## Crystallography course SCHEDULE

Date

1. Wed 28.02.
2. Mon 04.03. Lec-2: Crystal Chemistry \& Tolerance parameter
3. Mon 04.03. EXERCISE 1
4. Wed 06.03. Lec-3: Crystal Chemistry \& BVS
5. Fri 08.03. Lec-4: Symmetry \& Point Groups
6. Mon 11.03. EXERCISE 2
7. Wed 20.03. Lec-5: Crystallography \& Space Groups (Linda) Ke3
8. Fri 22.03. Lec-6: XRD \& Reciprocal lattice (Linda) Ke4
9. Mon 25.03. EXERCISE 3 (Linda) Ke4
10. Thu 04.04. Lec-7: Rietveld (Linda) 12:15-14, Ke3
11. Fri 05.04. EXERCISE 4: Rietveld (Linda)

Mon 08.04. EXERCISE 4: Rietveld (Linda)
12. Thu 11.04. Lec-8: ND \& GI-XRD 12:15-14, Ke3
13. Fri 12.04. Lec-9: XRR (Topias)
14. Mon 15.04. EXERCISE 5: XRR (Topias)

Wed 17.04. EXERCISE 5: XRR (Topias)
15. Mon 22.04. Lec-10: Synchrotron radiation \& XAS \& EXAFS
16. Thu 25.04. Mössbauer 12:15-14, Ke3
17. Fri 26.04. EXERCISE 6
18. Mon 29.04. Seminars:
19. Fri 03.05. Seminars:
20. Mon 06.05. ADDITIONAL DISCUSSION/QUESTION POSSIBILITY

## LINDA'S LECTURES \& EXERCISES

- 20.03. WEDNESDAY: 14.15 - 16 (Ke3)
- 22.03. FRIDAY: 12:15-14 (Ke3)
- 25.03. MONDAY: 14.15-16 (Ke4) Exercise session
- Exercise deadline 27.3 at 13:00


## Easter holidays break! ()

- 04.04. THURSDAY: 12:15-14 (Ke3)
- 05.04. FRIDAY: 12:15-14 (?) Rietveld exercise 1
- Getting started on FullProf
- 08.04. MONDAY: 14:30-16 (?) Rietveld exercise 2
- Help with finishing the exercise
- Exercise deadline on 10.4 at 13:00



## LECTURE 6: X-RAY (POWDER) DIFFRACTION

- History: X-ray sources and XRD equipment
- Bragg Equation (you have learned this earlier!)
- Mathematics of XRD
- Reciprocal lattice, Brillouin zone, Ewald sphere
- Allowed and forbidden reflections
- XRD pattern: Peak positions, peak intensities, peak shapes
- Indexing (Miller indeces) \& Lattice parameter determination
- Structure determination issues
- Scattering factor, structure factor, phase problem
- Rietveld refinement! (preview)

Our X-ray diffractometers: you have already used them?


## Powder XRD

## PANalytical X'Pert PRO MPD Alpha1

- $\theta / 2 \theta$
- Johansson Ge monochromator
- Programmable slits
- Sample spinner
- PIXcel detector

Thin-film XRD

## PANalytical X'Pert PRO MPD

- $\omega / 2 \theta$
- Cu mirror and collimator slit
- IR controlled sample stage
- Height (z, 75 mm)
- Rotation ( $\varphi, \mathrm{n}^{*} 360^{\circ}$ )
- Tilt ( $\psi, 20^{\circ}$ )


## EARLY HISTORY OF X-RAY DIFFRACTION

1895 Röntgen: x-ray radiation
1912 Von Laue: diffraction of x-rays in crystalline solids (Nobel 1914)
1913 W.H. \& W.L Bragg: Bragg equation (Nobel 1915)
1913 W.L. Bragg: first crystal structures: $\mathrm{NaCl}, \mathrm{KBr}, \mathrm{ZnS}$, diamond
1923 First crystal structure determination of an organic compound
1924 Weissenberg: single-crystal camera
1934 Patterson: "heavy-atom method"
1935 Le Galley: first powder diffractometer
1942 Buerger: precession camera
1947 First commercial powder diffractometer (Philips)
1948- Development of "direct methods"
(H. Hauptman ja J. Karle, Nobel 1985)

1960 First crystal structure determination of protein
1962- Development of automatic four-circle diffractometers
1969 Rietveld: "whole pattern analysis" (for neutron powder diffraction)

