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Nonparametric foundations and instruments: Demand estimation
with discrete choice models

Berry, S. and P. Haile (2016). Identification in Differentiated Products 
Markets, Annual Review of Economics.

Berry, S. and P. Haile (2021).  Foundations of demand estimation, 
Handbook of Industrial Organization. 

• Berry, S. and P. Haile (2014). Identification in differentiated products markets 
using market level fata, Econometrica, 82, 1749

• Berry, S. A. Gandhi and P. Haile (2013). Connected substitutes and invertibility of 
demand, Econometrica, 81, 2087-2111.

Literature for part 3 and 4
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Part 3

Part 2 4

Discrete choice models 

Scale of utility and outside good 
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In (many) discrete choice models, the scale of utility is 
normalized by normalizing the variance of the indirect 
utility’s error component.

Let i’s utility from choice j be Uij = Vij + ij, for j = {0, 1, …, J}.  

• Multiplying Uij by a constant,  > 0, changes the scale of utility but 
does not affect choice, since Uij > Uik  Uij > Uik

By setting the variance of the error term to a constant, the 
scale of utility is normalized. 

Scale of utility
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Consider non-normalized variance: 2/6

2/6 is related to a constant of integration.  

Utility can divided by  without changing behaviour. 

Example: Multinomial logit
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• Utility can divided by  without changing 
behaviour. 

...
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Every coefficient is rescaled by 

Only the ratio  = */ is identified (up-to-scale)

Interpretation of the coefficients: 

• They are relative to the variance of the unobserved factors 

Greater unobserved variance, the smaller . 

Ratio j / k is invariant to scaling 

...
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Is outside good a free normalization? 

Let i’s utility from choice j be Uij = Vij + ij, for j = {0, 1, 
…, J}

Utility maximization → j chosen if Uij > Uik k  j 

There is a set of unobservable “taste parameters”, ij, 
that result in the purchase of good j. 

Outside good
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Good j chosen with probability Pr(i > Vi), 

where Vi = Vik – Vij and i = ij – ik, k  j. 

...
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Example: Multinomial logit

This shows that variations in market shares (LHS) are informative of 
difference Vij - Vik

Only differences in the indirect utilities are identified

...
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Side-note: This also shows how IIA is at work: 

Ratio of choice probabilites depends only on j
and k.

It does not depend on any other alternative h.

...
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A key consequence of the fact that only differences 
in the utility matter for choice:

Adding constants to utility irrelevant for choice

• Only differences in alternative specific constants can be 
identified.

Also: Effects of individual specific factors, such as 
income, not identified

• They do not vary between goods j and k

...
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Example: Multinomial logit with Vij = Xi’j

Add a constant C to each j → no effect on choice 

Adding constant to utility
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• Because adding constant has no effect on choice, C 
has to be normalized.

Consider setting C = -0

Interpretation: Good j = 0 produces ”no utility in 
expectation”

Adding constant to utility
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This normalizes the level of indirect utility that 
agents get from the outside good.

This is a location normalization and implies that 
utility from the outside option is: Ui0 = i0

We have to interpret Uij as utility from j (j > 0) 
relative to the outside option. 

...
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In static discrete choice models: 

This is a free normalization (almost; see fn 22 in Berry and 
Haile -21)

In dynamic discrete choice models: 

This is not a free normalization

Implies restrictions on preferences and thus behaviour 

• see, e.g., Rust (1994) and Magnac and Thesmar (2002).

...
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One of the goods in the choice set is the outside 
good and this good produces no utility in 
expectation. 

What is this “j = 0” good? 

It is the good (whatever it is) for which price is not 
set in response to the prices of the inside goods

What is outside good?

18
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Existence of outside good important: 

If there was no outside good, consumers would be 
forced to choose one inside good. 

• Demand would depend only on differences in prices. 

General increase in price level would not decrease 
the (total) amount bought (implausible)

…
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Outside good

Typical assumption: Market size equals the size of population in a 
market  constant

• E.g., in a soda market: constant = max amount i can potentially
consume

The constant is not a free normalization: It affects estimates of 
preferences and counterfactuals

Can market size identified and estimated? (Yes, see L. Zhang, 
JMP)

…
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Part 4

Part 3 21

This part is about identification of BLP model(s)
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Why should one be interested in nonparametric 
identification of BLP type models?

