Crystallography course SCHEDULE

Topic

1. Wed 28.02. Lec-1: Introduction
2. Mon 04.03. Lec-2: Crystal Chemistry \& Tolerance parameter
3. Mon 04.03. EXERCISE 1
4. Wed 06.03. Lec-3: Crystal Chemistry \& BVS
5. Fri 08.03. Lec-4: Symmetry \& Point Groups
6. Mon 11.03. EXERCISE 2
7. Wed 20.03. Lec-5: Crystallography \& Space Groups (Linda) Ke3
8. Fri 22.03. Lec-6: XRD \& Reciprocal lattice (Linda) Ke4
9. Mon 25.03. EXERCISE 3 (Linda) Ke4
10. Thu 04.04. Lec-7: Rietveld (Linda) 12:15-14, Ke3
11. Fri 05.04. EXERCISE 4: Rietveld (Linda)

Mon 08.04. EXERCISE 4: Rietveld (Linda)
12. Thu 11.04. Lec-8: ND \& GI-XRD 12:15-14, Ke3
13. Fri 12.04. Lec-9: XRR (Topias)
14. Mon 15.04. EXERCISE 5: XRR (Topias)

Wed 17.04. EXERCISE 5: XRR (Topias)
15. Mon 22.04. Lec-10: Synchrotron radiation \& XAS \& EXAFS
16. Thu 25.04. Mössbauer 12:15-14, Ke3
17. Fri 26.04. EXERCISE 6
18. Mon 29.04. Seminars:
19. Fri 03.05. Seminars:
20. Mon 06.05. ADDITIONAL DISCUSSION/QUESTION POSSIBILITY

LINDA'S LECTURES \& EXERCISES

- 20.03. WEDNESDAY: 14.15-16 (Ke3)
- 22.03. FRIDAY: 12:15-14 (Ke3)
- 25.03. MONDAY: 14.15-16 (Ke4) Exercise session
- Exercise deadline 27.3 at 13:00

Easter holidays break! ()

- 04.04. THURSDAY: 12:15-14 (Ke3)
- 05.04. FRIDAY: 12:15-14 (?) Rietveld exercise 1
- Getting started on FullProf
- 08.04. MONDAY: 14:30-16 (?) Rietveld exercise 2
- Help with finishing the exercise
- Exercise deadline on 10.4. at 13:00

SEMINARS

- IR
- Raman
- XPS
- SEM
- AFM
- HRTEM
- ED
- EELS Miklos Nemesszeghy

INSTRUCTIONS for SEMINAR PRESENTATIONS

- Topics: IR, Raman, XPS, SEM, AFM, HRTEM, ED, EELS
- Seminar presentation is mandatory
- Presentation slides will be put up in MyCourses afterwards
- Seminars are part of the course content and it is likely that there will be questions in the exam related to these seminars
- Given independently or in a group of two students
- Evaluated in the scale: 10 ~ 20 points
- Presentation: 25+5 minutes
- Rough content of the presentation:
- principle of the technique(s)
- type of information gained
- interpretation of the measured data
- pros \& cons
- two to four research examples
(you will be given some relevant research papers for an example)

LECTURE 5: CRYSTALLOGRAPHY BASICS

- From "point-like" molecules to 3D crystals
- Translation in 3D crystals \rightarrow NEW SYMMETRY OPERATIONS (glide planes \& screw axes)
- From Point groups to Space groups
- Crystal lattice, lattice points \& unit cell
- International Tables of Crystallography

Symmetry elements (Schönflies / Hermann-Mauguin)

RECALL FROM PREVIOUS LECTURE:

Point / Molecular symmetry \square One point remains unchanged

Identity E

Symmetry/inversion center il

Rotation axis $C_{n} / 1,2,3, \ldots$

Reflection/mirror plane σ / m

Improper rotation axis $S_{n} /(\overline{1}, \overline{2}), \overline{3}, \overline{4}, \overline{6}$

NOTE:

- Improper rotation axis $\overline{1}$ and inversion center $\overline{1}$ are equivalent
- Improper rotation axis 2 and mirror plane m are equivalent

CRYSTAL 2D

FROM MOLECULES TO CRYSTALS

There are two things which make macroscopic (infinite) crystals different from discrete molecules in terms of symmetry: Translation \& Space-filling

Translation in crystals

- Translation: move from one point to another (the entire object)
- This does not exist in molecules, but is the essence of macroscopic crystals exhibiting long-range order

- Crystal lattice: regular, infinite pattern

FROM MOLECULES TO CRYSTALS

There are two things which make macroscopic (infinite) crystals different from discrete molecules in terms of symmetry: Translation \& Space-filling

Space-filling $\rightarrow 5$ lattices

- Macroscopic crystals need to continuosly fill the space
- For molecules 5 -fold rotation is possible, but not for crystals
- Quasicrystals can have 5-fold rotation: 2-component lattice

FROM MOLECULES TO CRYSTALS

The crystal lattice is the geometrical 'drawing board', which is then filled with constituents that build a pattern: lattice points, basis, and unit cell

Basis:

- The atom (atom group) that is repeated

Lattice points

- The positions filled by the basis as a function of the symmetry operations for the lattice
- Each lattice point has identical environment + symmetry properties (=point group)

FROM MOLECULES TO CRYSTALS

The crystal lattice is the geometrical 'drawing board', which is then filled with constituents that build a pattern: lattice points, basis, and unit cell

Unit cell

- Smallest possible part of the crystal lattice;
> that repeats itself periodically;
> to completely fills the lattice volume;
> and is enough to describe the entire lattice perfectly

- Choice of the unit cell not always unambiguous: several options

2D \rightarrow 3D

LATTICES IN 3D: CRYSTAL SYSTEMS (7)

No information on the positions of atoms

Cubic
$\mathrm{a}=\mathrm{b}=\mathrm{c}$
$\alpha=\beta=\gamma=90^{\circ}$
$\mathrm{NaCl}, \mathrm{MgAl}_{2} \mathrm{O}_{4}$

Tetragonal
$\mathrm{a}=\mathrm{b} \# \mathrm{c}$
$\alpha=\beta=\gamma=90^{\circ}$ $\mathrm{TiO}_{2}, \mathrm{~K}_{2} \mathrm{NiF}_{4}$

