2^2 + t_1 t_3^2 + t_2^2 t_3 + t_2 t_3^2$
- 2. leading term of $p: t_1^2 t_2$ $n=3, \ x_1=2, \ x_2=1, \ x_3=0$ 3. $s_1^{k_1} s_2^{k_2} s_3^{k_3} = (t_1+t_2+t_3)^k (t_1t_2+t_1t_3+t_2t_3)^k (t_1t_2t_3)^k = t_1^{k_1+k_2+k_3} t_2^{k_2+k_3} t_3^{k_3} + \dots$ leading term 4. $\alpha_1 = 2, \ \alpha_2 = 1, \ \alpha_3 = 0 \Rightarrow k_1 = 2 - 1 = 1, \ k_2 = 1 - 0 = 1, \ k_3 = 0$ $s_1 s_2 = (t_1 + t_2 + t_3) (t_1 t_2 + t_1 t_3 + t_2 t_3)^k = t_1^2 t_2 + t_1^2 t_3 + t_1 t_2^2 + 3 t_1 t_2 t_3 + t_2^2 t_3 + t_2 t_3^2$ $= t_1^2 t_2 + t_1^2 t_3 + t_1 t_2^2 + t_1 t_3^2 + 3 t_1 t_2 t_3 + t_2^2 t_3 + t_2 t_3^2$
- 5. $p_1 = p s_1 s_2 = -3t_1 t_2 t_3$ Charly, $p_1 = -3s_3$, so we conclude already $p = p_1 + s_1 s_2 = s_1 s_2 - 3s_3 \in R[s_1, s_2, s_3].$

Elementary symmetric polynomials

The next corollary is important (for instance, to show that the field polynomial has coefficients in \mathbb{Q} , Theorem 2.5.).

Corollary (Corollary 1.14)

Consider a field extension L: K and $p \in K[t]$ such that all of its zeros $\theta_1, \ldots, \theta_n$ are in L. If $h(t_1, \ldots, t_n) \in K[t_1, \ldots, t_n]$ is a symmetric polynomial, then $h(\theta_1, \ldots, \theta_n) \in K$.

Moral: Every symmetric expression on the roots of a polynomial $p \in K[t]$ is in K.

Proof of Corollary 1.14

$$p(t) = a_n t^n + ... + a_0 \in k[t]$$

= a_n (t - 0,) ... (t - 0n), with 0; eL
(check this) = a_n (t^n - s_1(0,...,0n) t^{n-1} + ... + (-i)^n s_n(0,...,0n))

$$\Rightarrow S_1(\Theta_{1,...},\Theta_n) = -a_{n-1} \in k,$$

$$S_2(\Theta_{1,...},\Theta_n) = a_{n-2} \in k,...$$

$$S_n(\Theta_{1,...},\Theta_n) = (-i)^n a_0 \in k$$

By theorem 1.12, $h(t_1, ..., t_n) = g(s_1, ..., s_n)$ for some $g \in R[s_1, ..., s_n]$. Hence,

 $h(0_1,...,0_n) = g(s_1(0_1,...,0_n),...,s_n(0_1,...,0_n)) \in k$ since the coefficients of g are in k and $s_i(0_1,...,0_n) \in k$ $\forall 1 \leq i \leq n$.

Elementary symmetric polynomials

Example

Consider the field extension $\mathbb{Q}(\omega, \sqrt[3]{2}) : \mathbb{Q}$, where $\omega = e^{2\pi i/3}$. Let $p(t) = t^3 - 2 \in \mathbb{Q}[t]$. The roots of p are

$$\theta_1 = \sqrt[3]{2}, \quad \theta_2 = \omega \sqrt[3]{2}, \quad \theta_3 = \omega^2 \sqrt[3]{2}.$$

By Corollary 1.14, we get that for instance

$$\theta_1\theta_2\theta_3 - \theta_1\theta_2 - \theta_1\theta_3 - \theta_2\theta_3 \in \mathbb{Q}.$$

Table of Contents

1.4 Symmetric polynomials

3 1.6 Free abelian groups

Modules

Modules are a generalization of vector spaces.

Definition (R-module)

Let R be a ring. An R-module (or module if R is clear) M is

- an abelian group (M, +) together with
- a function $\alpha : R \times M \rightarrow M$, $\alpha(r, m) = rm$, satisfying

(a)
$$(r+s)m = rm + sm \quad \forall r, s \in R, \forall m \in M$$

(b) $r(m+n) = rm + rn \quad \forall r \in R, \forall m, n \in M$
(c) $r(sm) = (rs)m \quad \forall r, s \in R, \forall m \in M$

(d)
$$1m = m \quad \forall m \in M$$
.