To understand better 

sources (drivers) of identification 

role of parametric assumptions 

working of parametric estimators

• must be used in practise when working with finite samples        →

Introduction
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Are functional form and distributional assumptions 

essential for identification (key features of the model); or

useful practical tools when working with finite samples?

Identification also provides guidance for applications & empirical 
work

E.g., what types of instruments are needed?

• What are the implications of distributional restrictions,  better data (e.g., micro
data), or functional form assumptions for the kinds & number of IVs needed?

...
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Challenges of demand estimation

xxx 24
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Goal: Measure responses of quantities demanded to 
ceteris paribus changes in prices or other factors

What is needed: sufficiently flexible functional forms, valid 
sources of exogenous variation, and sufficient account for 
unobserved heterogeneity

Challenge #1: Unobservable demand shocks → price 
endogeneity

Challenge #2: Unobservable demand shocks must be held 
fixed to measure e.g. demand elasticities 

Demand estimation
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Challenge #1: Endogeneity of prices

Statistical dependence between prices and latent 
demand shocks

Results from unobservables, U, that affect demand

Challenges 1# and #2

26



Ari Hyytinen

Challenge #2: Demand of good j depends on more
than one latent demand shock

Demand for good j cannot be considered in isolation 
from j  k 

• E.g., change in the price (or quality) of a substitute or 
complement will cause demand to shift

Demand for good j changes if the prices or 
characteristics of any of the related goods change

...
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Demand shocks (U1, ..., UJ) are associated with 
all related goods. 

Prices and characteristics of related goods j  k 
cannot, in general, be excluded from the 
demand for good j. 

Demand is not a regression →

…
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…

29

Consider a market with J interrelated goods, with the 
demand for good j = (1,…, J) given by: 

Qj = Dj (X, P, U) (general demand)

where 

X = (X1, ..., XJ)
P = (P1, ..., PJ)
U = (U1, ..., UJ).
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…

30

• There are J structural errors that enter on the right-hand 
side of the demand equation

• The presence of demand shocks (U1, ..., UJ) implies
that this is not a standard regression equation. 

• Econometric models with multiple structural errors are 
harder to identify and estimate than regression models 

• see also Matzkin (2013)



Ari Hyytinen

• To estimate the level and slope of demand at specific points 
is different from estimating e.g. some weighted average 
responses (such as LATE).

• see Berry and Haile (-21, section 2.5.3) 

• Averaging over latent variables  holding them fixed  

In IO, we are rarely interested in average responses. 

Instead, the interest is in the ceteris paribus effects of 
counterfactual (price) changes or ex ante analyses of proposed 
policy changes 

...
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To generically identify demand elasticities requires that a price 
can be varied while holding all else constant

This includes U → demand shocks (U1, ..., UJ) also need to be held fixed 
when defining a ceteris paribus effect

Having J instruments for J endogenous prices is not enough for 
non-parametric identification of Dj (entire function) 

Or, more specifically, not without further functional form 
restrictions

...
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• Observed variation in quantities with randomized 
prices:

• Randomized prices remove the dependence of prices 
on demand shocks 

Randomization of prices does not keep the demand 
shocks, U, constant

→ What can one learn?

Example: Randomized prices
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• When P randomized, observed variation in Q allow 
identifying certain averages of demand responses, 
based on integration over U = (U1, ..., UJ)

I.e., certain types of LATEs can be obtained by 
integrating over the vector of demand shocks.

Such averages are not informative of any elasticity 
of demand at e.g. observed prices or quantities

…
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Consider the following demand restriction:

Dj (X, P, U) = Dj(X, P, j(U)) (**)

where j(U) is a scalar and Dj is increasing in j(U)

This could be the case if demand for good j is 
assumed to be linear in the demand shocks U. 

Example: Functional form
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Here randomized prices (P _|_ U) or J instruments for 
prices would allow identifying the demand function (**)

As in Matzkin (-03): Quantile  of distribution of Qj|X, P 
allows tracing Dj(X, P, j(U)) for j(U) fixed at its  quantile. 

However: j(U) is a strong functional form assumption. 

Ruled out by many common parametric demand 
specifications, such as multinomial logit. 

See Berry and Haile (-21, section 2.4) for further discussion. 

…
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BLP setup and role of jt
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Preference heterogeneity + product or market-
specific unobservable (→ endogeneity)

Set-up: BLP demand model

38
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Notion of a market (t) is important:

Markets = natural combinations of geography (e.g., 
metropolitan areas) and time (e.g., years, quarters)

But: what is e.g. a market for a given digital good?  