Orthorhombic a \# b \# c
$\alpha=\beta=\gamma=90^{\circ}$ $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$

Rhombohedral
$\mathrm{a}=\mathrm{b}=\mathrm{c}$
$\alpha=\beta=\gamma \# 90^{\circ}$
BaTiO_{3} (low-T)

Hexagonal

$\mathrm{a}=\mathrm{b} \# \mathrm{c}$
$\alpha=\beta=90, \gamma=120^{\circ}$ LiNbO_{3}

Monoclinic

$$
\mathrm{a} \# \mathrm{~b} \# \mathrm{c}
$$

$$
\alpha=\gamma=90^{\circ}, \beta \# 90^{\circ}
$$

$$
\mathrm{KH}_{2} \mathrm{PO}_{4}
$$

Triclinic
$\mathrm{a} \# \mathrm{~b} \# \mathrm{c}$
$\alpha \# \beta \# \gamma \# 90^{\circ}$

Each LATTICE POINT should be able to be

 described with the vector $Q_{[u v w]}=u a+v b+w c$, where u, v and w all are INTEGER values

Unit cell: YES

Unit cell: NO

Lattice points = unit cell corners

What we need to tell about the UNIT CELL
(basis)

- Shape \& size of the unit cell plus the atomic positions in the unit cell
- Shape \& size are given by:
- Lattice parameters: a, b ja c
- Angles between the axes: α, β ja γ

LATTICES IN 3D: BRAVAIS LATTICES (14)

Basic stacking of lattice sites included (basis, not atoms)

Centering	Lattice sites/cell	Abbre- viation
Primitive	1	P
Base (A, B, or C) centered	2	A, B, C
Body centered	2	I
Hexagonal, rhombohedral	3	h / R
Face centered	4	F

EXAMPLE

- What is the Bravais lattice type of NaCl : Cubic F (basis: $\mathrm{Na}-\mathrm{Cl}$)

Rock-salt (NaCl) structure

Your EXERCISE question

- What is the Bravais lattice type of CsC

Counting atoms

NUMBER of FORMULA UNITS in UNIT CELL (Z)

= basis sets

Simple cubic

> Typically $Z=1-6$, but can be tens or even hundreds!

EXAMPLE

- How many NaCl formula units in unit cell?
-

answer...

- Cl^{-}
- Na^{+}

If the atom is placed...	...it belongs to:
inside unit cell	one unit cell
on unit cell face	two unit cells
unit cell edge	four unit cells
unit cell corner	eight unit cells

Lattice symmetry: POINT GROUPS

The 2D point groups

Crystallography fundamental rule of translation: units must stack without gaps!

The 2D point groups

Crystallography fundamental rule of translation: units must stack without gaps!

5 options for rotational symmetry

+	1	2	3	4
5 more options with mirror symmetry				
$=10$ point groups	$m(1 \mathrm{~m})$	2 mm	3 m	4 mm

Point group graphical symbol shown in red

New symmetry in 3D

Additional translation symmetry elements in INFINITE LATTICES

Combining translation with other symmetry operations/elements
\rightarrow new symmetry operations/elements: glide planes \& screw axes

Screw axis

- Rotation plus translation
$n_{m}\left(2_{1}, 3_{1}, 3_{2}, 4_{1}, 4_{2}, 4_{3}, 6_{1}, 6_{2}, 6_{3}, 6_{4}, 6_{5}\right)$
For example: 2_{1} : rotation 180° and translation $1 / 2(\mathrm{~m} / \mathrm{n})$

Glide plane

- Reflection against a mirror plane plus (half) translation parallel to the plane

Axis glide plane: $\quad a, b, c$ (translations by $1 / 2 a, 1 / 2 b, 1 / 2 c$ to each glide plane direction)
Diagonal glide plane:

$$
\begin{aligned}
& n[1 / 2(a+b), 1 / 2(b+c), 1 / 2(c+a)] \\
& d[1 / 4(a+b), 1 / 4(b+c), 1 / 4(c+a)] \text { (so-called diamond glide plane) }
\end{aligned}
$$

GLIDE PLANE c ($\perp \mathrm{b}$)

Reflection (m) through ac-plane, followed by (half) translation (t) along c-axis

Symmetry elements in 3D

Element	What it does	Possible in crystal system
Identity (1)	-	All
Inversion $(\overline{1})$	Inversion	All
Mirror plane (m)	Mirror	All but triclinic
2- fold rotation (2)	Rotate 180°	All but triclinic
3-fold rotation (3)	Rotate 120°	Trigonal, Hexagonal and Cubic
4-fold Rotation (4)	Rotate 90°	Tetragonal and Cubic
6-fold Rotation (6)	Rotate 60°	Hexagonal

\boldsymbol{m}	Mirror plane
$\mathbf{2}$	2-fold rotation
$\mathbf{3}$	3-fold rotation
4	4-fold rotation
$\mathbf{6}$	6-fold rotation

- $\overline{\mathbf{1}} \quad$ 1-fold improper rotation = inversion point
3-fold improper rotation
(1) $\overline{4}$ 4-fold improper rotation
(-) $\overline{6}$ 6-fold improper rotation

POINT GROUPS
 (from historical reasons) DIFFERENT SYMMETRY SYMBOLS

Schoenflies (S) symbols

- were developed first
- in molecular symmetry \& spectroscopy

Hermann-Mauguin (H/M) symbols

- in crystallography
- long and short forms

Graphical symbols

3D point group graphical symbols
Table 1.1 Symmetry elements of crystal point groups.

