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Permutation of polynomials

Let R be a ring and consider the ring of polynomials R[t1, . . . , tn].
Denote by Sn the group of permutations of {1,2, . . . ,n}. For
f ∈ R[t1, . . . , t] and ⇡ ∈ Sn, we define

f
⇡(t1, . . . , tn) ∶= f �t⇡(1),...,⇡(n)� .

Example

Let f (t1, t2, t2) = t1 + t2t3 and ⇡ = (123). Then,
f
⇡(t1, t2, tn) = t2 + t1t3.
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Symmetric polynomials

We say f ∈ R[t1, . . . , tn] is symmetric if f ⇡ = f for all ⇡ ∈ Sn.
Example

f (t1, . . . , tn) = t1 + . . . + tn is symmetric.

The previous example, f (t1, t2, t3) = t1 + t2t3, is not
symmetric since f

⇡ = t2 + t1t3 ≠ t1 + t2t3.
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Elementary symmetric polynomials

Let n ≥ 1. For every 1 ≤ r ≤ n, the elementary symmetric

polynomial sr(t1, . . . , tn) is the sum of all possible distinct

products of r distinct ti ’s:

s1(t1, . . . , tn) = t1 + . . . + tn
s2(t1, . . . , tn) = t1t2 + t1t3 + . . . + t1tn + t2t3 + . . . + tn−1tn⋮
sn(t1, . . . , tn) = t1 . . . tn

These are called elementary for a reason: every symmetric
polynomial can be written in terms of the elementary symmetric
polynomials.
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Theorem (Theorem 1.12)

Let R be a ring. Every symmetric polynomial p ∈ R[t1, . . . , tn] can
be written as a polynomial in R[s1, . . . , sn].
Sketch of proof.

p ∈ R[t1, . . . , tn] �⇒ monomials of p are of the form at
↵1
1 . . . t↵n

n .

1. Order the monomials of p by a lexicographic order.

2. Since p is symmetric, the leading term of p (under the
lexicographic order) is of the form at

↵1
1 . . . t↵n

n with
↵1 ≥ . . . ≥ ↵n.

3. The leading term of
as

k1
1 . . . sknn = a(t1 + . . . + tn)k1 . . . (t1 . . . tn)kn is

at
k1+...+kn
1 t

k2+...+kn
2 . . . tknn for all positive integers k1, . . . , kn.
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4. If we put k1 = ↵1 − ↵2, . . ., kn−1 = ↵n−1 − ↵n, kn = ↵n, the
leading term of p is equal to the leading term of ask11 . . . sknn .

5. So consider p1 = p − ask11 . . . sknn with k1 = ↵1 − ↵2, . . .,
kn−1 = ↵n−1 − ↵n, kn = ↵n. The leading term of p is canceled
and we get a smaller degree symmetric polynomial
p1 ∈ R[t1, . . . , tn].

6. Apply step 5 to p1. After a finite amount m of iterations we
get pm+1 = pm − gm = 0 for some gm ∈ R[s1, . . . , sn].

pm − gm = 0 �⇒ pm ∈ R[s1, . . . , sn]. Note that pj−1 = pj + gj−1
with gm−1 ∈ R[s1, . . . , sn] so by reverse induction we conclude
p ∈ R[s1, . . . , sn].
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The next corollary is important (for instance, to show that the field
polynomial has coe�cients in Q, Theorem 2.5.).

Corollary (Corollary 1.14)

Consider a field extension L ∶ K and p ∈ K [t] such that all of its

zeros ✓1, . . . , ✓n are in L. If h(t1, . . . , tn) ∈ K [t1, . . . , tn] is a
symmetric polynomial, then h(✓1, . . . , ✓n) ∈ K .

Moral: Every symmetric expression on the roots of a polynomial
p ∈ K [t] is in K .
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Example

Consider the field extension Q �!, 3
√
2� ∶ Q, where ! = e2⇡i�3. Let

p(t) = t3 − 2 ∈ Q[t]. The roots of p are

✓1 = 3
√
2, ✓2 = ! 3

√
2, ✓3 = !2 3

√
2.

By Corollary 1.14, we get that for instance

✓1✓2✓3 − ✓1✓2 − ✓1✓3 − ✓2✓3 ∈ Q.
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Modules

Modules are a generalization of vector spaces.

Definition (R-module)

Let R be a ring. An R-module (or module if R is clear) M is

an abelian group (M,+) together with
a function ↵ ∶ R ×M →M, ↵(r ,m) = rm, satisfying
(a) (r + s)m = rm + sm ∀r , s ∈ R ,∀m ∈M
(b) r(m + n) = rm + rn ∀r ∈ R ,∀m,n ∈M
(c) r(sm) = (rs)m ∀r , s ∈ R ,∀m ∈M
(d) 1m = m ∀m ∈M.

Function ↵ is called an R-action on M.

If R is a field then M is an R-module if and only if it is a vector
space over R (check this!).
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Submodules and quotient modules

Definition (R-submodule)

Let M be an R-module. N is an R-submodule of M if

(N,+) � (M,+)
for all n ∈ N and r ∈ R , ↵(r ,n) = rn ∈ N.