Demand shocks associated with good j and market t, 
giving rise to unobserved jt 

Role of jt
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What are unobserved jt?

Narrow interpretation: 

Good j’s unobserved characteristics

Broader interpretation: 

Any combination of latent product characteristics and latent taste 
variation that is common to consumers in market t

High jt → consumers have a “high mean taste” for j in market t

…
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jt is observed by firms when prices are set but not by us 
econometricians

Potentially correlated with price Corr(jt, pjt)  0, just like “demand 
shocks“. 

Typical assumption: Not correlated with other characteristics E[jt | 
xjt] = 0.

Unobserved product characteristics allow product j to be better than 
product k in a way that is not explained by differences in xj and xk.

Vertical in nature: Consumers agree on their value

…
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• Narrow interpretation: jt mirrors anything 

• … that makes Volvo better than Skoda that is not fully captured 
by the observable characteristics in the data 

• … and that affect demand for different products and that leads 
higher sales (and/or higher prices).

• Difficult-to-quantify aspects: style, prestige, reputation, past 
experience, etc

• Quantifiable characteristics, but not in the data

Example: Automarket

42
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Insights from parametric models

xxx 43
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Standard intuition:

Exogenous changes in choice sets via exclusion restrictions 
(instruments)

Functional form / distributional assumptions

Supply side → cross equation restrictions → overidentifying 
restrictions for parameters

• This is why imposing supply side can be “informative of demand”

How is the BLP model identified?
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Preview: Key lessons from non-param. identification results of Berry 
and Haile (2014, 2021):  

Main requirement for non-parametric identification in BLP-type 
demand models:

• i+i+i -requirement: index restriction + invertability + instruments  

• In practise: Trade-off between functional form restrictions vs IV needs (what is 
available) 

Functional form assumptions mainly in the “standard role”

• Approximation in finite samples / interpolation / extrapolation

...
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Intuition for 

i. Index: How the index structure links jt to observables, 

ii. Inversion: How inversion yields equations that can be 
estimated using standard econometric tools

iii. Instruments: Need for instruments for the endogenous
variables in appering in those equations

Building intuition for i+i+i
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Rewrite

1. Multinomial logit

2. Nested logit

3. BLP

...
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1. Multinomial logit

48

Indirect utlity

Linear index

Mkt share (choice probability)

Inversion using s0t (see next page)

Like regressing quantity on 
price, need instruments for 
price
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...

49

How inversion using s0t works:
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...

50

LHS: Index

RHS: Tightly parameterized 
function of shares and price.

Rewrite this to get an 
index on LHS

Decompose xjt and set 
scale by dividing 1 (jt 

have no natural scale) + fix 
x(2)

jt

where:
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resembles a regression equation, with an additively 
separable error on RHS 

forms a connection to the more complicated 
models we discuss

…
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In spite of the two endogenous variables on RHS, only one 
excluded instrument zjt needed to identify this equation

Note role of x(1)
jt: It can be interpreted as a type of special 

regressor 

• (in BLP: x(1)
jt  does not have a random coefficient)

Implication: 

Bivariate moment condition: E[ξjt|x(1)
jt , zjt] = 0 

…
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2. Nested logit

53

Like a regression equation: Same LHS as for mlogit, RHS now a 
more complicated function of the mkt shares and price.

Instruments needed for the price and for ln(sj/g,t ),  which is a 
specific function of the share vector = (s1, . . . , sJ ) (“quantities”) 
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3. BLP

54

Like non-linear regression: 

Same LHS as before, but RHS a complicated function of prices (pt) and market shares 
(st), all of which are correlated with jt i.e., endogenous: 

Need more IVs. How many?   →

Inverse market share function

Has to be evaluated numerically 

Depends nonlinearly on parameters 
of the random coefficients.
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jt vary across products and markets and complicate the 
identification of BLP-demand: 

Each shock affects the quantity demanded and price of all 
related goods, implying that all components of st=(s1t,…, sJt) 
and pt=(p1t,…, pJt) depend on jt 

RHS: With J products, 2J endogenous variables: 

• J prices (pt) 

• J quantities or market shares (st).

...