## Our previous X-ray diffractometer: 1980s $\boldsymbol{\rightarrow} \mathbf{2 0 1 3}$

Our previous XRD machine was a Philips powder diffractiometer which we used from 1980 until 2013. A really important cornerstone for our laboratory in both research and teaching, it was heavily used and very reliable. The reason for its retirement was that spare parts no longer were available.
Before throwing the old XRD out, we invited the people who originally purchased it to visit and say goodbye to the machine: professor emeritus Lauri Niinistö and senior laboratory engineer Lassi Hiltunen. They remembered to tell that the goniometer used for hightemperature measurements was actually taken from an even older XRD device, which had been in use already when TKK (Aalto predecessor) was housed in Hietalahti.
We decided to keep the old goniometer as a memory of our laboratory's very long history of
 X-ray crystallography expertise.

You have learned the Bragg's law: this is a good presentation to recall it

Lambda
1.5418
Distance
4.99999
Theta
31.0

Figure from http://wwweserc.stonybrook.edu/ProjectJava/Bragg/

## Bragg's law

Constructive interference

$$
n \lambda=2 d \sin \theta
$$

## LATTICE PLANES $\rightarrow$ DIFFRACTION PATTERN



Only few peaks and at nearly same distance from each other $\rightarrow$ CUBIC
Can we see whether the lattice is primitive or not?...$\rightarrow$ YES (return to this later)

## X-RAY DIFFRACTION

- X-ray range wavelengths are on the same size scale as lattice plane spacings
$\rightarrow$ part of the radiation is reflected from crystals (elastic scattering)
$\rightarrow$ diffraction can be utilized for crystal structure studies
- X-ray radiation is scattered from the electron clouds of atoms
- More electrons at the reflection plane (heavy atoms)
$\rightarrow$ high intensity of reflected radiation
- Less electrons at the reflection plane (light atoms)

$\rightarrow$ low intensity of reflected radiation


## X-RAY DIFFRACTOMETER

- Production of $x$-ray radiation:
(i) generator +x -ray tube (e.g. $\mathrm{Cu}-\mathrm{K}_{\alpha} 1.54 \AA, \mathrm{Mo}-\mathrm{K}_{\alpha} 0.71 \AA$ )
(ii) synchrotron (radiation with continuous wavelength)
- Recording of reflected radiation:
(i) as pulses on counter (x-ray diffractometer)
(ii) as black spots on film (x-ray camera; historical)



## X-RAY TUBE: e.g. Cu

- Characteristic X-ray radiation:
- $\mathrm{Cu}-\mathrm{K}_{\mathrm{a}}\left(\mathrm{K}_{1}+\mathrm{K} \alpha_{2}\right)$ and $\mathrm{Cu}-\mathrm{K}_{\beta}$
- To get monochromatic radiation, $\mathrm{Cu}-\mathrm{K}_{\alpha}$ and $\mathrm{Cu}-\mathrm{K}_{\beta}$ need to be separated (with a filter)


X-rays are produced whenever high-speed electrons collide with a metal target. A source of electrons - hot W filament, a high accelerating voltage between the cathode (W) and the anode and a metal target, $\underline{\mathrm{Cu}, \mathrm{Al}, \mathrm{Mo} \text {, }}$ Mg . The anode is a water-cooled block of Cu containing desired target metal.

- Copper: $\mathrm{Ka}_{1}: \lambda=1.5406 \AA \AA \mathrm{Ka}_{2}: \lambda=1.5444 \AA, \mathrm{~K}_{\beta}: \lambda=1.3923 \AA$
- Typically: $\mathrm{Cu}-\mathrm{K}_{\alpha}$ and $\mathrm{Cu}-\mathrm{K}_{\beta}$ are separated, but not $\mathrm{Ka}_{1}$ and $\mathrm{Ka}_{2}$ (filters are expensive)
- If $\mathrm{Ka}_{2}$ is removed, total intensity decreases
- Intensity ratio: $\mathrm{Ka}_{1}: \mathrm{Ka}_{2}=2: 1$
- $\mathrm{Ka}_{1}$ and $\mathrm{Ka}_{2}$ not separated $\rightarrow$ double reflections in the XRD pattern
- These are especially visible in the high $2 \theta$ range
(Bragg law $\rightarrow$ resolution increases with increasing $2 \theta$ )


Wavelength $\lambda$



## Powder XRD

PANalytical X'Pert PRO MPD Alpha1

- $\theta / 2 \theta$
- Johansson Ge monochromator ( $\mathrm{K}_{2}$ filter)
- Programmable slits
- Sample spinner
- PIXcel detector