Function α is called an *R*-action on *M*.

If R is a field then M is an R-module if and only if it is a vector space over R (check this!).

Submodules and quotient modules

Definition (R-submodule)

Let M be an R-module. N is an R-submodule of M if

- $(N, +) \leq (M, +)$
- for all $n \in N$ and $r \in R$, $\alpha(r, n) = rn \in N$.

Let M be an R-module and N be an R-submodule of M. The quotient group M/N has a structure of R-module with R-action

$$r(N+m) \coloneqq N+rm.$$

Some facts about modules

- **1** Suppose *R* is a subring of *S*. Then *S* is an *R*-module with action *rs*, for all $r \in R$ and $s \in S$.
- ② Suppose *I* is an ideal of the ring *R*. Then *I* is an *R*-module with action *ri* for all *r* ∈ *R* and *i* ∈ *I*.
- Suppose J ⊆ I are ideals of R. Then the quotient I/J is an R-module with action r(J + i) := J + ri.

Submodule generated by a set

Let *M* be an *R*-module. Given $X \subseteq M$ and $Y \subseteq R$,

$$YX \coloneqq \left\{\sum_{i=1}^m y_i x_i : x_i \in X, y_i \in Y, m \ge 1\right\}.$$

The *R*-submodule of *M* generated by *X* is the smallest *R*-submodule of *M* containing *X*. We denote it by $\langle X \rangle_R$. **Fact:** $\langle X \rangle_R = RX$.

lf

$$N = \langle x_1, \ldots, x_n \rangle_R$$

with $x_1, \ldots, x_n \in M$, we say N is a *finitely generated* R-module.

\mathbb{Z} -modules

- A \mathbb{Z} -module is nothing more than an abelian group M (check this by taking $R = \mathbb{Z}$ in the definition of R-module).
- Given an abelian group M, we can make it into a \mathbb{Z} -module by defining the action recursively
 - $0m = 0 \quad \forall m \in M$
 - $1m = m \quad \forall m \in M$
 - (n+1)m = nm + m $\forall m \in M$ and positive n
 - $(-n)m = -nm \quad \forall m \in M \text{ and positive } n.$

So any abelian group can be interpreted as a \mathbb{Z} -module and vice-versa.

Exercise 12

Let $\mathbb Z$ be a $\mathbb Z\text{-module}$ with the obvious action. Find all the submodules.

Hints:

- What is the action?
- Recall what are the subgroups of $\mathbb{Z}.$

The Z-action on Z is given by $X : Z \times Z \rightarrow Z$ $(n,m) \mapsto nm$

The subgroups of Z are of the form aZ with a EIN (including a=0) Since $\alpha(n, am) = nam = \alpha(nm) \in aZ$ for all ame aZ, we conclude that aZ is a Z-submodule of Z for all a EIN.

Table of Contents

1.4 Symmetric polynomials

2 1.5 Modules

Motivation

Throughout the course we will study many subrings of \mathbb{C} , namely rings of algebraic integers of a given subfield of \mathbb{C} . One example is the ring of Gaussian integers

$$\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}.$$

As an additive group, $\mathbb{Z}[i] \cong \mathbb{Z} \times \mathbb{Z}$. Many of the subrings we will study are also isomorphic to a direct product of a finite number of copies of \mathbb{Z} .

Finitely generated abelian groups

Let *G* be an abelian group. We say *G* is *finitely generated* if it is finitely generated as a \mathbb{Z} -module, that is, if there exist $g_1, \ldots, g_n \in G$ such that

$$G = \langle g_1, \ldots, g_n \rangle_{\mathbb{Z}} = \left\{ \sum_{i=1}^n m_i g_i : m_i \in \mathbb{Z} \right\}.$$

We say $g_1, \ldots, g_n \in G$ are *linearly independent* over \mathbb{Z} if the only solution over the integers for

$$m_1g_1+\ldots+m_ng_n=0$$

is
$$m_1 = \ldots = m_n = 0$$
.

Free abelian groups

Definition (\mathbb{Z} -basis)

Let G be an abelian group. We say $\{g_1, \ldots, g_n\} \subseteq G$ is a \mathbb{Z} -basis for G if

•
$$G = \langle g_1, \ldots, g_n \rangle_{\mathbb{Z}}$$

• g_1, \ldots, g_n are linearly independent over \mathbb{Z} .

Definition (Free abelian group)

A *free abelian group* G of rank n is an abelian group with a \mathbb{Z} -basis of n elements.