55



Ari Hyytinen

Non-parametric identification
of the BLP model

xxx 56
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Berry-Haile (2014, 2021): Nonparametric generalization of 
the BLP model, with the following three key elements: 

Index: Index restriction

Inversion: Generalized multivariate inversion of choice 
probabilities: 

• Express each index as function of endogenous variables

Instruments: IVs can identify the inverse market share functions 
and thereby the model’s structural errors . 

Identification using market level data
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Demand for good j in market t: 

Goal of non-parametric identification: Learn function 
j(xt, pt, t), including all its partial derivatives

This demand system can be derived from a general random
utlity discrete choice model; see e.g. Berry and Haile (2021)

General demand model
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Inversion (i.e., existence of J inverse share equations)

Assumption 1 (non-parametric functional form assumption): 
Index restriction

Assumption 2 (invertibility of the demand system): Connected
substitutes

Non-parametric identification of the inverted share
functions (non-parametric IV regression)

Assumption 3 (non-parametric IV-assumptions): Mean
independence & completeness

Three assumptions

59
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A1: The index restriction

60

This is a non-parametric functional form assumption. It restricts how xjt
(1) and 

jt can affect the demand.

They can enter the non-parametric function, j, only through the index jt

Assumption (index):

Partition xt = (xt
(1), xt

(2)) Demand shocks have no natural location or 

scale: wlog, E[jt ] = 0, |j|=1  (special regressor)
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...

61

• Note #1: xjt
(1) and jt are “perfect substitutes” in the index. 

• Note #2: The index restriction is what leaves xt
(1) out of from the 

inversion, making them available as instrument for shares 

• (i.e., BLP-instruments can be excluded) 

• Note #3: Since t = (1t ,…, tJ), the demand shock to, say, good k 
can still affect the demand for good j, through a fully non-
parametric function j 
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Goods are

(i) weak substitutes (w.r.t. t); and 

(ii) connected to each other in the demand system

Violations of CS assumption unlikely in a 
discrete choice model (Berry and Haile 2014)

A2: Connected substitutes (CS)
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Part (i): Weak substitution
 

I.e., greater δjt must weakly reduce the demand for other goods

Part (ii): Strict substitution among at least some goods

I.e., goods are connected: No strict subset of goods substitute only 
among themselves; all goods belong in one demand system

…
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... 

64

From Berry and Haile -21, illustrating existence of a directed

path from any good j > 0 to the outside good (j = 0)
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Berry, Gandhi and Haile (2013) generalize the 
Berry (1994) invertibility result

A1 + A2 => inversion

65

Existence lemma: 

For all demand vectors, there exist an inverse demand

system of form jt =  -1j(st, pt) for j = 1,..., J
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Inverting demand system = tool to obtain a representation with 
one structural error per equation

Inverted demand equations similar to regression equations:

...
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A1-A3: Identification of demand

67

Newey-Powell identification argument for non-parametric IV regression can 
be extended → identification of each  -1j () →  plug in (st, pt) → recover 
each jt  →  identification of demand (j) for all j.

A3: Instruments satisfy a mean independence E[ξjt|x(1)
jt , zjt] = 0

and a relevance (”completeness”) condition (Newey-Powell 2003)
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Instruments

xxx 68
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Starting point:

Learning about demand requires instruments for price, such as 
e.g. cost shifters. 

When products are differentiated, we also have to learn about
”substitution patterns”

• … in the dimension of observed product characteristics, xj

• … in the unobserved (vertical) dimension as captured by the product-
specic demand error ξjt

→ variation in the shares are informative of these

Instruments: Which and why?
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• Besides generating variation in prices, we need to move shares at any given price 
vector. 

Prices: The need of IVs for prices:

• Prices endogenous, because likely to correlate with ξjt

• We need changes in each price, holding all others fixed and in a way that 
isn’t confounded by changes in . 