## Thin-film XRD

PANalytical X'Pert PRO MPD

- $\omega / 2 \theta$
- Cu mirror and collimator slit
- IR controlled sample stage
- Height (z, 75 mm )
- Rotation ( $\varphi, \mathrm{n}^{*} 360^{\circ}$ )
- Tilt ( $\psi, 20^{\circ}$ )

Single Crystal
Diffraction


## Single Crystal

 Diffractometer (4 circles)

Powder Diffractometer (2 circles)
https://chemistry.osu.edu/~woodward/

## Single Crystal Diffraction (3D)



## Information in a Diffraction Pattern

- Peak Positions
- The peak positions tell you about the translational symmetry. Namely what is the size and shape of the unit cell.
- Peak Intensities
- The peak intensities tell you about the electron density inside the unit cell. Namely where the atoms are located.


## - Peak Shapes \& Widths

- The peak widths and shapes can give information on deviations from a perfect crystal. You can learn about the crystallite size if it is less than roughly $100-200 \mathrm{~nm}$. You can also learn about extended defects and microstrain.


## RECIPROCAL LATTICE

- Mathematical concept that links the diffraction measurement data to the real lattice $\rightarrow$ abstract
- Diffraction from single crystal: the beam diffracted from a specific Miller plane will show up as a dot on the detector screen



Diffraction pattern of single crystal diffraction analysis

## RECIPROCAL LATTICE

- Direct lattice = "real" lattice
- Reciprocal lattice: (mathematically) Fourier transform of the direct lattice
- Reciprocal space sometimes called momentum space or K-space
- Fourier transformation equations are symmetrical: reciprocal lattice of the reciprocal lattice is equivalent to the original direct lattice
- Planes in real lattice are points in reciprocal lattice, and vice versa
- Length of reciprocal lattice vector is proportional to the reciprocal (inverse) of the length of direct lattice vectors $\rightarrow$

Big in real space is small in reciprocal space, and vice versa

- Reciprocal lattice has important role in diffraction theory:
- Diffraction pattern represents reciprocal lattice, not direct lattice
- From the diffraction pattern, the reciprocal vectors can be determined
- Brillouin Zone = "Unit cell" in Reciprocal lattice


## RECIPROCAL VECTORS

- Crystal planes all have a normal vector: perpendicular to the plane \& the length is inversely proportional to the crystal plane spacing $d$

$$
d_{h k l}^{*}=\frac{1}{d_{h k l}}
$$


reciprocal lattice vectors have a dimension 1/length whereas direct lattice vectors have a dimension "length".

- Each crystal plane set (defined by Miller index) gets its own vector
- These vectors exist in the reciprocal space
(abstract space, mathematically constructed just like imaginary space)


## DRAWING RECIPROCAL SPACE

- The end points of the reciprocal lattice vectors form a grid and so can define a reciprocal lattice

[10 0] Miller plane series

[0 1 0] Miller plane series

[11 0] Miller plane series
- The reciprocal "unit cell" is called Brillouin Zone
- Defined by $\mathrm{a}^{*}, \mathrm{~b}^{*}$ and $\mathrm{c}^{*}\left(\alpha^{*}, \beta^{*}, \& \gamma^{*}\right)$

$a^{*}=d^{*} 100$ with $\left|a^{*}\right|=a^{*}=1 /$ d100
$\mathbf{b}^{*}=\mathbf{d}^{*} 010$ with $\left|\mathbf{b}^{*}\right|=b^{*}=1 / \mathrm{d} 010$
$c^{*}=d^{*} 001$ with $\left|c^{*}\right|=c^{*}=1 / d 001$
$a^{*}$ is perpendicular to $b$ and $c$
$b^{*}$ is perpendicular to $a$ and $c$
$c^{*}$ is perpendicular to $a$ and $b$



## EWALD SPHERE: the reciprocal of the X-ray wavelength

- Radius: $\lambda^{*}=1 / \lambda(\lambda=$ wavelength of incident beam)
- Illustrates which reciprocal lattice points result in diffraction signal (reciprocal points that touch the sphere)
- Connected to mathematical description of Bragg's law in reciprocal space



