ANT 2024 Exercise session 1

Matilde Costa, Aalto University matilde.costa@aalto.fi

February 29, 2024

References

- Stewart, I. and Tall, D. Algebraic Number Theory and Fermat's Last Theorem (Third Edition). Chapman and Hall. (pp. 22-34)
- Hungerford, T. W. Algebra. Vol. 73. Springer Science \& Business Media (in case you are interested in reviewing some algebra)

1.6 Free abelian groups

Table of Contents

(1) 1.4 Symmetric polynomials
(2) 1.5 Modules
(3) 1.6 Free abelian groups

Permutation of polynomials

Let R be a ring and consider the ring of polynomials $R\left[t_{1}, \ldots, t_{n}\right]$. Denote by S_{n} the group of permutations of $\{1,2, \ldots, n\}$. For $f \in R\left[t_{1}, \ldots, t_{]}\right.$and $\pi \in S_{n}$, we define

$$
f^{\pi}\left(t_{1}, \ldots, t_{n}\right):=f\left(t_{\pi(1), \ldots, \pi(n)}\right)
$$

Example

Let $f\left(t_{1}, t_{2}, t_{2}\right)=t_{1}+t_{2} t_{3}$ and $\pi=(123)$. Then, $f^{\pi}\left(t_{1}, t_{2}, t_{n}\right)=t_{2}+t_{1} t_{3}$.

Symmetric polynomials

We say $f \in R\left[t_{1}, \ldots, t_{n}\right]$ is symmetric if $f^{\pi}=f$ for all $\pi \in S_{n}$.

Example

- $f\left(t_{1}, \ldots, t_{n}\right)=t_{1}+\ldots+t_{n}$ is symmetric.
- The previous example, $f\left(t_{1}, t_{2}, t_{3}\right)=t_{1}+t_{2} t_{3}$, is not symmetric since $f^{\pi}=t_{2}+t_{1} t_{3} \neq t_{1}+t_{2} t_{3}$.

Elementary symmetric polynomials

Let $n \geq 1$. For every $1 \leq r \leq n$, the elementary symmetric polynomial $s_{r}\left(t_{1}, \ldots, t_{n}\right)$ is the sum of all possible distinct products of r distinct t_{i} 's:

$$
\begin{aligned}
& s_{1}\left(t_{1}, \ldots, t_{n}\right)=t_{1}+\ldots+t_{n} \\
& s_{2}\left(t_{1}, \ldots, t_{n}\right)=t_{1} t_{2}+t_{1} t_{3}+\ldots+t_{1} t_{n}+t_{2} t_{3}+\ldots+t_{n-1} t_{n} \\
& \vdots \\
& s_{n}\left(t_{1}, \ldots, t_{n}\right)=t_{1} \ldots t_{n}
\end{aligned}
$$

These are called elementary for a reason: every symmetric polynomial can be written in terms of the elementary symmetric polynomials.

Elementary symmetric polynomials

Theorem (Theorem 1.12)

Let R be a ring. Every symmetric polynomial $p \in R\left[t_{1}, \ldots, t_{n}\right]$ can be written as a polynomial in $R\left[s_{1}, \ldots, s_{n}\right]$.

Sketch of proof.

$p \in R\left[t_{1}, \ldots, t_{n}\right] \Longrightarrow$ monomials of p are of the form $a t_{1}^{\alpha_{1}} \ldots t_{n}^{\alpha_{n}}$.

1. Order the monomials of p by a lexicographic order.
2. Since p is symmetric, the leading term of p (under the lexicographic order) is of the form $a t_{1}^{\alpha_{1}} \ldots t_{n}^{\alpha_{n}}$ with $\alpha_{1} \geq \ldots \geq \alpha_{n}$.
3. The leading term of
$a s_{1}^{k_{1}} \ldots s_{n}^{k_{n}}=a\left(t_{1}+\ldots+t_{n}\right)^{k_{1}} \ldots\left(t_{1} \ldots t_{n}\right)^{k_{n}}$ is $a t_{1}^{k_{1}+\ldots+k_{n}} t_{2}^{k_{2}+\ldots+k_{n}} \ldots t_{n}^{k_{n}}$ for all positive integers k_{1}, \ldots, k_{n}.

