

H A R R I H A K U L A & V O L U N T E E R S

M S - C 1 6 5 0 N U M E R I C A L
A N A LY S I S

A P P L I E D M AT H

Contents

Basic Concepts and Definitions 13

Solving Equations 19

Interpolation 21

Bezier 29

Numerical Integration 31

Initial Value Problems 37

List of Figures

1 Buffon’s needle. 31

List of Tables

Introduction

This document covers the material of MS-C1650 Numerical Analysis.

Basic Concepts and Definitions

Floating-point arithmetic

Definition

A floating-point number with a base b and length n is defined as

x = ±(.d1d2...dn)b · be,

where m ≤ e ≤ M is the exponent and (.d1d2...dn) is the mantissa. A
floating-point number is normalized if d1 6= 0.

The book uses notation d1.d2...dn.

IEEE:

k = 2, 64 bits; 1 for the sign, 11 for the exponent and 52 for the
mantissa.

"double precision"
All floating-point systems have a machine epsilon that is the small-

est defined number after zero. IEEE-standard uses subnormal num-
bers that fill (one way or another) the underflow gap [0, ε].

IEEE: Double precision

Exponent Number Type
0....0 ±(0.b1b2...b52)2 · 2−1022 0 or subnormal

0....01 = 110 ±(1.b1b2...b52)2 · 2−1022 Normalized
...

... Note! Exponent
01....1 = 102310 · · · · 20 = "real" + 1023

...
11....10 = 204610 · · · · 21023

11....1 ±∞, if bi = 0, otherwise NaN Exception

Exceptions: ±∞, NaN
Overflow
Underflow

}
⇒ value depends on the chosen rounding method

14 ms-c1650 numerical analysis

Rounding

down : x̂ = round(x) ; x̂ ≤ x

up : x̂ = round(x) ; x̂ ≥ x

up : x̂ = round(x) ; x̂ ≥ x

towards 0 : up or down, depending ; x̂ ∈ [0, x]

nearest : x̂ = round(x) ; the nearest, in case of a tie, the one with a rightmost zero

Assumption: rounding to the nearest value
Holds: round(x) = x(1 + δ), where |δ| < ε, (or |δ| < ε

2 , when
default rounding mode is used.)

The standard gives:

a⊕ b = round(a + b) = (a + b)(1 + δ1)

a	 b = round(a− b) = (a− b)(1 + δ2)

a⊗ b = round(a · b) = (a · b)(1 + δ3)

a� b = round(a/b) = (a/b)(1 + δ4)

Documenting the rounding is non-trivial.

Condition numbers

Definition

A condition number describes how sensitive the output value is to a
small change in the input argument. (A property of the function, not
the algorithm)

Assumption: ƒ: R→R, x̂ and x close to each other,
e.g. x̂ = round(x).
Question: How close is y = f (x) to ŷ = f (x̂) ?

Definition

Absolute condition number C(x)

|ŷ− y| ' C(x)|x̂− x|

Definition

Relative condition number κ(x)

∣∣∣∣ ŷ− y
y

∣∣∣∣ ' κ(x)
∣∣∣∣ x̂− x

x

∣∣∣∣

basic concepts and definitions 15

Model 1

ŷ− y = f (x̂)− f (x) =
f (x̂)− f (x)

x̂− x
(x̂− x)

f (x̂)− f (x)
x̂− x

' f ′(x)

⇒ C(x) = | f ′(x)|

Model 2

Similarly,
ŷ− y

y
=

f (x̂)− f (x)
x̂− x

· x̂− x
x
· x

f (x)
f (x̂)− f (x)

x̂− x
' f ′(x)

⇒ κ(x) =
∣∣∣∣ x f ′(x)

f (x)

∣∣∣∣
Lecture problem

Examine the two functions f (x) = 2x, f (x) =
√

2.

f (x) = 2x, f ′(x) = 2 ⇒ C(x) = 2, κ(x) = 1

f (x) = x
1
2 , f ′(x) =

1
2

x−
1
2 ⇒ C(x) =

1
2

x−
1
2 , κ(x) =

1
2

Stability in algorithms

f l(x + y) ≡ round(x)⊕ round(y) = (x(1 + δ1) + y(1 + δ2))(1 + δ3)

Forward error analysis FEA:

How much does the answer f l(x + y) differ from the precise value
x + y ?

Backward error analysis BEA:

What problem yields the obtained precise value?