## SINGLE-CRYSTAL DIFFRACTION and SYMMETRY GROUP SYMBOLS


$\overline{4} 3 m$ point group
$\rightarrow$ cubic crystal

## POWDER XRD PATTERN

- Classic Bragg-Bentano setup: symmetric movement of beaM source and detector to scan a range of angles
- capture all the diffracted beams = plane distancings
- In mathematical language: spin the Ewald sphere and the reciprocal lattice around an origo $\rightarrow$ dots become circles which becomes peaks on a $x$ - $y$-plot


Every reciprocal lattice point = a specific lattice plane set (with specific distancing) $\downarrow \downarrow$

How many of the reciprocal lattice points fit inside the Ewalds sphere = how many peaks can be seen in the

XRD pattern (at most)

## EXAMPLES OF XRD PATTERNS

Experimental patterns (on the top) and JSPDS card data (below) for some (double) perovskite samples.
The JSPDS data are kind of "diffractogram lines" showing the peak positions and intensities, but not the shapes).

CuWO4 (JSPDS: 01-070-1732)
$\mathrm{Sr}_{2} \mathrm{CuWO}_{6}$ (JSPDS: 01-076-0086) $\mathrm{Ba}_{2} \mathrm{CuWO}_{6}$ (JSPDS: 01-076-0084)


DOI: 10.1039/C9QI00675C (Research Article) Inorg. Chem. Front. (2019) 6, 2096.

JCPDS Card

1.file number 2.three strongest lines 3 .lowest-angle line 4.chemical

## Qualitative Analysis Searching with the ICDD

Once you have a powder pattern you can use it like a fingerprint to see if it matches the powder pattern of an already known compound. Nowadays this is usually done with the help of a computer.

The International Centre for Diffraction Data (ICDD) maintains a database of known powder diffraction patterns (www.icdd.com)
-115,000 patterns (not all unique)
-95,000 Inorganic compounds
-20,000 Organic compounds formula and name 5.data on diffraction method used 6.crystallographic data 7.optical and other data 8.data on specimen 9.data on diffraction pattern.

Joint Committee on Powder Diffraction Standards, JCPDS (1969)
Replaced by International Centre for Diffraction Data ICDD (1978)
ICDD "Card"

## "FINGERPRINT" APPROACH

Phase recognition + Impurity phases

I believe you have done this in some lab works already?


## XRD Pattern of NaCl Powder



As you are going to see soon, not only the peak positions and intensities but also the peak shapes carry information; Hence, the correct terminology is "pattern", not diffracto"gram"

## More on Bragg's Law

-Bragg's Law is a necessary but insufficient condition for diffraction.
-It only defines the diffraction condition for primitive unit cells, e.g. P cubic, P tetragonal, etc., where atoms are only at unit cell corners.
-Crystal structures with non-primitive unit cells have atoms at additional lattice (basis) sites.
-These extra scattering centers can cause out-of-phase scattering to occur at certain Bragg angles.
-The net result is that some of the diffraction predicted by Bragg's Law (eq. 1) does not occur, i.e.
certain sets of planes do not exist (forbidden reflections).
-Selection (or Reflection) rules:

| Bravais Lattice | Example Compounds | Allowed Reflections | Forbidden Reflections |
| :--- | :--- | :--- | :--- |
| Primitive Cubic | Simple Cubic $(\alpha$-Po) | Any h,k,l | None |
| Body-Centered Cubic | Body-Centered Cubic metal | $\mathrm{h}+\mathrm{k}+\mathrm{l}$ even | $\mathrm{h}+\mathrm{k}+\mathrm{l}$ odd |
| Face-Centered Cubic | Face-Centered Cubic metal | $\mathrm{h}, \mathrm{k}, \mathrm{l}$ all odd or all even | $\mathrm{h}, \mathrm{k}, \mathrm{l}$ mixed odd or even |
| Face-Centered Cubic | NaCl-rocksalt, ZnS-zincblende | $\mathrm{h}, \mathrm{k}, \mathrm{l}$ all odd or all even | $\mathrm{h}, \mathrm{k}, \mathrm{l}$ mixed odd or even |
| Face-Centered Cubic | Si, Ge - Diamond cubic | As FCC, but if all even <br> and $\mathrm{h}+\mathrm{k}+\mid \neq 4 \mathrm{n}$, then <br> absent $(\mathrm{n}$ is integer $)$ | $\mathrm{h}, \mathrm{k}, \mathrm{I}$ mixed odd or even <br> and if all even and <br> $\mathrm{h}+\mathrm{k}+\mid \neq 4 \mathrm{n}$ |
| Primitive Hexagonal | Hexagonal closed packed metal | All other cases | $\mathrm{h}+2 \mathrm{k}=3 \mathrm{n}, \mathrm{l}$ odd |