Elementary symmetric polynomials

4. If we put $k_{1}=\alpha_{1}-\alpha_{2}, \ldots, k_{n-1}=\alpha_{n-1}-\alpha_{n}, k_{n}=\alpha_{n}$, the leading term of p is equal to the leading term of $a s_{1}^{k_{1}} \ldots s_{n}^{k_{n}}$.
5. So consider $p_{1}=p-a s_{1}^{k_{1}} \ldots s_{n}^{k_{n}}$ with $k_{1}=\alpha_{1}-\alpha_{2}, \ldots$, $k_{n-1}=\alpha_{n-1}-\alpha_{n}, k_{n}=\alpha_{n}$. The leading term of p is canceled and we get a smaller degree symmetric polynomial $p_{1} \in R\left[t_{1}, \ldots, t_{n}\right]$.
6. Apply step 5 to p_{1}. After a finite amount m of iterations we get $p_{m+1}=p_{m}-g_{m}=0$ for some $g_{m} \in R\left[s_{1}, \ldots, s_{n}\right]$.
$p_{m}-g_{m}=0 \Longrightarrow p_{m} \in R\left[s_{1}, \ldots, s_{n}\right]$. Note that $p_{j-1}=p_{j}+g_{j-1}$ with $g_{m-1} \in R\left[s_{1}, \ldots, s_{n}\right]$ so by reverse induction we conclude $p \in R\left[s_{1}, \ldots, s_{n}\right]$.

Example 1.13

$$
p\left(t_{1}, t_{2}, t_{3}\right)=t_{2}^{2} t_{3}+t_{1} t_{2}^{2}+t_{1}^{2} t_{2}+t_{2} t_{3}^{2}+t_{1} t_{3}^{2}+t_{1}^{2} t_{3}
$$

1. Lexicographic order

$$
p\left(t_{1}, t_{2}, t_{3}\right)=t_{1}^{2} t_{2}+t_{1}^{2} t_{3}+t_{1} t_{2}^{2}+t_{1} t_{3}^{2}+t_{2}^{2} t_{3}+t_{2} t_{3}^{2}
$$

2. leading term of $p: t_{1}{ }^{2} t_{2}$

$$
n=3, \alpha_{1}=2, \alpha_{2}=1, \alpha_{3}=0
$$

3.

$$
\begin{aligned}
s_{1}^{k_{1}} s_{2}^{k_{2}} s_{3}^{k_{3}} & =\left(t_{1}+t_{2}+t_{3}\right)^{k_{1}}\left(t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}\right)^{k_{2}}\left(t_{1} t_{2} t\right)^{k_{3}} \\
& =\underbrace{t_{1}^{k_{1}+k_{2}+k_{3}} t_{2}^{k_{2}+k_{3}} t_{3}^{k_{3}}+\ldots}_{\text {leading term }}
\end{aligned}
$$

4.

$$
\begin{aligned}
\alpha_{1} & =2, \alpha_{2}=1, \alpha_{3}=0 \Rightarrow k_{1}=2-1=1, k_{2}=1-0=1, k_{3}=0 \\
s_{1} s_{2} & =\left(t_{1}+t_{2}+t_{3}\right)\left(t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}\right) \\
& =\underbrace{t_{1}^{2} t_{2}}_{\text {leading term }}+t_{1}^{2} t_{3}+t_{1} t_{2}^{2}+t_{1} t_{3}^{2}+3 t_{1} t_{2} t_{3}+t_{2}^{2} t_{3}+t_{2} t_{3}^{2}
\end{aligned}
$$

5. $p_{1}=p-s_{1} s_{2}=-3 t_{1} t_{2} t_{3}$

Clearly, $p_{1}=-3 s_{3}$, so we conclude already

$$
p=p_{1}+s_{1} s_{2}=s_{1} s_{2}-3 s_{3} \in R\left[s_{1}, s_{2}, s_{3}\right] .
$$

Elementary symmetric polynomials

The next corollary is important (for instance, to show that the field polynomial has coefficients in \mathbb{Q}, Theorem 2.5.).