Shares: The need of IVs for shares:

• Use excluded instruments x-jt to hold shares s-jt fixed while prices change

...
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Intuition

To identify substitution patterns, we need observed 
exogenous changes in the choice set

Learning about substitution: Exogenous shifters of own 
and rival-product demand to handle vertical 
substitution

• Exogenous shifters of rival-product demand → instrument for 
the vector of market shares in inverse demand

...
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How many instruments?  (2J)

72

This shows why 2J instruments are needed: Each inverse equation,  -1j (st, pt) 
has 2J endogenous variables. The latter equation shows that:

• x(1)
jt can act as an instrument for itself

• Need J instruments for prices, pt

• J - 1 instruments for the endogenous quantities s-jt.

for some function hj 

 -1j (st, pt) strictly increasing in sjt 
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1. Cost shifters

2. BLP-instruments

3. Waldfogel-Fan instruments

4. Exogenous market structure changes

5. Differentiation instruments

• Separate question: optimal functions of the 
instruments to use in the conditional moment 
conditions → optimal instruments

Instrument menu for IV-regression
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• Shifts in marginal costs (materials, tax, tariffs, etc) have no direct 
effect on quantities and can be used as an instrument for prices 
to identify demand

In BLP: Need variation in the costs across alternatives.

Proxies for cost shifters: Local wage levels

“Hausman IVs” = prices of the same product in other markets 
since such prices mirror variation in costs (valid if demand 
shocks are not correlated across markets)

Cost shifters
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• Single-product firms: IVs =  average (exogenous) characteristics of 
competing products in the same market

Relevance: In oligopoly, firm j sets the price as a function of 
characteristics of products produced by competing firms, 
suggesting their relevance

Exclusion: Characteristics of competing products should not 
depend on ξjt (i.e., consumers’ valuation of focal firm j’s product).

Multiproduct firms: IVs = characteristics of all other products 
produced by same firm

BLP-instruments
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• Mark-up shifters -- e.g., characteristics of “nearby" 
markets (”Waldfogel instruments")

e.g., sometimes firms use of the same price for all 
markets in a region (“zone-pricing”)

e.g., demographics, such as age, in Helsinki may affect 
prices (markups) in Lahti, but may be independent of 
Lahti preferences (including Lahti demand shocks): 

• Conditional on Lahti observables they act through price (i.e., 
costs or mark-ups). 

Waldfogel-Fan instruments 
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Exogenous shifters of market structure: 

Something that affects prices through mark-ups 

• (changes in the intensity of competition  overall or locally in 
product space) 

Exogenous entry and exit

Changes in firm ownership, mergers

Exogenous shifters of mkt structure
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• Differentiation instruments refers to the proximity (distance) in 
product characteristics (Gandhi and Houde 2020)

IVs should mirror the exogenous degree of differentiation of each 
product in a market

E.g., counts of “close” rival and non-rival products in each market

E.g., sums over squared differences between rival and non-rival 
products in each market.

May help with weak identification of BLP

Differentiation instruments
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Berry and Haile (2014): 

When 2J instruments needed, one can use:

J BLP instruments (“for shares”)

• BLP instruments unique in the sense that they affect shares 
both through prices and directly through choice problem.

J cost shifters (”for prices”)

...
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Concluding remarks
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Conlon and Gortmaker (RJE, -20)

Implementation / PyBLP
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Berry and Haile, 2022, Nonparametric Identification of Differentiated 
Products Demand Using Micro Data  (arXiv:2204.06637)

Micro-data (consumer characteristic) provide variation in consumers’ choice 
problems within a market (“a panel structure”) i.e., without contamination from 
variation in the un-observables (fixed within a market)

Use this variation to learn about substitution patterns

Micro-data → richer demand specifications  → reduces requirements on the 
number and types of IVs

Conlon & Gortmaker, 2023, Incorporating Micro Data into Differentiated
Products Demand Estimation with PyBLP, NBER WP  31605

Microdata
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Appendix

xxx 83



Ari Hyytinen

Very general random utility model: 

Fv(|) not derived from specification of utility

Restriction: jt is scalar (jt-level unobservable)

Generic random utility model

84

conditional indirect utilities, viot =0

matrix of all product & mkt characteristics
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A1: The index restriction

85

Restricts how xjt
(1) and jt can affect the distribution of conditional indirect

utilities. Note: xjt
(1) and jt are “perfect substitutes”. 

Note also: The index restriction is what leaves x(1) out of from the inversion 

(-1
j), making them available as instrument for shares (i.e., BLP-instruments 

can be excluded) 
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Note that (st , xt , pt) are observed: If each jt were also observable, the functions 
(1, . . . , J) would be observable (trivial identification).

Endogeneity because of t → challenge to nonparametric identification. 

More difficult than the usual case: Each sjt and pjt is a function of all J unobservables 
(1t , . . . , Jt). 

Handling endogeneity harder with multiple structural errors in each equation

...

86

Utility maximization

Demand system
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