In the example on the previous page, only 110, 200 and 211 peaks seen, while 100 and 210 are missing $\rightarrow$ Body-centered cubic

## Selection Rules for Cubic Crystals

| $d_{l u l}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}=\frac{a}{\sqrt{S}}$ | P |  | I |  | F |  | $\rightarrow$ Odd+even <br> $\rightarrow$ Odd+even |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S | (hkl) | S | (hkl) | $S$ | (hkl) |  |
|  | 1 | 100 | - | - | - | - |  |
| where " $S$ " is reflection or | 2 | 110 | 2 | 110 | - | - |  |
| e.g. (100) is $1^{\text {st }}$ order | 3 | 111 | - |  | 3 | 111 | $\rightarrow$ All odd |
| reflection and | 4 | 200 | Typ | qQation | here. | 200 | $\rightarrow$ All even |
| reflection. | 5 | 210 | - | - | - | - | $\rightarrow$ Odd+even |
|  | 6 | 211 | 6 | 211 | - | - | $\rightarrow$ Odd+even |
| As we will determine | 7 | - | - | - | - | - |  |
| later when we calculate the structure factors, these | 8 | 220 | 8 | 220 | 8 | 220 | All even |
| selection rules also hold | 9 | 221,300 | - | - |  |  | $\rightarrow$ Odd+even |
| for other Bravais lattices, e.g. | 10 | 310 | 10 | 310 |  |  | $\rightarrow$ Odd + even |
| I-tetragonal, | 11 | 311 | - | - | 11 | 311 | $\rightarrow$ All odd |
| F-orthorhombic, etc. | 12 | 222 | 12 | 222 | 12 | 222 | All even |
|  |  | Primitive $h^{2}+k^{2}+l^{2}$ |  | ntered | Face cen | ered |  |

## Example: $\mathrm{SrTiO}_{3}$

The crystal structure of $\mathrm{SrTiO}_{3}$ is cubic, space group $\mathrm{Pm} 3 m$ with a unit cell edge $a=3.90 \AA$. Calculate the expected $2 \theta$ positions of the first three peaks in the diffraction pattern, if the radiation is $C u K \alpha(\lambda=1.54 \AA)$.

1. Recognize the hkl values for the first few peaks:
$100,110,111,200,210,211,220$, etc.
Calculate the interplanar spacing, $d$, for each peak:

$$
1 / d^{2}=\left(h^{2}+k^{2}+l^{2}\right) / a^{2}
$$

Use Bragg's Law to determine the $2 \theta$ value:

$$
\lambda=2 d_{h k l} \sin \theta_{\mathrm{hkl}}
$$

## Peak Positions

$$
\text { Bragg's Law: } \quad \lambda=\mathbf{2} \mathbf{d}_{\mathrm{hkl}} \sin \theta_{\mathrm{hkl}}
$$

The interplanar spacing, $d$, for a given hkl reflection is given by the unit cell dimensions
Cubic:

$$
1 / \mathrm{d}^{2}=\left(\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}\right) / a^{2}
$$

Tetragonal:

$$
1 / \mathrm{d}^{2}=\left\{\left(\mathrm{h}^{2}+\mathrm{k}^{2}\right) / a^{2}\right\}+\left(\mathrm{l}^{2} / c^{2}\right)
$$

## Orthorhombic:

$$
1 / \mathrm{d}^{2}=\left(\mathrm{h}^{2} / a^{2}\right)+\left(\mathrm{k}^{2} / b^{2}\right)+\left(\mathrm{l}^{2} / c^{2}\right)
$$

Hexagonal:

$$
1 / \mathrm{d}^{2}=(4 / 3)\left\{\left(\mathrm{h}^{2}+\mathrm{hk}+\mathrm{k}^{2}\right) / a^{2}\right\}+\left(\mathrm{l}^{2} / \mathrm{c}^{2}\right)
$$

Monoclinic:
$1 / \mathrm{d}^{2}=\left(1 / \sin ^{2} \beta\right)\left\{\left(\mathrm{h}^{2} / a^{2}\right)+\left(\mathrm{k}^{2} \sin ^{2} \beta / b^{2}\right)+\left(1^{2} / c^{2}\right)-(2 \mathrm{~h} l \cos \beta / a c)\right\}$

