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Part 1

Part 1 4

Brief introduction to 
econometric identification
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Econometric identification: 

Model parameters (or features) of interest are 
uniquely determined from the observable 
population that data are drawn from

Lewbel (2019): > 20 types of identification concepts 
appear in the econometrics literature

Introduction
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Identification → estimation → inference & testing

The question of identification is separate from the 
question of estimation of a parameter using finite 
samples:

Identification, in general, is not about an estimator. 

Nor is it about what happens in a given sample

Identification precedes estimation
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A couple of ways to think about (point) identification

Assume you’d have access to an “infinitely large sample” 
and ask, what you can learn about the parameter using such 
data?

• Can the parameter be recovered uniquely using the infinite data? 

Assume existence of certain population quantities, what 
you can learn about the parameter of interest using them? 

• There is no need to worry about sampling uncertainty (etc). 

Point identification of a parameter
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Connection between identification and 
consistent estimator

Point identification is a necessary condition for 
there to exist e.g. a consistent estimator for the 
target parameter

If the parameter is not point identified under 
certain assumptions, then consistent estimators for 
it do not exist under the same set of assumptions.

Identification vs. consistent estimator
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Point identification is not sufficient for a consistent 
estimator to exist:

It only means that such an estimator may be available

Yet, note the reverse possibility: 

Finding a consistent estimator (𝑝𝑙𝑖𝑚𝑛→∞
መ𝛽= 𝛽0) may be 

a way to prove that a parameter is point identified

…
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θ = what we want to estimate and learn about 
= “theoretical estimand”

unknown parameters / vectors / functions

corresponds to “estimands”, i.e., the population 
values of estimators of the objects that we are 
interested in

What we know and want to learn 1/2

10

Notation (θ, φ) from Lewbel (2019, JEL)
Terms ”theoretical ”vs ”empirical” estimand adopted from Lundberg et al., American Sociological Review. 
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• φ = what is knowable about the DGP from data = 
“empirical estimand”

φ is information that is assumed to be known, or that 
can be learnt from an unlimited amount of data one 
has.

Examples: conditional means, moments, distribution 
functions, quantiles, true regression coefficients, 
autocovariances.

What we know and want to learn 2/2
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• Given φ, what can we learn about θ?

Can we logically deduce the unknown value of the 
parameter, θ, from what can be measured from the 
observed data, φ? 

Are model parameters or features, as captured by θ, 
uniquely determined 

… from what we know   from φ  from the 
observable population that our data are drawn from?

The identification question
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Note: Identification presumes that there are structural 
features, θ, that one wishes to uncover 

• θ  are often abstract notions, not part of the data themselves

• E.g., is consumer demand function identified?

– Demand function is an abstract (theoretical) notion. 

– It allows asking counterfactual questions, like what the demand for 
a product would be if price was X% higher than it actually is, 
holding all other things constant?

...
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Point identification:

If given what φ equals, we know the value θ equals → θ is point 
identified

Called also: “global identification”, “frequentist identification”

Partial (set) identification:

If given what φ equals, we can say something about the value of θ but 
cannot determine its value exactly → θ is partially identified

• E.g., we might be able to determine that θ falls in an interval. 

Identification is not an “all-or-nothing” concept; see Tamer (2010).

Point vs partial identification
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Parametric identification: 

θ is a finite set of constants and all values of φ 
correspond to values of a finite set of constants.

For example, let us consider point identification of 
the model parameters () in a linear regression

• This is an example of a continuous identifying mapping.

Parametric identification
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Example

16

Linear regression, exogenous X -- in this example,  is .

We suppose that the 
following are knowable ():

Inversion gives the equation (*)

Model

Implication of the model
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...

17

Suppose E[X’X] is a non-singular matrix. Then  is uniquely 
determined and continuous function of E[X’X] and E[X’Y]. 

Equation (*) thus identifies . 

I.e., we have  = f()   = E[X’X]-1E[X’Y].   