System	Point group symmetry		Symmetry elements	Numberofopera-tions
	S	H / M		
Triclinic	$\begin{aligned} & C_{1} \\ & C_{i}=S_{2} \end{aligned}$	$\frac{1}{1}$	$\begin{aligned} & I=C_{1} \\ & I, i\left(=S_{2}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Monoclinic	$\begin{aligned} & C_{2} \\ & C_{s}=C_{1 \mathrm{~h}}=C_{1 v} \\ & C_{2 \mathrm{k}} \end{aligned}$	$\begin{aligned} & 2 \\ & m \\ & 2 / m \end{aligned}$	$\begin{aligned} & I, C_{2} \\ & I, \sigma \\ & I, C_{2}, \sigma_{n}, i \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
Orthorhombic	$\begin{aligned} & C_{21} \\ & D_{2} \\ & D_{2 n} \end{aligned}$	$\begin{aligned} & \mathrm{mm} 2 \\ & 222 \\ & \mathrm{mmm} \end{aligned}$	$\begin{aligned} & I, C_{2}, 2 \sigma \\ & I, 3 C_{2} \\ & I, 3 C_{2}, 3 \sigma, i \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 8 \end{aligned}$
Tetragonal	$\begin{aligned} & C_{4} \\ & S_{4} \\ & D_{4} \\ & C_{4 v} \\ & C_{4 k} \\ & D_{24} \\ & D_{4 k} \end{aligned}$	4 422 4 mm 4/m $\overline{4} 2 \mathrm{~m}$ $4 / \mathrm{mmm}$	I, C_{4} I, $S_{4}\left(=C_{2}\right)$ I, $C_{4}\left(-C_{2}\right), 2 C_{2}^{\prime}, 2 C_{2}^{B}$ $I, C_{4}, 2 \sigma_{b}, 2 \sigma_{6}$ $I, C_{4}\left(=S_{4}\right), \sigma_{k}, i$ $I, S_{4}\left(=C_{2}\right), 2 C_{2}^{\prime}, 2 \sigma_{4}$ $I, C_{4}\left(=S_{4}\right), 2 C_{2}^{\prime}, 2 C_{2}^{\prime \prime}$,	$\begin{aligned} & 4 \\ & 4 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$
Trigonal	$\begin{aligned} & C_{3} \\ & C_{34} \\ & D_{3} \\ & C_{3 \mathrm{~s}} \\ & D_{3 \mathrm{~d}} \end{aligned}$	$\begin{aligned} & \frac{3}{3} \\ & 32 \\ & \frac{3}{3} m \\ & \frac{3}{3} m \end{aligned}$	I, C_{3} I, $S_{6}\left(=C_{3}\right), i$ I, $C_{3}, 3 C_{2}$ $I, C_{3}, 3 \sigma_{0}$ $I, S_{6}\left(-C_{3}\right), 3 C_{2}, 3 \sigma_{\mathrm{d}}, i$	$\begin{array}{r} 3 \\ 6 \\ 6 \\ 6 \\ 12 \end{array}$
Hexagonal	$\begin{aligned} & C_{6} \\ & C_{3 h} \\ & D_{6} \\ & D_{3 k} \\ & C_{6 h} \\ & C_{64} \\ & D_{6 k} \end{aligned}$	6 6 622 6 m 2 $6 / m$ 6 mm $6 / \mathrm{mmm}$	I, C_{6} I, $S_{3}\left(=C_{3}\right), \sigma_{4}$ I, $C_{6}, 3 C_{2}^{\prime}, 3 C_{2}^{\prime}$ $1, C_{3}\left(=S_{3}\right), 3 C_{2}, 3 \sigma_{6}, \sigma_{4}$ $I, C_{6}\left(=S_{6}\right), \sigma_{k}, i$ I, $C_{6}, 3 \sigma_{0}, 3 \sigma_{d}$ $I, C_{6}\left(=S_{6}\right), 3 C_{2}^{\prime}, 3 C_{2}^{*}$, $3 \sigma_{v}, 3 \sigma_{d}, \sigma_{k}, i$	$\begin{array}{r} 6 \\ 6 \\ 12 \\ 12 \\ 12 \\ 12 \\ 24 \end{array}$
Cubic	$\begin{aligned} & T \\ & T_{\mathrm{b}} \\ & T_{d} \\ & O \\ & O_{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 23 \\ & m 3 \\ & \frac{m 3 m}{43 m} \\ & 432 \\ & m 3 m \end{aligned}$	I, $3 C_{2}, 4 C_{3}$ $I, 3 C_{2}, 4 C_{3}\left(=S_{6}\right), 3 \sigma_{6}, i$ $I, 3 C_{2}\left(=S_{4}\right), 4 C_{3}, 6 \sigma_{d}$ $I, 3 C_{2}, 4 C_{3}, 3 C_{4}$ $I, 3 C_{2}, 4 C_{3}\left(=S_{6}\right)$, $3 C_{4}\left(=S_{4}\right), 3 \sigma_{\mathrm{h}}, 6 \sigma_{\mathrm{d}}, i$	$\begin{aligned} & 12 \\ & 24 \\ & 24 \\ & 24 \\ & 48 \end{aligned}$

Hermann-Mauguin (H/M) symbols

CRYSTAL CLASSES
 i.e. POINT GROUPS

The 32 Point Groups

1	4	$\overline{3}$	6 mm
$\overline{1}$	$\overline{4}$	32	$\overline{6} m 2$
2	$4 / \mathrm{m}$	3 m	$6 / \mathrm{mmm}$
m	422	$\overline{3} m$	23
$2 / \mathrm{m}$	4 mm	6	$m \overline{3}$
222	$\overline{4} 2 m$	$\overline{6}$	432
mm 2	$4 / \mathrm{mmm}$	$6 / \mathrm{m}$	$\overline{4} 3 m$
mmm	3	622	$m \overline{3} m$

The 32 Point Groups (Schoenflies)