## Example: $\mathrm{SrTiO}_{3}$

## How to calculate lattice parameters if we know the structure type and Miller indices

$$
\begin{array}{lll}
\boldsymbol{h} \boldsymbol{k} \boldsymbol{l}=\mathbf{1 0 0} & & \\
\boldsymbol{1} / \mathrm{d}^{2}=\left(1^{2}+0^{2}+0^{2}\right) /(3.90 \AA)^{2} & \rightarrow & \mathrm{~d}=3.90 \AA \\
\sin \theta_{100}=1.54 \AA /\{2(3.90 \AA)\} & \rightarrow & \theta=11.4^{\circ}\left(2 \theta=22.8^{\circ}\right) \\
\boldsymbol{h} \boldsymbol{k} \boldsymbol{l}=\mathbf{1 1 0} & & \\
1 / \mathrm{d}^{2}=\left(1^{2}+1^{2}+0^{2}\right) /(3.90 \AA)^{2} & \rightarrow & \mathrm{~d}=2.76 \AA \\
\sin \theta_{100}=1.54 \AA /\{2(2.76 \AA)\} & \rightarrow & \theta=16.2^{\circ}\left(2 \theta=32.4^{\circ}\right) \\
\boldsymbol{h} \boldsymbol{k} \boldsymbol{l}=\mathbf{1 1 1} & & \\
1 / \mathrm{d}^{2}=\left(1^{2}+1^{2}+1^{2}\right) /(3.90 \AA)^{2} & \rightarrow & \mathrm{~d}=2.25 \AA \\
\sin \theta_{100}=1.54 \AA /\{2(2.25 \AA)\} & \rightarrow & \theta=20.0^{\circ}\left(2 \theta=40.0^{\circ}\right)
\end{array}
$$

## Tetragonal $\mathrm{Sr}_{3} \mathrm{Fe}_{2} \mathrm{O}_{7}$

- Ruddlesden-Popper structure; consists of layers: $\mathrm{SrO}-\mathrm{SrO}-\mathrm{FeO}_{2}-\mathrm{SrO}-\mathrm{FeO}_{2}$
- Absorbs easily water molecules in between SrO-SrO layers
- c-parameter increases while a- and b-parameters remain nearly the same
- How can you see this from the XRD patterns: (a) $\mathrm{Sr}_{3} \mathrm{Fe}_{2} \mathrm{O}_{7}$, (b) $\mathrm{Sr}_{3} \mathrm{Fe}_{2} \mathrm{O}_{7}$ + water



## EXAMPLE: DETERMINATION OF LATTICE PARAMETERS

Calculate the lattice parameters based on the following data for the seven first Bragg reflections: tetragonal P4/mmm; $\mathrm{CuK}_{\alpha}=1.5406 \AA$.

## ANSWER:

$$
\sin ^{2} \theta=\left(h^{2}+k^{2}\right) \cdot \frac{\lambda^{2}}{4 a^{2}}+l^{2} \cdot \frac{\lambda^{2}}{4 c^{2}}
$$



| Miller | $2 \theta$ | $\sin \theta$ | $\sin ^{2} \theta$ | $\operatorname{Parameter}(\AA)$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| 002 | 23.03 | 0.1996 | 0.0398 | 7.724 | $\rightarrow \mathrm{c}$ |
| 004 | 47.05 | 0.3991 | 0.1593 | 7.725 |  |
| 100 | 22.77 | 0.1947 | 0.0390 | 3.905 | $\rightarrow \mathrm{a}=\mathrm{b}$ |
| 200 | 46.50 | 0.3947 | 0.1558 | 3.906 |  |

RECOMMENDATION: Take an average of the two values; Also, you could verify the numbers by using the 110,102 and 112 reflections.

## FURTHER ANALYSIS OF DIFFRACTION PATTERN

- First step: Indexing $\rightarrow$ find the Miller indices for the reflections
- This allows the determination of the lattice parameters
- This is relatively easy for high-symmetry structures


## Indexing

- Indexing is the process of determining the unit cell dimensions from the peak positions. To index a powder diffraction pattern it is necessary to assign Miller indices, hkl, to each peak.
- A diffraction pattern cannot be analyzed until it has been indexed. It is always the first step in analysis.
- Unfortunately it is not just the simple reverse of calculating peak positions from the unit cell dimensions and wavelength.
- We will show how one can manually index diffraction patterns of high symmetry structures. For lower symmetry structures (orthorhombic, monoclinic, triclinic) it is usually necessary to use a computer algorithm. This is called Autoindexing.