Equation (*)
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Identification → estimation: Given that  is identified, we can consider its 
estimation. 

Identification does not ensure that there exists a consistent estimator.

Data available: Suppose that we have a random sample from the probability 
distribution of Y and X.

Analogy principle: Replace the unknown population expectations with 
sample averages. 

…
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• Consistency of the sample averages:

Consistency of the sample averages implies that when the sample size is 
sufficiently large, the averages converge to the corresponding 
population moments.

Continuity of the identifying equation  = E[X’X]-1E[X’Y] 

 Small changes in E[X’X] and E[X’Y] cause only small changes in .

Consistency of the sample averages + the continuity of the identifying 

equation → when the sample size is sufficiently large, 𝜷𝐿𝑆 is arbitrarily 
close to  → the LS estimator is consistent for .

…
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Another example

20

Linear IV regression, endogeous X and instruments Z

Model
We suppose that the 

following are knowable ():

Implications of the model

Inversion gives the equation (**)
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...

21

If the inverse matrices on the RHS of this equation exist,  is uniquely 
determined. Equation (**) is a continuous identifying mapping.

Hence,  identified. It is a continuous function of the population
moments. 

Existence of a consistent IV estimator can be established using the same
arguments as in the previous example. 

Equation (**)
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Nonparametric identification: 

 θ consists of functions or infinite sets

Example: Think of 

• some function m(X); or 

• joint density of  and X, i.e., f,X

Non-parametric identification
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Case when θ is a function rather than a vector:

DGP is iid (Y, X), and suppose that X is continuous, that U 
and X are independent (i.e., U _|_ X), and that Y = 1(X + U > 
0).

We want to learn: 

• θ = FU(u) which is the distribution function of U.

Example
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For any value x that X can take on: 

E(Y | X = x) 

= Pr(X + U > 0 | X = x) 

= Pr(x + U > 0) = Pr(U > -x) 

= 1 - Pr (U  - x) = 1 - FU (-x).

FU can be recovered from E (Y| X = x), i.e., function FU is nonparametrically 
identified.

Note: FU(u) is only identified for values of u that are in the support of -x.

...
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Consider model

Assume the following are knowable: function g*(X) 
(e.g, has already been identified), marginal distribution 
F*

X and conditional FY|X = x(y). 

Can we identify the joint cumulative distribuion
function F*

,X i.e., true Pr ( ≤ e and X ≤ x)? 

Another example

25



Ari Hyytinen

This shows that the conditional F*
 | X = x  is identified. 

Because the marginal distribution F*
X is also identified, we can infer that F*

,X  is 
identified.

…
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Semiparametric identification 

  identification that is neither completely parametric 
nor completely nonparametric

θ may e.g. include a vector of constants and 
nuisance parameters that are functions

Semiparametric identification 
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Consider random variables (Y, X, Z) and assume the 
observations  are iid.

Partially linear model: Y = m(Z) + X’ +  where m is an 
unknown function,  is a finite vector of parameters, and E( 
| X, Z) = 0. 

Unknown parameters θ: Vector of constants, , and a 
function m(Z). 

Identification of θ is semiparametric, because θ contains a 
parametric component (finite vector ) and a nonparametric 
component (function m(Z)).

Example
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• Semiparametric identification (”by construction”):

Step 1: Assume E[Y| Z] and E[X| Z] are knowable from data, i.e. 
included in φ.

Step 2: Because Y - E [Y| Z] = (X-E(X| Z)’ +  , vector  is 
identified by construction:

• E [Y| Z] = m(Z) + E(X| Z)’ 
• Regress Y - E [Y| Z] on (X-E(X| Z)), works if var (X| Z) is non-singular.

Step 3:  Given , function m(Z) identified non-parametrically, 
because E(Y - X’| Z) = E(m(Z) + | Z) = m(Z) 

...

29
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More generally, what can be included in φ?

E.g., how do we know that φ includes the conditional 
expectation of Y given X, E[Y | X]?