Corollary (Corollary 1.14)

Consider a field extension $L: K$ and $p \in K[t]$ such that all of its zeros $\theta_{1}, \ldots, \theta_{n}$ are in L. If $h\left(t_{1}, \ldots, t_{n}\right) \in K\left[t_{1}, \ldots, t_{n}\right]$ is a symmetric polynomial, then $h\left(\theta_{1}, \ldots, \theta_{n}\right) \in K$.

Moral: Every symmetric expression on the roots of a polynomial $p \in K[t]$ is in K.

Proof_of Corollary 1.14

$$
\begin{aligned}
p(t) & =a_{n} t^{n}+\ldots+a_{0} \in K[t] \\
& =a_{n}\left(t-\theta_{1}\right) \ldots\left(t-\theta_{n}\right), \text { with } \theta_{i} \in L \\
\text { (chec kthis) } & =a_{n}\left(t^{n}-s_{1}\left(\theta_{1}, \ldots, \theta_{n}\right) t^{n-1}+\ldots+(-1)^{n} s_{n}\left(\theta_{1}, \ldots, \theta_{n}\right)\right) \\
\Rightarrow s_{1}\left(\theta_{1}, \ldots, \theta_{n}\right) & =-a_{n-1} \in k, \\
s_{2}\left(\theta_{1}, \ldots, \theta_{n}\right) & =a_{n-2} \in k, \ldots \\
s_{n}\left(\theta_{1}, \ldots, \theta_{n}\right) & =(-1)^{n} a_{0} \in k
\end{aligned}
$$

By theorem $1.12, h\left(t_{1}, \ldots, t_{n}\right)=g\left(s_{1}, \ldots, s_{n}\right)$ for some $g \in R\left[s_{1}, \ldots, s_{n}\right]$. Hence,
$h\left(\theta_{1}, \ldots, \theta_{n}\right)=g\left(s_{1}\left(\theta_{1}, \ldots, \theta_{n}\right), \ldots, s_{n}\left(\theta_{1}, \ldots, \theta_{n}\right)\right) \in K$ since the coefficients of g are in k and $s_{i}\left(\theta_{1}, \ldots, \theta_{n}\right) \in k \quad \forall 1 \leq i \leq n$.

Elementary symmetric polynomials

Example

Consider the field extension $\mathbb{Q}(\omega, \sqrt[3]{2}): \mathbb{Q}$, where $\omega=e^{2 \pi i / 3}$. Let $p(t)=t^{3}-2 \in \mathbb{Q}[t]$. The roots of p are

$$
\theta_{1}=\sqrt[3]{2}, \quad \theta_{2}=\omega \sqrt[3]{2}, \quad \theta_{3}=\omega^{2} \sqrt[3]{2}
$$

By Corollary 1.14, we get that for instance

$$
\theta_{1} \theta_{2} \theta_{3}-\theta_{1} \theta_{2}-\theta_{1} \theta_{3}-\theta_{2} \theta_{3} \in \mathbb{Q} .
$$

Table of Contents

(1) 1.4 Symmetric polynomials

(2) 1.5 Modules
(3) 1.6 Free abelian groups

Modules

Modules are a generalization of vector spaces.

Definition (R-module)

Let R be a ring. An R-module (or module if R is clear) M is

- an abelian group $(M,+)$ together with
- a function $\alpha: R \times M \rightarrow M, \alpha(r, m)=r m$, satisfying
(a) $(r+s) m=r m+s m \quad \forall r, s \in R, \forall m \in M$
(b) $r(m+n)=r m+r n \quad \forall r \in R, \forall m, n \in M$
(c) $r(s m)=(r s) m \quad \forall r, s \in R, \forall m \in M$
(d) $1 m=m \quad \forall m \in M$.

Function α is called an R-action on M.
If R is a field then M is an R-module if and only if it is a vector space over R (check this!).

Submodules and quotient modules

Definition (R-submodule)

Let M be an R-module. N is an R-submodule of M if

- $(N,+) \leqslant(M,+)$
- for all $n \in N$ and $r \in R, \alpha(r, n)=r n \in N$.

Let M be an R-module and N be an R-submodule of M. The quotient group M / N has a structure of R-module with R-action

$$
r(N+m):=N+r m .
$$

Some facts about modules

(1) Suppose R is a subring of S. Then S is an R-module with action $r s$, for all $r \in R$ and $s \in S$.
(2) Suppose I is an ideal of the ring R. Then I is an R-module with action $r i$ for all $r \in R$ and $i \in I$.
(3) Suppose $J \subseteq I$ are ideals of R. Then the quotient I / J is an R-module with action $r(J+i):=J+r i$.