## Indexing a Cubic Pattern

Bragg's Law tells us the location of a peak with indices hkl, $\theta_{h k l}$, is related to the interplanar spacing, $d$, as follows:

$$
\begin{gathered}
\lambda=2 \mathrm{~d}_{\mathrm{hkl}} \sin \theta_{\mathrm{hkl}} \\
\mathbf{1} / \mathrm{d}=\mathbf{2} \sin \theta / \lambda \\
1 / \mathbf{d}^{2}=4 \sin ^{2} \theta / \lambda^{2}
\end{gathered}
$$

Earlier we saw that for a cubic phase the $d$-values can be calculated from the Miller indices (hkl)

$$
1 / \mathbf{d}^{2}=\left(h^{2}+\mathbf{k}^{2}+l^{2}\right) / a^{2}
$$

Combining these two equations we get the following relationship

$$
\sin ^{2} \theta /\left(\mathbf{h}^{2}+\mathbf{k}^{2}+\mathbf{l}^{2}\right)=\lambda^{2} / 4 \mathbf{a}^{2}
$$

Need to find values of $h, k, l$ for that give a constant when divided by each $\sin ^{2} \theta$.

## Cubic Example

| 2-Theta | $1000 \sin ^{2} \theta$ | $1000 \sin ^{2} \theta /$ CF |
| :---: | :---: | :---: |$\quad$ hkl

We need to find a common factor, CF, that can be divided into each of the values in the second column to give an integer $=h^{2}+k^{2}+l^{2}$

$$
C F=(37.1 / 1000)=\lambda^{2} / 4 \mathrm{a}^{2} \rightarrow(a=4.00 \mathrm{~A})
$$

| 2-Theta | $1000 \sin ^{2} \theta$ | $1000 \sin ^{2} \theta / C F$ | hkl |
| :---: | :---: | :---: | :---: |
| 22.21 | 37.1 | 1.00 | 100 |
| 31.61 | 74.2 | 2.00 | 110 |
| 38.97 | 111 | 2.99 | 111 |
| 45.31 | 148 | 3.99 | 200 |
| 51.01 | 185 | 4.99 | 210 |
| 56.29 | 222 | 5.98 | 211 |
| 66.00 | 297 | 8.01 | 220 |
| 70.58 | 334 | 9.00 | $300 / 221$ |
| 75.03 | 371 | 10.00 | 310 |
| 79.39 | 408 | 11.00 | 311 |

## INDEXING EXAMPLE

XRD pattern measured for a sample of cubic unit cell using $\mathrm{Cu}-\mathrm{K}_{\alpha}(\lambda=1.5418 \AA$ ) radiation shows peaks at $2 \theta$ values listed in the table below. Index the reflections.
What is the Bravais lattice type?
Answer:

1. First, we calculate $\sin ^{2} \theta$ values, and multiply them by $10^{6}$ just for convenience.
2. To find the "constant value" A , we calculate the differences between consecutive $\sin ^{2} \theta$ values; from this list we can "see" that ca. 19355 is included as a term in all these difference numbers, hence, it could be our " $A$ ". Then we notice that $h^{2}+k^{2}+l^{2}=\left(10^{6} x \sin ^{2} \theta\right) / A$.
3. Finally, the hkl combinations can be easily derived from these numbers.
4. From the resultant list of reflections ( $S=3,4,8,11,12, \ldots$ ), we identify the systematic absences as typical for FCC and conclude that the lattice type is face-centered cubic.

| $\lambda=2 d \sin \theta$ |  |  |  |  | $\begin{aligned} & S=h^{2}+k^{2}+l^{2} \\ & \downarrow \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $2 \theta$ | $\sin ^{2} \theta \cdot 10^{6}$ | Difference | Constant | $\frac{\sin ^{2} \theta \cdot 10^{6}}{A}$ | $h k l$ |
| $1{ }^{1}=\underline{h^{2}+k^{2}+l^{2}}$ | 27,88 | 58036 |  |  | 2,999 | 111 |
| $d^{2}-a^{2}$ | 32,3 | 77369 | 19334 | 19355 (ka.) | 3,997 | 200 |
|  | 46,32 | 154685 | 77316 |  | 7,992 | 220 |
| $1 h^{2}+k^{2}+l^{2} \quad 4 \sin ^{2} \theta$ | 54,92 | 212640 | 57955 |  | 10,986 | 311 |
| $\frac{1}{d^{2}}=\frac{a^{2}}{a^{2}}=\frac{\lambda^{2}}{}$ | 57,6 | 232087 | 19446 |  | 11,991 | 222 |
| $\left(\lambda^{2}\right)$ | 67,6 | 309465 | 77378 |  | 15,989 | 400 |
| $\sin ^{2} \theta=\left(\frac{\lambda^{2}}{4 a^{2}}\right)\left(h^{2}+k^{2}+l^{2}\right)$ | 74,62 | 367390 | 57925 |  | 18,982 | 331 |
|  | 76,9 | 386674 | 19284 |  | 19,978 | 420 |
| $\left(\frac{\lambda^{2}}{4 a^{2}}\right)$ is constant | 85,88 | 464077 | 77403 |  | 23,977 | 422 |
| $\left(\overline{4 a^{2}}\right)$ is constant | 92,54 | 522158 | 58081 |  | 26,978 | 511; 333 |