$1\left(\mathrm{C}_{1}\right)$	$4\left(\mathrm{C}_{4}\right)$	$\overline{3}\left(\mathrm{C}_{3 \mathrm{i}}\right)$	$6 \mathrm{~mm}\left(\mathrm{C}_{6 \sigma \mathrm{v}}\right)$
$\overline{1}\left(\mathrm{C}_{\mathrm{i}}=\mathrm{S}_{2}\right)$	$\overline{4}\left(\mathrm{~S}_{4}\right)$	$32\left(\mathrm{D}_{3}\right)$	$\overline{6} m 2\left(\mathrm{D}_{3 \sigma \mathrm{~h}}\right)$
$2\left(\mathrm{C}_{2}\right)$	$4 / \mathrm{m}\left(\mathrm{C}_{4 \sigma \mathrm{~h}}\right)$	$3 \mathrm{~m}\left(\mathrm{C}_{3 \sigma \mathrm{v}}\right)$	$6 / \mathrm{mmm}\left(\mathrm{D}_{6 \sigma \mathrm{~h}}\right)$
$\mathrm{m}\left(\mathrm{C}_{\sigma}\right)$	$422\left(\mathrm{D}_{4}\right)$	$\overline{3} m\left(\mathrm{D}_{3 \mathrm{~d}}\right)$	$23(\mathrm{~T})$
$2 / \mathrm{m}\left(\mathrm{C}_{2 \sigma \mathrm{~h}}\right)$	$4 \mathrm{~mm}\left(\mathrm{C}_{4 \sigma \mathrm{v}}\right)$	$6\left(\mathrm{C}_{6}\right)$	$m \overline{3}\left(\mathrm{~T}_{\mathrm{h}}\right)$
$222\left(\mathrm{D}_{2}\right)$	$\overline{4} 2 m\left(\mathrm{D}_{2 \mathrm{~d}}\right)$	$\overline{6}\left(\mathrm{C}_{3 \sigma \mathrm{~h}}\right)$	$432(\mathrm{O})$
$2 \mathrm{~mm}\left(\mathrm{C}_{2 \sigma \mathrm{v}}\right)$	$4 / \mathrm{mmm}\left(\mathrm{D}_{4 \mathrm{~h}}\right)$	$6 / \mathrm{m}\left(\mathrm{C}_{6 \sigma \mathrm{~h}}\right)$	$\overline{4} 3 m\left(\mathrm{~T}_{\mathrm{d}}\right)$
$\mathrm{mmm}\left(\mathrm{D}_{2 \sigma \mathrm{~h}}\right)$	$3\left(\mathrm{C}_{3}\right)$	$622\left(\mathrm{D}_{6}\right)$	$m \overline{3} m\left(\mathrm{O}_{\mathrm{h}}\right)$

Which point groups are possible for each lattice type?

System	Minimum Requirements
Cubic	Four 3-fold rotation axis
Tetragonal	One 4-fold rotation (or RI) axis
Orthorhombic	Three perpendicular 2-fold axis
Rhombohedral	One 3-fold rotation (or RI) axis
Hexagonal	One 6 fold rotation (or RI) axis
Monoclinic	One 2 fold rotation axis or mirror plane
Triclinic	none
System	Point groups
Cubic	23, $m \overline{3}, 432, \overline{4} 3 m, m \overline{3} m$
Tetragonal	$4, \overline{4}, 4 / \mathrm{m}, 422,4 \mathrm{~mm}, \overline{4} 2 \mathrm{~m}, 4 / \mathrm{mmm}$
Orthorhombic	222, 2 mm , mmm
Trigonal	$3, \overline{3}, 32,3 \mathrm{~m}, \overline{3} \mathrm{~m}$
Hexagonal	$6, \overline{6}, 6 / \mathrm{m}, 622,6 \mathrm{~mm}, \overline{6} \mathrm{~m} 2,6 / \mathrm{mmm}$
Monoclinic	2, m, 2/m
Triclinic	1, $\overline{1}$

The building blocks of 3D

7 Crystal systems

= geometrical bodies (unit cells) that can stack in 3D
\& 14 Bravais lattices
= basic atomic arrangements within a unit cell
\& 32 Point groups
= geometrical symmetry operation systems within the unit cell
$\rightarrow 230$ Space groups
= possible combinations of lattices and symmetry elements (impossible systems and doublets excluded)

\rightarrow SPACE GROUPS (230)

Triclinic

(For the enlarged unit cells, click here)

1. $\underline{P 1}$	2. $\underline{P-1}$			
	Monoclinic			
(For a fuller list with alternative unique axes, origins, or enlarged unit cells click here)				
3. P121	4. P12 $1_{1} \underline{1}$	5. C121	6. $\underline{P 1 m 1}$	7. P1c1
8. C 1 ml	9. $C 1 c 1$	10. $P 12 / \mathrm{ml}$	11. $\mathrm{P}_{12} 1_{1 / \mathrm{m} 1}$	12. $\mathrm{C} 12 / \mathrm{ml}$
13. P12/c1	14. $\underline{12}_{1} / \mathrm{Cc}$	15. C12/c1		
Orthorhombic				
(For a fuller list with alternative axes and origins click here)				
16. $\underline{P 222}$	17. $\underline{P 2221}_{1}$		19. $\underline{2}_{1}^{1} \underline{2}_{1} \underline{2}_{1}$	20. $\underline{C 2221}$
21.C222	22.F222	23. $\underline{1222}$	24. $\underline{I 2}_{1} \underline{2}_{1} \underline{2}_{1}$	25. Pmm 2
26. $P_{m c 2}{ }_{1}$	27. $P \subset c 2$	28. P ma2	29. ${\underline{C B a} 2_{1}}^{1}$	30. $\underline{P n c 2}$
31. P_{m}	32. $\underline{P b a 2}$	33. ${\underline{P n a} 2_{1}}^{1}$	34. P nn2	35. Cmm 2
36. $\mathrm{Cmc2}{ }_{1}$	37. Ccc 2	38. Amm 2	39. Abm 2	40. Ama 2
41. A ba 2	42. Fmm 2	43. Fdd 2	44. Imm 2	45. Iba 2
46. $\mathrm{Ima2}$	47. Pmmm	48. $P \underline{n n n}$	49. Pccm	50. Pban
51. Pmma	52. Pnna $^{\text {a }}$	53. $\mathrm{Pmna}^{\text {a }}$	54. Pcca	55. Pbam
56. $\underline{P c c n}$	57. Pbcm	58. $\mathrm{Pnnm}^{\text {a }}$	59. Pmmn	$60 . \mathrm{Pbcn}$
61. Pbca	62. Pnma	63. Cmcm	64. Cmca	65. Cm m m
66. Cccm	67. Cmma	68. Ccca	69. Fmmm	70. Fddd
71. 1 mmm	72. Ibam	73. Ibca	74. Imma	

Tetragonal
(For the enlarged C - and F-centred unit cells, click here)

All space group diagrams and tables online:
http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

BIBLE OF CRYSTALLOGRAPHY

- Space groups (and the characteristic information in 2 pages) are listed in International Tables for Crystallography
- Next slide: Space Group P4/mmm as an example

Origia at centre (4/mmet
Asymmetric unit $\quad 0 \leq x \leq t ; 0 \leq y \leq t ; 0 \leq z \leq 1 ; x \leq y$