Submodule generated by a set

Let M be an R-module. Given $X \subseteq M$ and $Y \subseteq R$,

$$
Y X:=\left\{\sum_{i=1}^{m} y_{i} x_{i}: x_{i} \in X, y_{i} \in Y, m \geq 1\right\}
$$

The R-submodule of M generated by X is the smallest R-submodule of M containing X. We denote it by $\langle X\rangle_{R}$.
Fact: $\langle X\rangle_{R}=R X$.
If

$$
N=\left\langle x_{1}, \ldots, x_{n}\right\rangle_{R}
$$

with $x_{1}, \ldots, x_{n} \in M$, we say N is a finitely generated R-module.

Z-modules

- A \mathbb{Z}-module is nothing more than an abelian group M (check this by taking $R=\mathbb{Z}$ in the definition of R-module).
- Given an abelian group M, we can make it into a \mathbb{Z}-module by defining the action recursively
- $0 m=0 \quad \forall m \in M$
- $1 m=m \quad \forall m \in M$
- $(n+1) m=n m+m \quad \forall m \in M$ and positive n
- ($-n$) $m=-n m \quad \forall m \in M$ and positive n.

So any abelian group can be interpreted as a \mathbb{Z}-module and vice-versa.

Exercise 12

Let \mathbb{Z} be a \mathbb{Z}-module with the obvious action. Find all the submodules.

Hints:

- What is the action?
- Recall what are the subgroups of \mathbb{Z}.

Solution

The \mathbb{Z}-action on \mathbb{Z} is given by

$$
\begin{aligned}
\alpha: \mathbb{Z} \times \mathbb{Z} & \rightarrow \mathbb{Z} \\
(n, m) & \mapsto n m
\end{aligned}
$$

The subgroups of \mathbb{Z} are of the form $a \mathbb{Z}$ with $a \in \mathbb{N}$ (including $a=0$)
Since $\alpha(n, a m)=n a m=a(n m) \in a \mathbb{Z}$ for all $a m \in a \mathbb{Z}$, we conclude that $a \mathbb{Z}$ is a \mathbb{Z}-submodule of \mathbb{Z} for all $a \in \mathbb{N}$.

Table of Contents

(1) 1.4 Symmetric polynomials

(2) 1.5 Modules
(3) 1.6 Free abelian groups

Motivation

Throughout the course we will study many subrings of \mathbb{C}, namely rings of algebraic integers of a given subfield of \mathbb{C}. One example is the ring of Gaussian integers

$$
\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}
$$

As an additive group, $\mathbb{Z}[i] \cong \mathbb{Z} \times \mathbb{Z}$. Many of the subrings we will study are also isomorphic to a direct product of a finite number of copies of \mathbb{Z}.

Finitely generated abelian groups

Let G be an abelian group. We say G is finitely generated if it is finitely generated as a \mathbb{Z}-module, that is, if there exist $g_{1}, \ldots, g_{n} \in G$ such that

$$
G=\left\langle g_{1}, \ldots, g_{n}\right\rangle_{\mathbb{Z}}=\left\{\sum_{i=1}^{n} m_{i} g_{i}: m_{i} \in \mathbb{Z}\right\} .
$$

We say $g_{1}, \ldots, g_{n} \in G$ are linearly independent over \mathbb{Z} if the only solution over the integers for

$$
m_{1} g_{1}+\ldots+m_{n} g_{n}=0
$$

is $m_{1}=\ldots=m_{n}=0$.

Free abelian groups

Definition (Z \mathbb{Z}-basis)

Let G be an abelian group. We say $\left\{g_{1}, \ldots, g_{n}\right\} \subseteq G$ is a \mathbb{Z}-basis for G if

- $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle_{\mathbb{Z}}$
- g_{1}, \ldots, g_{n} are linearly independent over \mathbb{Z}.

Definition (Free abelian group)

A free abelian group G of rank n is an abelian group with a \mathbb{Z}-basis of n elements.

Free abelian groups

Example

$\mathbb{Z}[i]$ is a free abelian group of rank 2 with \mathbb{Z}-basis $\{1, i\}$.