## SYNCHROTRON RADIATION

- Very bright/intense x-ray radiation
- Used for x-ray diffraction in case of demanding samples (e.g. light elements)
- Continuous spectrum (c.f. the characteristic peaks from x-ray tube)
- We will discuss synchrotron radiation in detail in the context of EXAFS and XANES




## NEUTRON AND ELECTRON DIFFRACTION

- Particles have wave nature:
$\rightarrow$ Moving particles have wavelength
- Particles with proper mass/energy ratio can be utilized for diffraction
$\rightarrow$ neutron diffraction and electron diffraction



## EQUATIONS

Aalto University
School of Chemical
Technology

## UNIT CELL VOLUMES

- The equations for unit cell volume:

Cubic:

$$
V=a^{3}
$$

Tetragonal: $\quad V=a^{2} c$

Orthorhombic: $\quad V=a b c$
Hexagonal: $\quad V=0.866 a^{2} c$

Rhombohedral: $\quad V=a \sqrt{1-3 \cos ^{2} \alpha+2 \cos ^{3} \alpha}$
Monoclinic: $\quad V=a b c \sin \beta$
Triclinic:

$$
V=a b c\left(\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma\right)+\sqrt{\cos \alpha \cos \beta \cos \gamma}\right)
$$

## LATTICE PLANE SPACING d

- For a given set of lattice plane Miller indices, the d-spacing can be calculated:

Cubic:

$$
\frac{1}{d^{2}}=\frac{h^{2}+k^{2}+l^{2}}{a^{2}}
$$

Orthorhombic: $\quad \frac{1}{d^{2}}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}$

Tetragonal: $\quad \frac{1}{d^{2}}=\frac{h^{2}+k^{2}}{a^{2}}+\frac{l^{2}}{c^{2}}$
Hexagonal: $\quad \frac{1}{d^{2}}=\frac{4}{3}\left(\frac{h^{2}+h k+k^{2}}{a^{2}}\right)+\frac{l^{2}}{c^{2}}$

Rhombohedral:

$$
\frac{1}{d^{2}}=\frac{\left(h^{2}+k^{2}+l^{2}\right) \sin ^{2} \alpha+2(h k+k l+h l) \cos ^{2} \alpha-\cos \alpha}{a^{2}\left(1-3 \cos ^{2} \alpha+2 \cos ^{3} \alpha\right)}
$$

Monoclinic:

$$
\frac{1}{d^{2}}=\frac{1}{\sin ^{2} \beta}\left(\frac{h^{2}}{a^{2}}+\frac{k^{2} \sin ^{2} \beta}{b^{2}}+\frac{l^{2}}{c^{2}}-\frac{2 h l \cos \beta}{a c}\right)
$$

Triclinic:

$$
\begin{aligned}
& \frac{1}{d^{2}}=\frac{1}{V^{2}}\left(S_{11} h^{2}+S_{22} k^{2}+S_{33} l^{2}+2 S_{12} h k+2 S_{23} k l+2 S_{13} h l\right) \\
& V=a b c\left(\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma\right)+\sqrt{\cos \alpha \cos \beta \cos \gamma}\right) \\
& S_{11}=b^{2} c^{2} \sin ^{2} \alpha \quad S_{12}=a b c^{2}(\cos \alpha \cos \beta-\cos \gamma) \\
& S_{22}=a^{2} c^{2} \sin ^{2} \beta \quad S_{23}=a^{2} b c(\cos \beta \cos \gamma-\cos \alpha) \\
& S_{33}=a^{2} b^{2} \sin ^{2} \gamma \quad S_{13}=a b^{2} c(\cos \gamma \cos \alpha-\cos \beta)
\end{aligned}
$$