Symmetry operations

Maximal nee-isomorphic subgroups

```
I [2]P422
    [2]P4/暒11(P4/m)
    [2]P4mm
    [2]P42m
    [2]P4m2
    [2]P2/m2/m| (PN\piN)
        1;2:3;4;5;6;7;8
        1;2;3;4;9;10;11;12
    \ 1;2;5;6;11;12;15;16
    (2)
(1/ल (Cmmm) 1:2;7;8;9;10;15;16
```


Maximal isomorphic subgroups of lowest index

Ile $\quad\left[2 \mid P 4 / m m m\left(c^{\prime}=2 c\right) ;[2] C 4 /\right.$ ww w $\left(a^{\prime}=2 a, b^{\prime}=2 b\right)(P 4 / \mathrm{mmm})$

Minimal non-isomorphic supergroups

I $\quad[3] P_{w}{ }^{3}=x$
II $[2] \mathrm{J} / \mathrm{mmm}$

Generators selected (1); $t(1,0,0) ; \quad 1(0,1,0) ; \quad 1(0,0,1) ; \quad$ (2); (3); (5); (9)

Positions

Nat	Coordinates	Reflection conditions

Sik ymemy.

General
no conditions

Special:
no extri conditions
no extra canditions
no extra conditions
to catra conditions
ho extra conditions
no extri conditions
no extri conditions
no extra conditions
50 entra conditions
Do extra condition:
no extra conditions
$k k 1: h+k=2 n$
no extra conditions
no extra cooditions
At : $: 4+k=2 \pi$
hat : $h+k=2 n$
no extra conditions
no extra conditions
ne extra conditions
no extra conditions

Symmetry of special projections

Along [001] $\mathrm{p}^{4 m \ldots 1}$	Along [100] $\quad \mathrm{p} 2 \mathrm{~mm}$	Along [110] p 2 mw
$a^{\prime}=a \quad b^{\prime}=b$	$\mathbf{a}^{\prime}=\boldsymbol{b} \quad \boldsymbol{b}^{\prime}=\boldsymbol{c}$	$a^{\prime}=:(-a+b) \quad b^{\prime}=c$
Origin at $0,0, z$	Origin x a $x, 0,0$	Orizin at $x, x, 0$

$\boldsymbol{a}^{\prime}=\boldsymbol{b} \quad \boldsymbol{b}^{\prime}=\boldsymbol{c}$
Origin $x a, 0,0$

Along [ILO] p2ww
$a=:(-a+b) \quad b^{\prime}=c$

EXAMPLES of INFORMATION

- Space group number: 123
- Name: P4/mmm
- Complete name: $P 4 / m 2 / m 2 / m$; showing the symmetry elements (4fold rotation axis, mirror planes)
- Crystal system: tetragonal
- Lattice type: P (primitive)
- Site symmetry of the highest-symmetry site: $\mathrm{D}_{4 \mathrm{~h}}$
- Asymmetric unit (basis): smallest closed part of space the entire space is filled by applying all symmetry operations

On the second page:

- List of possible sites for the atoms

These are indicated/named by: multiplicity, Wyckoff letter \& site symmetry

Not all sites are actually occupied by an atom

On the top: general site (16u)
At the bottom: the highest symmetry site (1a)

Multiplicity: number of identical sites
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)

Positions								
Multiplicity. Wyckoff letter, Site symmetry				Coordinates				Reflection conditions General: no conditions
16	u	$1 \begin{array}{rr}(1) \\ & (5 \\ & (9) \\ & (13)\end{array}$		(2) \bar{x}, \bar{y}, z (6) x, \bar{y}, z (10) x, y, z (14) \bar{x}, y, z	(3) \bar{y}, x, z (7) y, x, z (11) y, \bar{x}, \bar{z} (15) \bar{y}, \bar{x}, z		(4) y, \bar{x}, z (8) $\bar{y}, \bar{x}, \bar{z}$ (12) \bar{y}, x, \bar{z} (16) y, x, z	
			y, \bar{z}					
			\bar{y}, \bar{z}					
								Special:
8	t	. m.	$x, \frac{1}{2}, z$	$\overline{\mathbf{x}}, \frac{1}{2}, z$	$\frac{1}{2}, x, z$	$\frac{1}{2}, \bar{x}, z$		no extra conditions
			$\bar{x}, \frac{1}{2}, \bar{z}$	$x, \frac{1}{2}, \bar{z}$	$\frac{1}{2}, x, \bar{z}$	$\frac{1}{\frac{1}{2}, \bar{x}, \bar{z}}$		
8	s	. m.	$x, 0, z$	$\bar{x}, 0, z$	0,x,z	$0, \bar{x}, z$		no extra conditions
			$\bar{x}, 0, \bar{z}$	$\boldsymbol{x}, 0, \bar{z}$	$0, x, z$	$0, \bar{x}, \bar{z}$		
8	r		x, x, z	\bar{x}, \bar{x}, z	\bar{x}, x, z	x, \bar{x}, z		no extra conditions
			\bar{x}, x, \bar{z}	x, \bar{x}, \bar{z}	x, x, \bar{z}	$\bar{x}, \bar{x}, \bar{z}$		
8	q	m.	$x, y, \frac{1}{2}$	$\bar{x}, \bar{y}, \frac{1}{2}$	$\bar{y}, x, \frac{1}{2}$	$\bar{y}, \bar{x}, \frac{1}{2}$		no extra conditions
			$\bar{x}, y, \frac{1}{2}$	$x, \bar{y}, \frac{1}{2}$	$y, x, \frac{1}{2}$	$\bar{y}, \bar{x}, \frac{1}{2}$		
8	p	m.	$x, y, 0$	$\bar{x}, \bar{y}, 0$	$\bar{y}, x, 0$	$y, \bar{x}, 0$		no extra conditions
			$\bar{x}, y, 0$	$x, \bar{y}, 0$	$y, x, 0$	$\bar{y}, \bar{x}, 0$		
4	o	$m 2 m$.	$x, \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, x, \frac{1}{2}$	$\frac{1}{2}, \bar{x}, \frac{1}{2}$		no extra conditions
4	n	$m 2 m$	$x, \frac{1}{2}, 0$	$\bar{x}, \frac{1}{2}, 0$	$\frac{1}{2}, x, 0$	$\frac{1}{2}, \bar{x}, 0$		no extra conditions
4	m	$m 2 m$.	$x, 0, \frac{1}{2}$	$\bar{x}, 0, \frac{1}{2}$	$0, x, \frac{1}{2}$	$0, \bar{x}, \frac{1}{2}$		no extra conditions
4	1	$m 2 m$.	$x, 0,0$	$\boldsymbol{\chi}, 0,0$	$0, x, 0$	$0, \bar{x}, 0$		no extra conditions
4	k	m. 2 m	$x, x, \frac{1}{2}$	$\bar{x}, \bar{x}, \frac{1}{2}$	$\bar{x}, \boldsymbol{x}, \frac{1}{2}$	$x, \bar{x}, \frac{1}{2}$		no extra conditions
4	j	$m .2 m$	$\boldsymbol{x}, \boldsymbol{x}, 0$	$\bar{X}, \bar{X}, 0$	$\bar{x}, x, 0$	$x, \bar{x}, 0$		no extra conditions
4	i	2 mm .	0, $\frac{1}{2}, z$	$\frac{1}{2}, 0, z$	0, $\frac{1}{2}, z$	$\frac{1}{2}, 0, \bar{z}$		$h k l: h+k=2 n$
2	h	4 mm	$\frac{1}{2}, \frac{1}{2}, z$	$\frac{1}{2}, \frac{1}{2}, \bar{z}$				no extra conditions
2	g	4 mm	0,0,z	0,0, \bar{z}				no extra conditions
2	f	$m m m$.	0, 1,0	$\frac{1}{2}, 0,0$				$h k l: h+k=2 n$
2	e	$m m m$.	0, ${ }^{\frac{1}{2}, \frac{1}{2}}$	$\frac{1}{2}, 0, \frac{1}{2}$				$h k l: h+k=2 n$
	d	$4 / \mathrm{mmm}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$					no extra conditions
	c	$4 / \mathrm{mmm}$	$\frac{1}{2}, \frac{1}{2}, 0$					no extra conditions
	b	$4 / \mathrm{mmm}$	0,0, $\frac{1}{2}$					no extra conditions
	a	4/mmm	0,0,0					no extra conditions