Facts:

(1) If $\left\{g_{1}, \ldots, g_{n}\right\}$ and $\left\{h_{1}, \ldots, h_{m}\right\}$ are two \mathbb{Z}-basis for G then $n=m$. Hence the rank of G is well-defined, in the sense that it does not depend on the basis.
(2) Every free abelian group of rank n is isomorphic to \mathbb{Z}^{n} (consider for instance $\phi: \mathbb{Z}^{n} \rightarrow G$ given by $\phi\left(m_{1}, \ldots, m_{n}\right)=m_{1} g_{1}+\ldots+m_{n} g_{n}$, where $\left\{g_{1}, \ldots, g_{n}\right\}$ is a \mathbb{Z}-basis of G).

Change of basis

Lemma (Lemma 1.15)

Let G be a free abelian group of rank n with basis $\left\{x_{1}, \ldots, x_{n}\right\}$. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix with integer coefficients. Then the elements

$$
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, n
$$

form a basis of G if and only if A is unimodular, that is, $\operatorname{det} A= \pm 1$.

Proof of lemma 1.15
$" \Longrightarrow$ suppose $y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, i=1, \ldots, n$, form a \mathbb{Z}-basis for G. Then, there exist integers $b_{i j}$ such that

$$
x_{i}=\sum_{j=1}^{n} b_{i j} y_{j}, \quad i=1, \ldots, n .
$$

let $B=\left(b_{i j}\right)$. Then $A B=$ In and so $\operatorname{det}(A) \operatorname{det}(B)=1$. Since A, B are matrices with integer coefficients, $\operatorname{det}(A), \operatorname{det}(B) \in \mathbb{Z} . \therefore \operatorname{det}(A)= \pm 1$.
$" \Leftarrow "$ Suppose A is unimodular. In particular, $\operatorname{det} A \neq 0$, so y_{1}, \ldots, y_{n} are linearly independent. Moreover, $A^{-1}=(\operatorname{det}(A))^{-1} \tilde{A}$, where \tilde{A} is the adjoint matrix of A. Note that \vec{A} has integer entries and since $\operatorname{det}(A)= \pm 1$, we have that A^{-1} has integer entries as well. Consider $B=A^{-1}$. Then

$$
x_{i}=\sum_{j=1}^{n} b_{i j} y_{j}, i=1, \ldots, n
$$

which shows $G=\left\langle y_{1}, \ldots, y_{n}\right\rangle_{\mathbb{Z}} . \therefore\left\{y_{1}, \ldots, y_{n}\right\}$ is a \mathbb{Z}-basis for G.

Subgroups of free abelian groups

Theorem (Theorem 1.16)

Let G be a free abelian group of rank n and let H be a subgroup of G. Then H is a free abelian group of rank $s \leq n$. Moreover, there exists a basis of $G\left\{u_{1}, \ldots, u_{n}\right\}$ and positive integers $\alpha_{1}, \ldots, \alpha_{s}$ such that $\alpha_{1} u_{1}, \ldots, \alpha_{s} u_{s}$ is a basis for H.

Theorem (Theorem 1.17)

Let G be a free abelian group of rank n and H be a subgroup of G. The quotient group G / H is finite if and only if rank $G=$ rank H. In that case, if G has a basis $\left\{x_{1}, \ldots, x_{r}\right\}$ and H has a basis $\left\{y_{1}, \ldots, y_{r}\right\}$ with $y_{i}=\sum_{j=1}^{r} a_{i j} x_{j}$ then

$$
|G / H|=\left|\operatorname{det}\left(a_{i j}\right)\right| .
$$

Proof of Theorem 1.16 (inspired by Thm 1.16 in stewart, but also by The 1.6 in Hungerford)

Induction on $n \geqslant 1$.

- $n=1: G=\left\langle\mu_{1}\right\rangle_{\mathbb{Z}}$ for some $\mu_{1} \in G$
$\Rightarrow G$ is cyclic $\Rightarrow H$ is cyclic $\Rightarrow H$ is freeabelian of rank 1 with $H=\left\langle\alpha_{1} \mu_{1}\right\rangle_{2}$ for some $\alpha_{1} \geqslant 1$.
- Let $n>1$ and suppose the statement holds for $n-1$.