Free abelian groups

Example

 $\mathbb{Z}[i]$ is a free abelian group of rank 2 with \mathbb{Z} -basis $\{1, i\}$.

Facts:

- If $\{g_1, \ldots, g_n\}$ and $\{h_1, \ldots, h_m\}$ are two \mathbb{Z} -basis for G then n = m. Hence the rank of G is well-defined, in the sense that it does not depend on the basis.
- 2 Every free abelian group of rank *n* is isomorphic to \mathbb{Z}^n (consider for instance $\phi : \mathbb{Z}^n \to G$ given by $\phi(m_1, \ldots, m_n) = m_1g_1 + \ldots + m_ng_n$, where $\{g_1, \ldots, g_n\}$ is a \mathbb{Z} -basis of *G*).

Change of basis

Lemma (Lemma 1.15)

Let G be a free abelian group of rank n with basis $\{x_1, ..., x_n\}$. Let $A = (a_{ij})$ be an $n \times n$ matrix with integer coefficients. Then the elements

$$y_i = \sum_{j=1}^n a_{ij} x_j \quad i = 1, \ldots, n$$

form a basis of G if and only if A is unimodular, that is, $\det A = \pm 1$.

Proof of Lemma 1.15

"=>" Suppose $y_i = \sum_{j=1}^n a_{ij} \chi_j$, i = 1, ..., n, form a Z-basis for G. Then, there exist integers by such that $\chi_i = \sum_{j=1}^n b_{ij} \chi_j$, i = 1, ..., n.

let $B = (b_{ij})$. Then AB = In and so det (A) det (B) = 1. Since A, B are matrices with integer coefficients, det (A), det (B) $\in \mathbb{Z}$. \therefore det (A) = ± 1 .

" \in Suppose A is unimodular. In partialar, det $A \neq 0$, so y_1, \dots, y_n are linearly independent. Moreover, $A^{-1} = (det(A))^{-1} \tilde{A}$, where \tilde{A} is the adjoint matrix of A. Note that \tilde{A} has integer entries and since $det(A) = \pm 1$, we have that A^{-1} has integer entries as well. Consider $B = A^{-1}$. Then $\chi_i = \sum_{j=1}^{\infty} b_{ij} y_j$, $i = 1, \dots, n$ which shows $G = \langle y_1, \dots, y_n \rangle_{\mathbb{Z}}$ is a \mathbb{Z} -basis for $G \cdot D$

Subgroups of free abelian groups

Theorem (Theorem 1.16)

Let G be a free abelian group of rank n and let H be a subgroup of G. Then H is a free abelian group of rank $s \le n$. Moreover, there exists a basis of G $\{u_1, \ldots, u_n\}$ and positive integers $\alpha_1, \ldots, \alpha_s$ such that $\alpha_1 u_1, \ldots, \alpha_s u_s$ is a basis for H.

Theorem (Theorem 1.17)

Let G be a free abelian group of rank n and H be a subgroup of G. The quotient group G/H is finite if and only if rank G = rank H. In that case, if G has a basis $\{x_1, \ldots, x_r\}$ and H has a basis $\{y_1, \ldots, y_r\}$ with $y_i = \sum_{j=1}^r a_{ij} x_j$ then

 $|G/H| = |\det(a_{ij})|.$

<u>Proof</u> of <u>Theorem 1.16</u> (inspired by Thm 1.16 in stewart, but also by Thm 1.6 in Hungerford)

Induction on
$$n \ge 1$$
.
 $n = 1$: $G = \langle \mathcal{M}_i \rangle_Z$ for some $\mathcal{M}_i \in G$
 \Rightarrow G is $\mathcal{M}_i \mathcal{M}_i \Rightarrow H$ is $\mathcal{M}_i \mathcal{M}_i \gtrsim 1$.
 $of rank 1$ with $H = \langle \mathcal{M}_i \mathcal{M}_i \rangle_Z$ for some $\mathcal{M}_i \ge 1$.
 \cdot let $n \ge 1$ and suppose the statement holds for $n-1$.
If $H = 10t$, the theorem is trivial. So suppose $H \neq 10t$.
Idea: Decompose G in a direct product of a
free chelian group of rank 1 and a free chelian group of
rank $n-1$, G' . Then H will be also a direct product of a
free abelian group of rank 1 and a subgroup H' of G' . Then, by
induction hypothesis H' is free chelian of rank $s' \le n-1$ so
 H is free chelian of rank $s' + 1 \le n$. Let's do that.

let

S= 2 SEZ: Jbasis 101,..., which of Gr s.t. SW1+ hzwht...thnwh E H for some hiEZZ (SES if s is a coefficient for an element of H)

Note that, e.g. dw_1 , w_2 ,..., w_n are seen as "different" basis so h_2 ,..., h_n above are in s as well. Since $H \neq \{o\}$, S contains a least positive integer α_1 and for some basis dw_1 ,..., w_n of G, $\exists v_1 \in H$ s.t.