Symmetry of special projections

Along [110] p2mm $\mathbf{a}^{\prime}=\frac{1}{2}(-a+b)$

EXAMPLE: Potassium tetrachloroplatinate(II): $\mathrm{K}_{2} \mathrm{PtCl}_{4}$

Space group: $P 4 / m m m$ (No. 123)
Lattice parameters: $a=b=7.023 \AA, c=4.1486 \AA$
Atomic positions: Pt 1a: $0,0,0$
K $2 e: 0,1 / 2,1 / 2$
Cl 4j: $x, x, 0 ; x=0.23247$
(a) Draw the unit cell with the atoms.
(b) Draw the projection of the unit cell in c-axis direction.
(c) Theoretical density is $3.37 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate Z ?
($\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$; atomic weights: K 39.098 ; Pt 195.22; CI 35.453)
(d) Calculate the distances: $\mathrm{Pt}-\mathrm{Pt}, \mathrm{Pt}-\mathrm{K}, \mathrm{Pt}-\mathrm{Cl}$.
(e) What is the coordination number of platinum?
(f) What is the site symmetry of platinum?

$P 4 / \mathrm{mmm} \quad D_{4 h}^{1}$

4／m m m
Tetragonal

No． 123
P4／m $2 / m 2 / m$
Patterson symmetry $P 4 / m m m$

Origia at centre（4／mmet
Asymmetric unit $\quad 0 \leq x \leq 1 ; 0 \leq y \leq t ; 0 \leq z \leq 1 ; x \leq y$

Symmetry operations

（1） 1 （5） $20,9,0$ （9） $10,0,0$ （13） 地 $x, 0,2$	（2） $20,0, z$ （6） $2 x, 0,0$ （10）m $x, y, 0$ （14） m $0 . y, z$	（3） $4^{*} 0,0,2$ （7） $2, x, x, 0$ （11） $4 \cdot 0,0, z: 0,0.0$ （15）$m x, x, z$	（4） $4^{-} \quad 0,0, z$ （8） $2 x, \pi, 0$ （12） $4-0.0 . z: 0,0.0$ （16）$m ~ x, x, z$
	$P t$	$1 a: 0,$	
	K	$\text { 2e: } 0,1$	$1 / 2$
	$\Theta 1$	$4 j: \quad X, X$	$X=0$

Maximal noe－isomorphic subgroups

I | $[2] P 422$ | $1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8$ |
| :--- | :--- |
| | $[2] P 4 / m 11(P 4 / m)$ |
| | $1 ; 2 ; 3 ; 4 ; 9 ; 10 ; 11 ; 12$ |
| $[2] P 4 m m$ | $1 ; 2 ; 3 ; 4 ; 13 ; 14 ; 15 ; 16$ |
| $[2] P 42 m$ | $1 ; 2 ; 5 ; 6 ; 11 ; 12 ; 15 ; 16$ |
| | $[2] P 4 / m 2$ |

IIa none
 $\left(21 C 4 / m \pi d\left(a^{\prime}=2 a \cdot b^{\prime}=2 b\right)(P 4 /\right.$ 皮 b m $) ;\left(2 \mid C 4 / a\right.$ ww $\left(a^{\prime}=2 a, b^{\prime}=2 b\right)(P 4 / \pi m m) ;$
［2］F4／www $\left(a^{\prime}=2 a, b^{\prime}=2 b, c^{\prime}=2 c\right)(I 4 /$ womm $):[2] F 4 / m m c\left(a^{\prime}=2 a, b^{\prime}=2 b, c^{\prime}=2 c\right)(14 / w c$ w $)$

Maximal isomorphic subgroups of lowest index

Ile $\quad[2] P 4 / m m m\left(c^{\prime}=2 \boldsymbol{c}\right) ;[2] C 4 / \mathrm{wtw}$ w $\left(\boldsymbol{a}^{\prime}=2 \boldsymbol{a}, \boldsymbol{b}^{\prime}=2 b\right)(P 4 / \mathrm{mmm})$
Minimal nen－isomorphic supergroups
I $\quad[3 \mid P \omega 1 / \pi$
II［2］ $4 / \mathrm{m} / \mathrm{mm}$