Let M be an R-module and N be an R-submodule of M. The
quotient group M�N has a structure of R-module with R-action

r(N +m) ∶= N + rm.
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Some facts about modules

1 Suppose R is a subring of S . Then S is an R-module with
action rs, for all r ∈ R and s ∈ S .

2 Suppose I is an ideal of the ring R . Then I is an R-module
with action ri for all r ∈ R and i ∈ I .

3 Suppose J ⊆ I are ideals of R . Then the quotient I �J is an
R-module with action r(J + i) ∶= J + ri .
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Submodule generated by a set

Let M be an R-module. Given X ⊆M and Y ⊆ R ,
YX ∶= � m�

i=1 yixi ∶ xi ∈ X , yi ∈ Y ,m ≥ 1� .
The R-submodule of M generated by X is the smallest
R-submodule of M containing X . We denote it by �X �R .
Fact: �X �R = RX .

If
N = �x1, . . . , xn�R

with x1, . . . , xn ∈M, we say N is a finitely generated R-module.
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Z-modules

A Z-module is nothing more than an abelian group M (check
this by taking R = Z in the definition of R-module).

Given an abelian group M, we can make it into a Z-module by
defining the action recursively

0m = 0 ∀m ∈M
1m = m ∀m ∈M(n + 1)m = nm +m ∀m ∈M and positive n(−n)m = −nm ∀m ∈M and positive n.

So any abelian group can be interpreted as a Z-module and
vice-versa.
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Exercise 12

Let Z be a Z-module with the obvious action. Find all the
submodules.

Hints:

- What is the action?
- Recall what are the subgroups of Z.
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Motivation

Throughout the course we will study many subrings of C, namely
rings of algebraic integers of a given subfield of C. One example is
the ring of Gaussian integers

Z[i] = {a + bi ∶ a,b ∈ Z} .
As an additive group, Z[i] ≅ Z ×Z. Many of the subrings we will
study are also isomorphic to a direct product of a finite number of
copies of Z.

Matilde Costa, Aalto University ANT 2024 Exercise session 1



20/27

1.4 Symmetric polynomials

1.5 Modules

1.6 Free abelian groups

Finitely generated abelian groups

Let G be an abelian group. We say G is finitely generated if it is
finitely generated as a Z-module, that is, if there exist
g1, . . . ,gn ∈ G such that

G = �g1, . . . ,gn�Z = � n�
i=1migi ∶ mi ∈ Z� .

We say g1, . . . ,gn ∈ G are linearly independent over Z if the only
solution over the integers for

m1g1 + . . . +mngn = 0
is m1 = . . . = mn = 0.
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Free abelian groups

Definition (Z-basis)
Let G be an abelian group. We say {g1, . . . ,gn} ⊆ G is a Z-basis
for G if

G = �g1, . . . ,gn�Z
g1, . . . ,gn are linearly independent over Z.

Definition (Free abelian group)

A free abelian group G of rank n is an abelian group with a
Z-basis of n elements.
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Free abelian groups

Example

Z[i] is a free abelian group of rank 2 with Z-basis {1, i}.
Facts:

1 If {g1, . . . ,gn} and {h1, . . . ,hm} are two Z-basis for G then
n = m. Hence the rank of G is well-defined, in the sense that
it does not depend on the basis.

2 Every free abelian group of rank n is isomorphic to Zn

(consider for instance � ∶ Zn → G given by
�(m1, . . . ,mn) = m1g1 + . . . +mngn, where {g1, . . . ,gn} is a
Z-basis of G ).
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Change of basis

Lemma (Lemma 1.15)

Let G be a free abelian group of rank n with basis {x1, . . . , xn}.
Let A = (aij) be an n × n matrix with integer coe�cients. Then the

elements

yi = n�
j=1 aijxj i = 1, . . . ,n

form a basis of G if and only if A is unimodular, that is, detA = ±1.
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Subgroups of free abelian groups

Theorem (Theorem 1.16)

Let G be a free abelian group of rank n and let H be a subgroup

of G . Then H is a free abelian group of rank s ≤ n. Moreover,

there exists a basis of G {u1, . . . ,un} and positive integers

↵1, . . . ,↵s such that ↵1u1, . . . ,↵sus is a basis for H.

Theorem (Theorem 1.17)

Let G be a free abelian group of rank n and H be a subgroup of

G . The quotient group G�H is finite if and only if rankG = rankH.

In that case, if G has a basis {x1, . . . , xr} and H has a basis{y1, . . . , yr} with yi = ∑r
j=1 aijxj then
�G�H � = �det(aij)�.
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Exercise 10

Find the order of the groups G�H where G is free abelian with
Z-basis x , y , z and H is generated by:

(a) 2x ,3y ,7z

(b) x + 3y − 5z ,2x − 4y ,7x + 2y − 9z
(c) x

(d) 41x + 32y − 999z ,16y + 3z ,2y + 111z
(e) 41x + 32y − 999z .
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Linearly dependent generators

Theorem (Proposition 1.18)

Every finitely generated abelian group G with n generators satisfies

G ≅ F ×B ,
where F is a finite abelian group and B is a free abelian group of

rank k ≤ n.
Theorem (Proposition 1.19)

Every subgroup of a finitely generated group is also finitely

generated.
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Exercise 14

An abelian group G is said to be torsion-free if g ∈ G , g ≠ 0 and
kg = 0 for k ∈ Z implies k = 0. Prove that a finitely generated
torsion-free abelian group is a finitely generated free group.

Hints:

- Proposition 1.18
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