If $H=\{0\}$, the theorem is trinal. So suppose $1 t \neq\{0\}$.
Idea: Decompose G in a direct product of a free abelian group of rank 1 and a free abelian group of rank $n-1, G$). Then H will be also a direct product of a free abelian group of rank 1 and a subgroup H^{\prime} of G^{\prime}. Then, by induction hypothesis H^{\prime} is free abelian of rank $s^{\prime} \leqslant n-1$ so H is free abelian of rank $s^{\prime}+1 \leq n$. Let's do that.
let
$S=\{s \in \mathbb{C}:$
Basis $\left\{\omega_{1}, \ldots, \omega_{n} k\right.$ of G st. $s \omega_{1}+h_{2} \omega_{n}+\ldots+h_{n} \omega_{n} \in H$ for some $\left.h_{i} \in \mathbb{Z}\right\}$
($s \in S$ if s is a coefficient for an element of H)
Note that, e.g. $\left.d \omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$ are seen as "different" basis so h_{2}, \ldots, h_{n} above are in s as well. since $H \neq\{0\}$, S conthinc a least positive integer α_{1} and for same basis $\left\{\omega_{1}, \ldots, w_{n}\right\}$ of $G, \exists v_{1} \in H$ s.t.

$$
v_{1}=\alpha_{1} \omega_{1}+\beta_{2} \omega_{n}+\ldots+\beta_{n} \omega_{n} \text {, with } \beta_{i} \in \mathbb{Z} \text {. }
$$

By the division algorithm,

$$
\beta_{i}=\alpha_{1} q_{i}+r_{i} \text { with } 0 \leqslant r_{i}<\alpha_{1}
$$

$i=2, \ldots, n$, and so

$$
v_{1}=\alpha_{1}\left(\omega_{1}+q_{2} \omega_{2}+\ldots+q_{n} \omega_{n}\right)+r_{2} \omega_{2}+\ldots+r_{n} \omega_{n} .
$$

let $\mu_{1}=\omega_{1}+q_{2} \omega_{2}+\ldots+q_{n} \omega_{n}$. We now apply lemma 1.15. to conclude that $\left\{\mu_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$ is a basis of G.
Indeed, we have

$$
\left[\begin{array}{c}
\mu_{1} \\
\omega_{2} \\
\vdots \\
\omega_{n}
\end{array}\right]=[\begin{array}{cccc}
\left.\left.\begin{array}{ccccc}
1 & q_{1} & q_{2} & \cdots & q_{n} \\
& 1 & & 0 \\
0 & & & 1
\end{array}\right]\left[\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\vdots \\
\omega_{n}
\end{array}\right] .\right]
\end{array} \underbrace{\left[\begin{array}{lll}
\\
0 & &
\end{array}\right]}_{A}
$$

where $\operatorname{det}(A)=1 \Rightarrow A$ is unimodular $\Rightarrow\left\{\mu_{1}, \omega_{2}, \ldots, w_{n}\right\}$ is a basis of G.
Now, since $v_{1} \in H, r_{i}<\alpha_{1} \forall i=2, \ldots, n$ and $\left\{\mu_{1}, \omega_{1}, \ldots, w_{n}\right\}$ (in any order) is a basis of G, the minimality of α_{1} implies that $r_{2}=\ldots=r_{n}=0$. So

$$
v_{1}=\alpha_{1} \mu_{1}
$$

Let $G^{\prime}=\left\langle\omega_{2}, \ldots, \omega_{n}\right\rangle_{\mathbb{Z}}$. Then (since $\omega_{z}, \ldots, \omega_{n}$ are Lin. independent) G^{\prime} is a free abelian grope of rank $n-1$ such that $G=\left\langle\mu_{1}\right\rangle_{\mathbb{Z}} \times G^{\prime}$.
Claim: $H=\left\langle v_{1}\right\rangle_{\mathbb{Z}} \times\left(H \cap G^{\prime}\right)=\left\langle\alpha_{1} u_{1}\right\rangle_{\mathbb{Z}} \times H^{\prime}$.
Let's show the claim. Since $\left\{\mu_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$ is a basis
of G and $G^{\prime}=\left\langle\omega_{2}, \ldots, \omega_{n}\right\rangle_{\mathbb{Z}}$, it should be clear that $\left\langle\alpha_{1} \mu_{1}\right\rangle_{\mathbb{Z}} \cap(H \cap G)=\{0\}$. Now if

$$
h=\gamma_{1} \mu_{1}+\gamma_{2} w_{2}+\ldots+\gamma_{n} w n \in H \text { with } \gamma_{i} \in \mathbb{Z}
$$

again by the division algorithm

$$
\gamma_{1}=\alpha_{1} q+r_{i} \text {, with } 0 \leq r_{i}<\alpha_{1} \text {. }
$$