Expectations of observed variables are knowable 

 

Certain statistical properties of observable sample 
averages hold in the data (e.g., their unbiasedness, 
consistency). 

What is knowable?
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Circularity in the definition of identification:

We assume initially that φ is identified (known) to 
determine if θ is identified.

Assuming φ is knowable  assuming φ is identified

• This must be justified by assumptions about the underlying 
DGP (i.e., by the model)

...
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Examples of φ include the following:

Distribution of (Y, X) for IID observations

Reduced form linear regression coefficients

Conditional distribution of Y given D where D values determined 
by an experimental protocol

Means and autocovariances in stationary time series data

Transition probabilities if data assumed to follow a martingale 
process

...
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Suppose you are told that data (X1, X2,..., Xn) 
are iid random variables with a common 
cumulative distribution function. 

What is knowable to start with, i.e., what can
be included in φ?  

(Guess)

Class discussion
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A model, M, corresponds to assumptions about and 
restrictions on the DGP:

Assumptions about the behaviour that generates the data

• E.g., statistical (e.g. randomization) and behavioral assumptions (e.g., a 
set of equations describing behavior)

Assumptions about how the data are collected and measured.

• E.g., assumptions about selection, measurement errors, and survey 
attrition.

Model

35
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Model M imposes restrictions 

on the possible values φ could take on 

• I.e., φ depends on the model (what is knowable depends on M)

on how φ and θ are related. 

θ is identified under the maintained model M if it is uniquely 
determined by the population distribution of observables.

...
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One cannot even ask whether θ is identified without a 
model (an abstraction) 

Model M defines what this quantity, θ, is.

It is difficult to discuss most objects of interest in empirical 
economics without a model 

Model may be based on economic theory or e.g. on 
hypothesized causal relations 

• (e.g., Rubin (1974) causal model) 

...
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…
• Trade-off: Stronger modelling assumptions may help 

to answer more intricate questions:

• Law of decreasing credibility: The credibility of inference
decreases with the strength of assumptions maintained.

• Stronger assumptions may yield clearer conclusions, but are
less credible.  

• E.g., contrast parametric vs non-parametric modelling choices, use
of generic functional forms vs. linear relations

[Manski C. F., 2007, Identification for Prediction and Decision, Harvard Univ. Press]
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• Clarifying note: Identification is not even about 
what we learn from an “infinitely large sample”:

E.g. let M consists of utility functions that are 
maximized s.t. budget constraint and let φ = Demand
functions and θ = Indifference curves. 

Revealed preference theory → if φ known, point 
identification of θ. 

A separate identification question: When can demand 
functions be identified from observed data?

...
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Example: As we will see later, the non-parametric
identification of BLP model relies on a particular 
non-parametric functional form restriction 

The non-parametric index restriction => 2×J 
instruments are sufficient to identify demand functions

Further parametric assumptions are stronger modelling 
assumptions that reduce the number of instruments 
that are needed for identification 

• (but may reduce the creditability of findings)

...
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DGP-assumption #1: iid observations of data 
vector W, with n → ∞.

Glivenko-Cantelli theorem: With such data, the 
distribution of W can be consistently estimated

Reasonable to assume that knowable φ includes 
the distribution function of W. 

Model: Typical DGP assumptions 

41
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DGP-assumption #2: Randomized experiment: 

Experimental protocol determines value of D (e.g., treatment 
indicator) for each observation. 

Conditional on that value of D, data collected by randomly 
drawing an observation of Y, independent of other observations.

Reasonable to assume that knowable φ includes the conditional 
distribution function of Y given D.

• Note: φ is only knowable for values of D that can be chosen by the 
experimenter.

…
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• DGP-assumption #3: Stationary time series data

Reasonable to assume that φ includes means, 
variances and autocovariances

Note: This does not automatically imply that φ includes 
higher moments 

• (they may be unstable over time)

…
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What kind of a model (M) underlies RCTs and 
causal inference that they enable? 