By the division algorithm,

$$\beta_i = \alpha_i q_i + r_i$$
 with $0 \le r_i \le \alpha_i$
 $i = 2, ..., n$, and so

$$\psi_1 = \alpha_1 \left(\omega_1 + q_2 \, \omega_2 + \ldots + q_n \, \omega_n \right) + r_2 \, \omega_2 + \ldots + r_n \, \omega_n \, .$$

let $u_1 = w_1 + q_2 w_2 + \dots + q_n w_n$. We now apply lemma 1.15. to conclude that $\int u_1, w_2, \dots, w_n k$ is a basis of G. Indeed, we have

$$\begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{n} \end{bmatrix} = \begin{bmatrix} 1 & q_{1} & q_{2} & \dots & q_{n} \\ 1 & & 0 \\ 0 & & 1 \end{bmatrix} \begin{bmatrix} \omega_{1} \\ \omega_{2} \\ \vdots \\ \omega_{n} \end{bmatrix}$$

where det $(A) = L \Rightarrow A$ is unimodular $\Rightarrow 14L_1, W_2, ..., Wnt is$ a basis of G. $Now, since <math>V_1 \in H$, $r_1 < \alpha_1$, $\forall i = 2, ..., n$ and $14L_1, W_1, ..., Wnt$ (in any order) is a basis of G, the minimality of α_1 implies that $r_2 = ... = r_n = 0$. So $\forall_1 = \alpha_1 A_1$

Let $G' = \langle w_{2}, ..., w_{n} \gamma_{Z} \rangle$. Then (since $w_{2}, ..., w_{n}$ are lin. independent) G' is a free abelian group of rank n-1such that $G = \langle u_{i} \gamma_{Z} \times G'$. <u>Claim</u>: $H = \langle v_{i} \gamma_{Z} \times (H \cap G') = \langle v_{i} u_{i} \gamma_{Z} \times H'$. Let's show the claim. Since $\langle u_{i}, w_{2}, ..., w_{n} \rangle$ is a basis

of G and
$$G' = \{u_{2}, ..., u_{n}\}_{Z}$$
, it should be clear that
 $\{\alpha_{i}, u_{i}\}_{Z} \cap (H \cap G') = \{0\}$. Now if
 $h = \mathcal{F}_{i}, u_{i} + \mathcal{F}_{2}, u_{2} + ... + \mathcal{F}_{n}, u_{n} \in H$ with $\mathcal{F}_{i} \in Z$
again by the division algorithm
 $\mathcal{F}_{i} = \alpha_{i}q + \mathcal{F}_{i}$, with $O \leq \mathcal{F}_{i} < \alpha_{i}$.
Since H is a group, it contains
 $h - qv_{i} = h - \alpha_{i}qu_{i}$
 $= \mathcal{F}_{i}, u_{i} + \mathcal{F}_{2}, u_{2} + ... + \mathcal{F}_{n}, u_{n}$
By the minimality of α_{i} , we get again $\mathcal{F}_{i} = 0 \Rightarrow \mathcal{F}_{2}, u_{2} + ... + \mathcal{F}_{n}, u_{n}$
and $h = qv_{i} + (\mathcal{F}_{2}, u_{2} + ... + \mathcal{F}_{n}, u_{n}) \in \langle v_{i} \rangle_{Z} + (H \cap G')$.
This proves that $H = \langle v_{i} \rangle_{Z} \times (H \cap G')$.
Now, $H' = H \cap G' \leq G'$. By induction, H' is free
abelian of rank $s' \leq n-1$ and there exist bases $\lambda_{12,...,}, u_{n}$
of G' and $\{v_{2,...,}, v_{3}\}$ of $H' \leq t$. $\overline{V}_{i} = \alpha_{i}u_{i}$ for positive
integers α_{i} . Since $G = \langle u_{i} \rangle_{Z} \times G'$ and $H = \langle v_{i} u_{i} \rangle_{Z} \times H'$,
it follows that H is free abelian of rank $s' + u \leq n$,
 $\{u_{1,...,}, u_{n}\}$ is a basis for G and $\{v_{1,...,}, v_{3}\}$ is a basis of
H with $v_{i} = \alpha_{i}u_{i}$, $\alpha_{i} \geq 1$.