Since H is a grape, it contains

$$
\begin{aligned}
h-q v_{1} & =h-\alpha_{1} q u_{1} \\
& =\gamma_{1} \mu_{1}-\alpha_{1} q \mu_{1}+\gamma_{2} \omega_{2}+\ldots+\gamma_{n} \omega_{n} \\
& =r_{1} \mu_{1}+\gamma_{2} \omega_{2}+\ldots+\gamma_{n} \omega_{n} .
\end{aligned}
$$

By the minimality of α_{1}, we get again $r_{1}=0 \Rightarrow \gamma_{2} \omega_{2}+\ldots+\gamma_{n} w_{n}$ $\in H \cap G '$
and $h=q v_{1}+\left(\gamma_{2} w_{2}+\ldots+\gamma_{n} w_{n}\right) \in\left\langle v_{1}\right\rangle_{\mathbb{Z}}+\left(H \cap G^{\prime}\right)$.
This proves that $H=\left\langle v_{1}\right\rangle_{\mathbb{Z}} \times\left(H \cap G^{\prime}\right)$.
Now, $H^{\prime}=H \cap G^{\prime} \leqslant G^{\prime}$. By induction, H^{\prime} is free abelian of rank $s^{\prime} \leqslant n-1$ and there exist bases $\left\{\mu_{2}, \ldots, \mu_{n}\right\}$ of G^{\prime} and $\left\{v_{2}, \ldots, v_{s}\right\}$ of H^{\prime} st. $v_{i}=\alpha_{i} \mu_{i}$ for positive integers α_{i}. Since $G=\left\langle\mu_{1}\right\rangle_{\mathbb{2}} \times G^{\prime}$ and $H=\left\langle\alpha_{1} \mu_{1}\right\rangle_{\mathbb{2}} \times H^{\prime}$, it follows that H is free abelian of rank $s^{\prime}+1 \leqslant n$, $\left\{\mu_{1}, \ldots, u_{n}\right\}$ is a basis for G and $\left\{v_{1}, \ldots, v_{s}\right\}$ is a basis of H with $v_{i}=\alpha_{i} \mu_{i}, \alpha_{i} \geqslant 1$.

Remark: We can say more: in fact, $\alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{n}$ (the bar means "divides"). See Theorem 1.6 in Hungerford, if interested.

Proof of Theorem 1.17
Suppose G has rank r and H has ranks. By Theorem 1.16, let $\left\{\mu_{1}, \ldots, u_{r}\right\}$ and $\left\{v_{1}, \ldots\right.$, ss $\}$ basis of G and H, respectively, s.t. $v_{i}=\alpha_{i} \mu_{i}$ for some positive integers. Since $G \cong \mathbb{Z}^{r}$, we have

$$
G / H \cong(\underbrace{\mathbb{Z}^{s} / \alpha_{1} \mathbb{Z} \times \ldots \times \alpha_{s} \mathbb{Z}}_{\text {finite part }}) \times \underbrace{\mathbb{Z}^{r-s}}_{\text {infinite part }}
$$

so G / H is finite iff $r-s=0 \Rightarrow r=s$. In that case, $|G / H|=\alpha_{1} \ldots \alpha_{n}$. Moreover, $\forall i=1, \ldots, n$,

$$
\begin{array}{ll}
y_{i}=\sum_{j=1}^{n} d_{i j} v_{j} & \text { (change of basis) } \\
v_{i}=\sum_{j=1}^{n} c_{i j} u_{j} & (\text { The 1.16) } \\
u_{i}=\sum_{j=1}^{n} b_{i j} x_{j} & \text { (change of basis) }
\end{array}
$$

where $B=\left(b_{i j}\right)$ and $D=\left(d_{i j}\right)$ are unimodular by lemma 1.15 and

$$
C=\left(c_{i j}\right)=\left[\begin{array}{ccc}
\alpha_{1} & & \\
\alpha_{2} & & 0 \\
0 & & \alpha_{n}
\end{array}\right]
$$