What is / could be M? What is / could be φ? What 
is / could be θ?

E.g. consider an ideal RCT, with no non-
compliance, no self-selection, no measurement 
error and let Y = outcome, and D = treatment 

Example
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Model, M, is implied by the ideal RCT + knowing (assuming) 
that data on realizations of (Y, D) are i.i.d. across individuals.

Let θ be ATE: θ = E(Y(1) - Y(0)), where Y(t) is the outcome an 
individual would have if assigned D = t (Rubin 1974). 

Given M, φ is the distribution of Y, D.

E.g., φ includes the conditional expectation of Y given D, E[Y | D], 

→ E[Y | D] is knowable from the data

...
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• M is the set of all possible joint distributions of 
(Y,(1), Y(0), D).

Model of “an ideal RCT” implies that D determined 
randomly (“by a coin flip”). 

→ This is a restriction on M: (Y(1), Y (0)) independent 
of D.

...
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Given M, θ is point identified: 

E (Y| D = 1) - E (Y| D = 0) = E (Y(1)| D = 1) - E (Y(0)| D = 
0) = E(Y(1)) - E (Y(0)) = ATE = θ

Because, given M, there is no selection bias + no bias 
due to heterogenous treatment effects

Identification always entails a model: This applies also 
to causal inference 

...

47



Ari Hyytinen

Approach #1: By construction, i.e., writing θ 
directly as a function of φ

All of the examples earlier

A further example: Directly prove consistency 

• Construct an estimator 𝜃 and prove that, under the assumed 
DGP, the estimator is consistent. 

• The construction is plim 𝜃 = 𝜃 .

Proving point identification
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Approach #2: Proving true θ is the unique solution 
to an optimization problem.

Example: Maximum likelihood (ML) with a concave 
population objective function → ML has a unique 
maximizing value

Identification follows if one can show that the unique 
maximiser in population is the true parameter value 0

…

49



Ari Hyytinen

Approach #3: Showing the true θ (0) is the 
unique fixed point in a contraction mapping 
based on M.

Example: A contraction mapping is used in Berry 
(1994) to prove that a necessary condition for 
identification (uniqueness in the error inversion 
step) holds in the BLP model.

…
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• Approach #4: Applying characterizations of 
observational equivalence in some classes of 
models

see Matzkin (2008, 2013)

Recall: θ is point identified if each possible value of 
φ implies a unique value of θ in Θ (= the set of all 
possible values that the model says θ could be)

…
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Observational equivalence and identification:

Two possible values θ and θ* are observationally equivalent if there 
exists a value of φ that could imply either θ or θ*.

Identification using an observational equivalence argument: 

• θ is point identified if θ and θ* being observationally equivalent implies 
that θ and θ* are equal.

• In other words, θ is point identified if there do not exist any pairs of 
possible values θ and θ* (in Θ) that are different but observationally 
equivalent.

...
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Common starting points for proving point identification

1. Wright-Cowles identification: φ is a set of reduced 
form population regression coefficients or population 
moments (e.g., E[X’X] and E[X’Y])

2. Distribution based identification: φ is the distribution 
function of an observable random vector Y

3. Extremum based identification: φ is the maximizer of 
some function (e.g. GMM or ML objective function)

Summary
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Non-mutually exclusive reasons:

Model incompleteness: E.g., variable relationships not fully specified, 
multiple equilibria. 

Perfect collinearity / perfect dependence

Nonlinearity: Possible multiple solutions

Simultaneity

Endogeneity

Unobservability: E.g., counterfactuals

Why point identification may fail?
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See Horowitz (2019) for 
further discussion

Discontinuities in non-
parametric identification

(IV models) 

Ill-posed inverse problems in 
econometric identification

...
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In light of what we have covered, consider a 
standard linear regression model, under typical
textbook assumptions

What is model M? 

• What restrictions does it imply?

What is knowable φ?

What is θ?

• Discuss identification θ. 