Generators selected（1）；$\quad 1(1,0,0) ; \quad 1(0,1,0) ; \quad 1(0,0,1) ;(2) ; \quad(1) ; \quad(5) ; \quad(9)$
Positions

Maliplicty， Wrchet！lestr． 			Coordinates					Reflection conditions
16	\checkmark	$\begin{array}{r} (1) \\ (5) \\ (9) \\ \text { (13) } \end{array}$	$y, 2$ $y, 2$ 9,2 y, z	（2）$A_{1}, 5$ （6）$x, 5$ （10）x, y （14）x, y		（3）$y \times x$ （7）y, x, z （11）y, f, t （15） 5.8 .2	（4）y, x, z （8） $9,8,5$ （12）f．x．： （16）y_{-x} ．z	no conditions
								Special
8	I	．m	$\begin{aligned} & x, f, 2 \\ & x, t, i \end{aligned}$	$\begin{aligned} & 8,+, z \\ & x, t, q \end{aligned}$	$\begin{aligned} & i, x, z \\ & i, x, z \end{aligned}$	$\begin{aligned} & i, R, 2 \\ & i, R, 8 \end{aligned}$		no extri conditions
8	s	m	$\begin{aligned} & x .0, z \\ & i, 0, Z \end{aligned}$	$\begin{aligned} & 8,0-2 \\ & x, 0 \% \end{aligned}$	$\begin{aligned} & 0, x, z \\ & 0, x, z \end{aligned}$	$\begin{aligned} & 0, \boldsymbol{R}, z \\ & 0, \boldsymbol{R}, ? \end{aligned}$		no extra conditions
8	r	．． 1	$\begin{aligned} & x, x, z \\ & i, x, z \end{aligned}$	$\begin{aligned} & x, x, z \\ & x, X, E \end{aligned}$	$\begin{aligned} & f, x, z \\ & x, x, f \end{aligned}$	$\begin{aligned} & x, R, Z \\ & f, f, \mathcal{L} \end{aligned}$		no extra conditions
8	9	m ．	$\begin{aligned} & x, y, f \\ & f, y, f \end{aligned}$	$\begin{aligned} & 8,9,1 \\ & x, 9,1 \end{aligned}$	$\begin{aligned} & \text { 9.x.1 } \\ & y . x, 1 \end{aligned}$	$\begin{aligned} & y, x, t \\ & y, x, t \end{aligned}$		to catra conditions
8	p	m．．	$\begin{aligned} & x, y, 0 \\ & f, y, 0 \end{aligned}$	$\begin{aligned} & 8,5,0 \\ & x, 5,0 \end{aligned}$	$\begin{aligned} & 9, x, 0 \\ & y, x, 0 \end{aligned}$	$\begin{aligned} & Y . R .0 \\ & Y . R .0 \end{aligned}$		（t）extra conditions
4	0	＊ 2π	x．1． 1	s．t．t	t．x，${ }^{\text {¢ }}$	t．8．t		no extry conditions
4	月	＊2m	$x, 1,0$	S． 1.0	1．8．0	t．e． 0		no extra conditions
4	\cdots	$w 2 m$ 。	$x, 0, \ddagger$	8，0，1	0．x．i	0.2 .4		no extra eceditions
4	1	m 2m	$x, 0,0$	1． 0,0	0，x，0	0， 8.0		no eltra conditions
4	k	m 2 m	$x, x, 1$	R，R，\dagger	2，\times ．+	8，Q，		no eitra conditions
4	）	W1．2w	$x, x, 0$	8． 8.0	1，x， 0	$x, 8,0$		no extra conditions
4	1	20%	0． 1.2	4，0，z	0，2．？	1．0．8		kki ：$\lambda+k=2 n$
2	万	480\％	t， 5.2	4， 8.2				no extra conditions
2	g	4 Nm	0，0， 2	0，0，t				no extra cooditions
2	I	MNM	0，4，0	1，0，0				hel ：$A+k=2 N$
2	e	mmm	0，t， 1	4，0，				hikl ：$h+\hat{k}=2 n$
1	d	4／womm	1．1．i					no extra conditions
1	c	4／080＊	1．1．0					no extra conditions
1	b	4／ヵли	0，0，\dagger					ne extre conditions
1	a	4／mmm	0，0，0					no extra conditions

[^0]（Continned on preceding page）
no extra conditions

Along［110］p2ww
$a^{\prime}=:(-a+b) \quad b^{\prime}=c$ Orizin at $x, x, 0$

Pt: 1 atom in unit cell
K: 2 atoms in unit cell
CI: 4 atoms in unit cell

Bond lengths:
Pt-Pt: $(1-0)^{2} \cdot 4.15 \AA ̊$
Pt-K: $\sqrt{ }\left[(0.5-0)^{2} \cdot 7.023 \AA ̊+(0.5-0)^{2} \cdot 4.149 \AA\right]=4.08 \AA$
Pt-Cl: $\sqrt{ }\left[(0.232-0)^{2} \cdot 7.023 \AA+(0.232-0)^{2} \cdot 7.023 \AA ̊\right]=2.30 \AA$

Site symmetry of Pt : $\mathrm{D}_{4 \mathrm{~h}}$
$a b$-projection (seen from c-direction)

$\mathrm{K}_{2} \mathrm{PtCl}_{4}$

- $\rho=3.37 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}$
- $V=7.023 \AA \times 7.023 \AA \times 4.1486 \AA=204.62 \times 10^{-30} \mathrm{~m}^{3}$
- $M=(2 \times 39.098+195.22+4 \times 35.453) \mathrm{g} / \mathrm{mol}=415.228 \mathrm{~g} / \mathrm{mol}$
- $Z=\left(\mathrm{V} \times \rho \times \mathrm{N}_{\mathrm{A}}\right) / \mathrm{M}=1$
- Distances:Pt-Pt: $4.15 \AA$

Pt-K: $4.08 \AA$
Pt-Cl: $2.31 \AA(\rightarrow$ chemical bond $)$

- $\mathrm{CN}(\mathrm{Pt})=4$
- PI site symmetry: $D_{4 h}$

WHAT WE LIKE TO KNOW ABOUT THE CRYSTAL STRUCTURE

CRYSTALLOGRAPHY

- symmetry
- unit cell
- lattice parameters
- number of formula units in unit cell
- space group
- etc.