If $A=\left(a_{i j}\right)$, since $y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, i=1, \ldots, n$, we have
$A=B C D$ and hence

$$
\begin{aligned}
& \operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}(C) \operatorname{det}(D)=(\pm 1)\left(\alpha_{1} \ldots \alpha_{n}\right)(\pm 1) \\
&= \pm \alpha_{1} \ldots \alpha_{n} \\
& \Rightarrow|\operatorname{det}(A)|=\left|\alpha_{1} \ldots \alpha_{n}\right|=|G / H|
\end{aligned}
$$

Exercise 10

Find the order of the groups G / H where G is free abelian with \mathbb{Z}-basis x, y, z and H is generated by:
(a) $2 x, 3 y, 7 z$
(b) $x+3 y-5 z, 2 x-4 y, 7 x+2 y-9 z$
(c) x
(d) $41 x+32 y-999 z, 16 y+3 z, 2 y+111 z$
(e) $41 x+32 y-999 z$.

Exercise 10
a) $H=\langle 2 x, 3 y, 7 z\rangle_{z}$. By Theorem 1.17,

$$
|G / H|=\left|\operatorname{det}\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 7
\end{array}\right]\right|=42
$$

c) $H=\langle x\rangle_{\mathbb{Z}} \Rightarrow \operatorname{rank} H=1<3=\operatorname{rank} G$ $\Rightarrow G / H$ is infinite.

Linearly dependent generators

Theorem (Proposition 1.18)

Every finitely generated abelian group G with n generators satisfies

$$
G \cong F \times B,
$$

where F is a finite abelian group and B is a free abelian group of rank $k \leq n$.

Theorem (Proposition 1.19)

Every subgroup of a finitely generated group is also finitely generated.

Proof of Proposition 1.18
let $G=\left\langle\omega_{1}, \ldots, \omega_{n}\right\rangle \mathbb{Z}$ where $\omega_{1}, \ldots, \omega_{n}$ are not necessarily independent. Consider

$$
f: \mathbb{Z}^{n} \rightarrow G
$$

given by $f\left(m_{1}, \ldots, m_{n}\right)=m_{1} \omega_{1}+\ldots+m_{n} \omega_{n} . f$ is surjective since $\omega_{1}, \ldots, w_{n}$ generate G. Thus

$$
G \cong \mathbb{Z}^{n} / H
$$

where $H=\operatorname{ker} f \leqslant \mathbb{Z}^{n}$. By Theorem 1.16, H is free abelian of rank $s \leq n$. By the same theorem, choose a basis $\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ of \mathbb{Z}^{n} in such a way that $\alpha_{1} \mu_{1}, \ldots, \alpha_{s} \mu_{s}$ is a basis for H, with $\alpha_{1}, \ldots, \alpha_{s}$ positive integers. Let

$$
A=\left\langle\mu_{1}, \ldots, \mu_{s}\right\rangle_{\mathbb{Z}} \text { and } B=\left\langle\mu_{s+1}, \ldots, \mu_{n}\right\rangle_{\mathbb{Z}}
$$

Then

$$
G \cong(A / H) \times B
$$

where A / H is a finite abelian group and B is a free abdian group of rank $k=n-s$.

Proof of Proposition 1.19
let $K \leqslant G$. Writing $G \cong F \times B$ as in Proposition 1.18, we have that $K \cong(F \cap K) \times H$ where $H \leq B$. Then, $F \cap K$ is a finite abelian group $(\Rightarrow$ finitely generated) and by theorem $116, H$ is a free abelian group (\Rightarrow finitely generated). $\therefore K$ is finitely generated.

Exercise 14

An abelian group G is said to be torsion-free if $g \in G, g \neq 0$ and $k g=0$ for $k \in \mathbb{Z}$ implies $k=0$. Prove that a finitely generated torsion-free abelian group is a finitely generated free group.

Hints:

- Proposition 1.18