Class discussion
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Part 2

Part 2 59

This part is about normalizations and special regressors and 
how they are related to identification 
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Normalizations

xxx 60
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Identification requires often normalizations

If parameter restrictions (e.g. scaling of a 
parameter) can be made without loss of generality 
(“wlog”) they are normalizations

In economics, “wlog” = if the parameter restriction 
does not affect economically meaningful 
parameters or summary measures

Normalizations
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• A parameter restriction can be either a free 
normalization or imply a behavioural restriction 
(assumption)

The distinction depends on the model and research 
question

This is about how we use the model and interpret it. 

...
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Note #1:

Even if a normalization is irrelevant for 
identification, 

it can affect numerical performance of estimators
(e.g., convergence) and/or precision of estimates.

...
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• Note #2: 

Continuity, differentiability, monotonicity and other 
similar additional restrictions on functions in θ are 
behavioural restrictions (assumptions), not free
normalizations.

• How restrictive or consequential they are depends on the 
context; 

• See later our discussion on the conditions on invertability of 
mkt shares in BLP

...
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• Identification “up to scale”: 

Suppose all the elements  in the identified set are 
proportional to true , i.e. are of the form: * =  / c. 

To identify , a scale restriction is needed: 

• E.g., assume that the first element of  vector equals one (e.g. 
1=1). 

• Then *
1 = 1/c, which in turn allows recovering the remaining 

elements of  from *.

Scale restriction / ”Up to scale”
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A scale restriction is not always a free normalization

In some models, the level of X’ has economic meaning

Example: Y = 1 if willing to pay (WTP) more than C euros for a product 
or service.

Let X’ +  be WTP, where  _|_ X. Then Y = 1(X’ +  > C).

• E (Y | X) = g (X’ - C) where g is distribution of – and where (X’ - C) is the index 
being estimated.

Scaling is not a free normalization: X’ +  is WTP only if the coefficient 
of C is minus one.

...
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Location restrictions as a normalization

Let E (Y | X) = g(X + ), g is an unknown function,  is an 
unknown scalar.

Generally  is not identified, because g(X + ), is 
observationally equivalent to using  = 0 and g* such 
that g* (X) = g(X + ).

Location normalizations may or may not be free, depending
on the context.

Location restriction

67
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Consider first a general linear index model: 

E (Y | X) = g(X’), 

g is strictly monotonically increasing

E(XX’) is non-singular 

What is known: φ is the joint distribution of Y and X

What we want to know: θ is 

.

Example: Linear index model
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Example: For Probit, g is assumed to be the cumulative standard 
normal distribution function (g(X’) = (x’)) 

This implies that g is known. 

Result: In Probit, θ is identified.

Pr[Y = 1 | X] = E (Y | X) = g(X’)

Proof by construction:

 = [E (XX’)]-1E[Xg-1(E (Y | X))]

...
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To see the hidden normalizations in this
”identification” result, consider the following
special case of the linear index model: 

Threshold crossing binary choice model:

• Y = 1( + X’ + )       where _|_X.

Note: This is still a version of the  general linear index 
model with E (Y | X) = g(X’) when g is the distribution 
function of –( + ).

Normalizations in Probit
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This threshold crossing binary choice model is 
equivalent to:

Y = 1 if Y* > 0 and Y = 0 if Y*  0, with Y* =  + X ’ + 

Pr[Y = 1 | X=x] = Pr[Y* > 0 | X=x] = Pr[ > - X’ | X = x] = 
Pr[ < x’] 

Which normalizations must be imposed into this model 
to obtain the Probit model? 

...
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Pr[Y = 1 | X=x] = Pr[ < x’] = (x’)

Identification of the Probit coefficients based 
on both location and scale normalization

Probit assumes: E() = 0 and Var() = 1  

...
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• What do E() = 0 and Var() = 1 mean? 

Scaling the variance of  does not change the observed data, or choice. 

Having mean zero for  (i.e. threshold) is innocent as long as the model has a 
constant. 

These determine the location and scale of  + X’ + .