Remark: We can say more: in fact, $\alpha_1 | \alpha_2 | \dots | \alpha_n$ (the bar means "divides"). See Theorem 1.6 in Hungerford, if interested.

Proof of Theorem 1.17

Suppose G has rank r and H has rank s. By Theorem 1.16, let $I_{U_1,...,Ur}$ and $I_{U_1,...,Ust}$ se basis of G and H, respectively, s.t. $U_i = X_i U_i$ for some positive integers. Since $G \cong \mathbb{Z}^r$, we have

$$G/H \cong (\mathbb{Z}^{S}/\alpha_{1}\mathbb{Z}\times...\times\alpha_{s}\mathbb{Z}) \times \mathbb{Z}^{r-s}$$

finite part
so G/H is finite iff $r-s=0 \Rightarrow r=s$. In that case,
 $|G/H| = \alpha_{1}...\alpha_{n}$. Moreover, $\forall i = 1,...,n$,

$$y_{i} = \sum_{j=1}^{n} d_{ij} v_{j} \quad (change of basis)$$

$$v_{i} = \sum_{j=1}^{n} c_{ij} u_{j} \quad (Thm 1.16)$$

$$u_{i} = \sum_{j=1}^{n} b_{ij} x_{j} \quad (change of basis)$$

where $B = (b_{ij})$ and $D = (d_{ij})$ are unimodulor by lemma 1.15 and ΓN .

$$C = (C_{ij}) = \begin{bmatrix} \alpha_1 & \alpha_2 & 0 \\ 0 & \alpha_n \end{bmatrix}$$

If $A = (a_{ij})$, since $y_i = \sum_{j=1}^{n} a_{ij} \chi_j$, i = 1, ..., n, we have A = BCD and hence $dvt(A) = dvt(B) dvt(c) dvt(D) = (\pm i) (\alpha_1 ..., \alpha_n) (\pm i)$ $= \pm \alpha_1 ... \alpha_n$

$$\Rightarrow |det (A)| = |\alpha_1 \dots \alpha_n| = |G/H|. \Box$$

Exercise 10

Find the order of the groups G/H where G is free abelian with \mathbb{Z} -basis x, y, z and H is generated by:

(a)
$$2x, 3y, 7z$$

(b) $x + 3y - 5z, 2x - 4y, 7x + 2y - 9z$
(c) x
(d) $41x + 32y - 999z, 16y + 3z, 2y + 111z$
(e) $41x + 32y - 999z$.

Exercise 10

a)
$$H = \langle 2x, 3y, 7z^{2} \rangle_{Z}$$
. By Theorem 1.17,
 $|G/H| = \left| \det \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix} \right| = 42$

c) $H = \langle x \rangle_{\mathcal{U}} \Rightarrow \operatorname{rank} H = 1 < 3 = \operatorname{rank} G$ $\Rightarrow G/H$ is infinite.

Linearly dependent generators

Theorem (Proposition 1.18)

Every finitely generated abelian group G with n generators satisfies

 $G \cong F \times B$,

where F is a finite abelian group and B is a free abelian group of rank $k \le n$.

Theorem (Proposition 1.19)

Every subgroup of a finitely generated group is also finitely generated.

Proof of Proposition 1.18

let G = < WI, ..., WN 72 where WI, ..., where not necessarily independent. Consider $f: \mathbb{Z}^n \to G$ given by $f(m_1, ..., m_n) = m_1 \omega_1 + ... + m_n \omega_n$. f is surjective since W1,..., wn generate G. Thus G № Z°/H where $H = \ker f \leq \mathbb{Z}^n$. By Theorem 1.16, H is free abelian of rank s≤n. By the same theorem, Choose a basis frequence of 2° in such a way that di ui, ..., d's us is a basis for H, with ai, ..., as positive integers. Let A = < MI, MS>Z and B = < MS+1, MN>Z. Then G≌ (A/H) X B where A/H is a finite abelian group and B is a free

abelian group of rank k = n-s.

Proof of Proposition 1.19

let $K \leq (T. Writing G \cong F \times B$ as in Proposition 1.18, we have that $K \cong (F \cap K) \times H$ where $H \leq B$. Then, F \cap K is a finite abelian group (\Rightarrow finitely generated) and by theorem 1.16, H is a free abelian group (\Rightarrow finitely generated). \therefore K is finitely generated.

Exercise 14

An abelian group G is said to be *torsion-free* if $g \in G$, $g \neq 0$ and kg = 0 for $k \in \mathbb{Z}$ implies k = 0. Prove that a finitely generated torsion-free abelian group is a finitely generated free group.

Hints:

- Proposition 1.18