CRYSTAL CHEMISTRY

- coordination numbers
- coordination polyhedra
- bond lengths/angles
- occupation factors
- etc.

Discussed in Lecture 2!

$\mathrm{HgBa}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{9-\delta}$

EXAMPLE: Chromium oxychloride CrOCI

Space group Pmmn (No. 59)
Lattice parameters: $a=3.88 \AA, b=3.20 \AA, c=7.72 \AA(Z=2)$
Atomic positions:
$\begin{array}{lll}C r & 2 a & z=0.109 \\ \text { Cl } & 2 b & z=0.327 \\ 0 & 2 b & z=0.960\end{array}$
(a) Draw the unit cell.
(b) Give for chromium:

- bond lengths
- coordination numbers
- site symmetry
(c) Calculate BVS for chromium. [R^{0} values: $\mathrm{Cr}^{\text {III }}-\mathrm{O}^{-1 \mathrm{II}}: 1.724, \mathrm{CrIII}^{\text {II }} \mathrm{Cl}^{-1}: 2.08$]

Pmmn $\quad D_{2 h}^{13}$
 $\mathrm{mmm} \quad$ Orthorhombic

No, 59
$P 2_{1} / m 21 / m 2 / n$
Patterson symmetry $\boldsymbol{P}_{\text {mmm }}$
ORIGIN CHOICE I

Origin si wiw $2 / n, 3 t \ddagger, \ldots, 0$ from
Asymmetrie unit 0SxSt; OSySt; 0Szst

Symmetry optratioas

(1)
(2) $20,0, z$
(3) $20,2,0,0, t, y, 0$
(4) $2(\pm, 0,0), \pi, 1,0$
(5) $] \quad 1,1,0$
(6) $\mathrm{n}(5,2,0) \quad x, y, 1)$
(7) $\pi \times, 0, t$
(B) $w \quad 0, y, z$

Generators selected (1) $\quad \mid(1,0,0) ; \quad\{(0,1,0) ; \quad r(0,0,1) ; \quad(2) ;(3) ;(5)$

Pasitions

Matigaing

Mychat kakd,
fir motion

Maximal non-isomorphic subgroups
I 12$] P 2,2 ; 2 \quad 1 ; 2 ; 3 ; 4$
[2]P112/K(P2/c) $\quad 1 ; 2 ; 5 ; 6$
(2)P12, $/ m \mid\left(P_{2}, / m\right) \quad 1 ; 3 ; 5 ; 7$
 [2]Pmen 2

1;4;5;8

[2]P2 1 mn $\left(P m \in 2_{1}\right) \quad 1 ; 4 ; 6 ; 7$
IIa nose

Maximal Isomorphic subgroeps of lowest index
Ifc [3]Pminn $\left(a^{\prime}=3 a\right.$ or $\left.b^{\prime}=3 b\right) ;[2]$ Pwiwn $\left(c^{\prime}=2 c\right)$

Minimal non-soanorphic superzroups

1 [2]P4/nmm; [2]P4, /nwe
 [2] Р届畕 $a\left(2 b^{\prime}=b\right)$

Chromium bonding

$2 \times \mathrm{Cr}-\mathrm{Cl}: \sqrt{ }\{(0.891-0.673) \times 7.72 \AA\}^{2}+\{0.5 \times 3.20 \AA\}^{2}=2.3222 \AA$ $2 \times \mathrm{Cr}-\mathrm{O}: \sqrt{ }\{(0.960-0.891) \times 7.72 \AA\}^{2}+\{0.5 \times 3.88 \AA\}^{2}=2.0118 \AA$ $2 \times \mathrm{Cr}-\mathrm{O}: \sqrt{ }\{[(1-0.891)+0.04] \times 7.72 \AA\}^{2}+\{0.5 \times 3.20 \AA\}^{2}=1.9706 \AA$
$\mathrm{CN}(\mathrm{Cr})=6$
Cr site symmetry: $\mathrm{C}_{2 \mathrm{v}}$
BVS(Cr): +2.985

CrOCl : simulated XRD pattern based on the structure data

Your EXERCISE question

White balls are Ti atoms, red balls are oxygen atoms.
Unit cell parameters: $\mathrm{a}=\mathrm{b}=4.5937 \AA, \mathrm{c}=2.9587 \AA$; all angles 90°.
(a) What is the crystal system?
(b) What is the formula of the compound?
(c) Please calculate the density.

Some extra slides...

Contact info:

E-mail linda.sederholm@aalto.fi

Office room B217

Supporting material

Mathematical descriptions of 2D point groups:
https://www.cryst.ehu.es/plane/get point genpos.html https://en.wikipedia.org/wiki/Point groups in two dimensions

3D models with symmetry element visualizations
... For molecules
https://symotter.org/gallery
... For crystals
https://crystals.symotter.org/viztools/

CLASSIFICATIONS

- "Macroscopic shape of the crystal"
\rightarrow "Point group for the lattice" $\rightarrow 7$ CRYSTAL SYSTEMS (can fill the space without holes; no information of the lattice points/atoms)

CRYSTAL SYSTEM \& LATTICE POINTS (historical importance)

- Combination of crystal system and lattice type $\rightarrow 14$ Bravais lattices
- Lattice type: positions of lattice points (\neq atoms) within the cell considered: primitive (P), body-centered (I), face-centered (F), base-centered (A/B/C), rhombohedral (R)

CRYSTAL SYSTEM \& SYMMETRY (most important in crystallography)

- Possible combinations of point symmetry elements (which leave one point fixed)
$\rightarrow 32$ (geometric) cystal classes
\rightarrow describe completely the symmetry of macroscopic crystals
There are an infinite number of three-dimensional point groups, but the crystallographic restriction results in there being only 32 crystallographic point groups.
- Considering also the translational symmetry operations in 3D $\rightarrow 230$ space groups

Crystal System	\# of Point Groups	\# of Crystal Lattices
Cubic	5	3
Tetragonal	7	2
Orthorhombic	3	4
Monoclinic	3	2
Triclinic	2	1
Hexagonal	7	1
Trigonal	5	1
	32	14

[^0]: Symmetry of special projections
 Along［OO1］$\rho 4$ man
 $a^{\prime}=a \quad b^{\prime}=b$
 Origin at $0,0,2$