Note, there are observationally equivalent normalizations: e.g., let  have 
arbitrary mean and variance, but set:  = 0, ’ = 1.

We shall return to normalizations in discrete choice demand estimations 

...
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Special regressors

xxx 74
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A special regressor 

is an observed covariate 

has properties that facilitate identification and 
estimation of econometric models

E.g., non-parametric identification of BLP relies 
on existence of such a covariate.

What is a special regressor?
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Suppose an observed binary variable Y satisfies 

Y = 1[V + W] 

where V is the observed special regressor with a 
coefficient of one and where W is an unobserved 
latent variable.

The goal is identification and estimation 
of the distribution of W.

Example
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Many models have this form Y = 1[V + W] 

Compare this to: Y = 1[ + X’ + ], which is the Probit 
model if  is distributed the standard normal

A Probit does not require a special regressor, because it 
relies on parametric assumptions that allow uncovering 
. 

• The distribution of  has no free parameters and its shape is 
assumed. 

…
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How does special regressor methods allow 
identification of the distribution of W?

They exploit the fact that if V is independent of W then 
variation in V changes Pr[Y = 1 | V ] in a way that traces 
out the distribution of W.

Depending on the context, this can be done find out 
either the unconditional distribution of W or its 
distribution conditional on covariates.

…

78



Ari Hyytinen

Suppose we want to uncover the distribution of people’s 
willingness to pay (WTP) W to preserve a piece of forest. 

Denote this distribution function as FW(w) = Pr(W  w)

Data from a survey: 

Random price P → is the respondent willing to pay ≥ P € to 
preserve the forest?

P is drawn independently of W.

Example
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Here, Y = 1[W - P], with P taking the role of a 
special regressor

E[Y = 1 | P = p] = Pr[W >  p] = 1 – Pr[W < p] = 1 – 
FW(p). 

Thus, FW(p) = 1 – E[Y = 1 | P = p]. 

This shows how variation in P allows identifying 
distribution of WTP. 

…

80



Ari Hyytinen

E.g., suppose 70% of the respondents said they 
would be not be willing to pay more than €50 
to preserve the forest. 

In this example p = 50 and so 0.70 would be an 
unbiased estimate of 1 - E[D = 1 | p = 50] = 
FW(50).

…
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Hypotetical data

82

p Share of willing to pay Share of not willing to pay 1 - E[D = 1 | p ] F(W) 1-F(W)
40 1.000 0.000 0.000 0.000 1.000
41 0.991 0.009 0.009 0.009 0.991
42 0.950 0.050 0.050 0.050 0.950
43 0.900 0.100 0.100 0.100 0.900
44 0.800 0.200 0.200 0.200 0.800
45 0.700 0.300 0.300 0.300 0.700
46 0.600 0.400 0.400 0.400 0.600
47 0.500 0.500 0.500 0.500 0.500
48 0.450 0.550 0.550 0.550 0.450
49 0.400 0.600 0.600 0.600 0.400
50 0.300 0.700 0.700 0.700 0.300
51 0.290 0.710 0.710 0.710 0.290
52 0.250 0.750 0.750 0.750 0.250
53 0.200 0.800 0.800 0.800 0.200
54 0.190 0.810 0.810 0.810 0.190
55 0.160 0.840 0.840 0.840 0.160
56 0.110 0.890 0.890 0.890 0.110
57 0.900 0.100 0.100 0.100 0.900
58 0.500 0.500 0.500 0.500 0.500
59 0.025 0.975 0.975 0.975 0.025
60 0.000 1.000 1.000 1.000 0.000
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The special regressor method can mean a variety of approaches. It has been used in 
e.g. 

binary, ordered, and multinomial choice models 

censored regression, selection and treatment models 

truncated regression 

binary and other nonlinear panel models with fixed effects 

contingent valuation models 

dynamic choice models 

market equilibrium models of multinomial discrete choice (BLP)

models of games, including entry games and matching games

Examples of usage
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