FEA:

f l(x + y) = x + y + x(δ1 + δ2 + δ1δ3) + y(δ2 + δ3 + δ2δ3)

Absolute error:

| f l(x + y)− (x + y)| ≤ (|x|+ |y|)(2ε + ε2)

16 ms-c1650 numerical analysis

Relative error:

| f l(x + y)− (x + y)|
x + y

≤ (|x|+ |y|)(2ε + ε2)

|x + y|

An interesting situation: y ≈ −x

BEA:

f l(x + y) = x(1 + δ1)(1 + δ2) + y(1 + δ2)(1 + δ3)

Relative error
x(1 + δ1)(1 + δ2) ≤ 2ε + ε2

Ditto: y(1 + δ2)(1 + δ3)
Sum of two numbers is therefore backwards stable.

Also

A problem can be well-posed even when an algorithm is unstable.
A well-posed problem can sometimes be approximated with an ill-
conditioned function.

Numerical Differentiation

Difference quotient

Taylor: f (x + h) = f (x) + h f ′(x) + 1
2 h2 f ′′(ξ), ξ ∈ [x, x + h]

Approximation for the derivative:

f ′(x) =
f (x + h)− f (x)

h
− h

2
f ′′(ξ)∗,

*discretization error: O(h)

Because f ′(x) = f (x+h)− f (x)
h is a first-order approximation, dis-

cretization error is O(h1).

Assumption: f (x) and f (x + h) are precise: δi < ε, i = 1, 2

f (x + h)(1 + δ1)− (f (x)(1 + δ2)

h
=

f (x + h)− f (x)
h

+
δ1 f (x + h)− δ2 f (x)

h

| rounding error | ≤ 2ε| f (x)|
h (for small values of h)

Observed:
discretization error ∼ h
rounding error ∼ 1

h

}
⇒ balanced

basic concepts and definitions 17

Example

f (x) = sin(x), x = π
4 ; f ′(x) = cos(x), f ′′(x) = −sin(x)

discretization error ∼
√

2h
4

rounding error ∼
√

2ε
h

}
⇒ h = 2

√
ε

Note:
absolute condition number C(x) = | − sin(x)|
relative condition number κ(x) = | − xsin(x)

cos(x) |,
when x = π

4 , we obtain
C(π

4) =
1√
2

;
κ(π

4) =
π
4 .

It is therefore the difference quotient that makes the problem ill-
conditioned.

Solving Equations

Bisection

The mean value theorem for continuous functions states that f (x) =
0 exists if x1 < x < x2 so that f (x1) and f (x2) have different signs.

The bisection algorithm is based on halving the interval so that the
sign requirement applies.

Note that in practise the problem is to find an interval [x1, x2].
Rate of convergence: How fast can we obtain the solution, that is,

how fast does the error approach zero?
Analysis: Let us have an interval [a, b]. After k steps the interval

examined is |b−a|
2k (→ 0, when k → ∞). Let us centralize the solution

by examining the interval 2δ:

|b− a|
2k ≤ 2δ⇔ 2k+1 ≥ |b− a|

δ
⇔ k ≥ log2

(
|b− a|

δ

)
− 1

The error decreases by a constant factor of 1
2 on every step. Thus,

the algorithm is linearly converging.

Newton’s Method

Let the initial guess be x0. The iteration xk+1 = xk −
f (xk)
f ′(xk)

is New-
ton’s method.

Connection to Taylor polynomial:

f (x) = f (x0) + (x− x0) f ′(x0) +
(x− x0)

2

2
f ′′(ξ), ξ ∈ [x0, x]

Let x∗ be a zero of f (x): f (x∗) = 0
Let us ignore the truncation error and write x1 = x∗:
0 = f (x0) + (x1 − x0) f ′(x0)

Theorem

If f ∈ C2, the initial value x0 is good enough and f ′(x∗) 6= 0, New-
ton’s iteration converges asymptotically to the zero x∗ with quadratic
speed.

20 ms-c1650 numerical analysis

Proof (quadraticity)

Taylor polynomial at xk:

x∗ = xk −
f (xk)

f ′(xk)
− (x∗ − xk)

2

2
f ′′(ξk)

f ′(xk)

Let us calculate the difference xk+1 − x∗:

xk+1 − x∗ =
f ′′(ξk)

2 f ′(xk)
(xk − x∗)2

With the assumption
∣∣∣ f ′′(ξk)

2 f ′(xk)

∣∣∣ ≤ C the theorem is proved.

(In the book: C∗ =
∣∣∣ f ′′(x∗)

2 f ′(x∗)

∣∣∣ so that limk→∞
|xk+1−x∗ |
|xk−x∗ |2

= C∗)

Quasi Newton’s Methods

In practise, finding the derivative f ′(xk) can be difficult or unreason-
ably expensive.

Newton’s iteration is modified by approximating the derivative
with difference quotient:

Secant method

xk+1 = xk −
f (xk)(xk − xk−1)

f (xk)− f (xk−1)
, k = 1, 2, ...

Thus, two initial guesses are needed to start the iteration.
The rate of convergence is 1+

√
5

2 ' 1.62.

Interpolation

Lagrange polynomials

Idea: Approximating a function f (x) over the interval x ∈ [a, b] with
a polynomial p(x) so that at the data points (xi, yi), i = 0, 1, ..., n
the approximation is precise: yi = p(xi).

Example

Data points: (1, 2), (2, 3), (3, 6) ((xi, yi), i = 0, 1, 2)

A possible interval: [1,3]; p2(x) =
2
∑

j=0
= cjxj

A second order polynomial⇔ three unknown coefficients.
⇒ three data points define a unique second order polynomial
In matrix form (Vandermonde):1 x0 x2

0
1 x1 x2

1
1 x2 x2

2


c0

c1

c2

 =

y0

y1

y2

 that is

1 1 1
1 2 4
1 3 9


c0

c1

c2

 =

2
3
6


⇒ c0 = 3, c1 = −2, c2 = 1; p2(x) = x2 − 2x + 3

Unfortunately, this method is highly sensitive to error in the input
values.

The complexity of solving a linear system of equations: O(n3)

Idea: Let us replace the basis xj with a "better" one. The best possi-
ble scenario:

p(x) = ∑
i

yi ϕi(x), when

ϕi(xi) = 1

ϕi(xj) = 0, i 6= j.

We find that the construction of ϕi(x) is simple.

Definition Lagrange polynomials

ϕi(x) = ∏
j 6=i

x− xj

xi − xj
; p(x) = ∑ yi ϕi(x) is the so-called Lagrange’s form

22 ms-c1650 numerical analysis

Example


ϕ0(x) = (x−2)(x−3)

(1−2)(1−3)

ϕ1(x) = (x−1)(x−3)
(2−1)(2−3)

ϕ2(x) = (x−1)(x−2)
(3−1)(3−2)

⇒ p(x) = 2ϕ0(x)+ 3ϕ1(x)+ 6ϕ2(x) = x2− 2x+ 3

Now the complexity is: O(n2)

Side step 1:

The evaluation of a polynomial in basis xj is linear: O(n2)

Horner: y = cn; y = yx + cn−1; ... n steps⇒ y =
n
∑

j=0
cjxj

Side step 2:

Theorem Interpolation polynomial pn(x) is unique

Central idea for the proof:
pn(x) has n zeros. Let pn(x) and qn(x) be interpolation polynomi-

als. (pn(xi)− qn(xi)) = 0, i = 0, 1, .., n so there is n + 1 zeros. The
difference: pn(x)− qn(x) = 0

Back to business

The Lagrange form can be written more efficiently in the so-called
barycentric form, where the evaluation is faster.

Definition of a new basis polynomials: ϕ̂i(x) =
n
∏
j=0

x−xj
x−xI

Then let

ϕ(x) =
n
∏
j=0

(x− xj) so p(x) = ϕ(x)
n
∑

i=0

wi
x−xi

, wi =
1

∏
j 6=i

(xi−xj)

We have formed the first barycentric form. The calculation of the
weights wi is (n2), but the evaluation is only O(n).

We observe that if yi = 1, then pn(x) = 1. Therefore must be:

1 = ϕ(x)
n
∑

i=0

wi
x−xi

, for all x.

Definition Barycentric interpolation formula

p(x) =

(
n

∑
i=0

wi
x− xi

yi

) / (n

∑
i=0

wi
x− xi

)

interpolation 23

Example

y0 = 2, y1 = 3, y2 = 6

wo =
1

(1− 2)(1− 3)
=

1
2

, w1 =
1

(2− 1)(2− 3)
= −1, w2 =

1
(3− 1)(3− 2)

=
1
2

p(x) =
(

2
2(x− 1)

− 3
x− 2

+
6

2(x− 3)

) / (1
2(x− 1)

− 1
x− 2

+
1

2(x− 3)

)
Does this yield us the same result?

p(x) =
(

x2 − 2x + 3
(x− 1)(x− 2)(x− 3)

) / (1
(x− 1)(x− 2)(x− 3)

)
= x2 − 2x + 3

Hurray!

Newton polynomials

An extension to the natural basis is the set

1, x− x0, (x− x0)(x−1), · · · ,
n−1
∏
j=0

(x− xj).

Definition Newton’s interpolation polynomials

pn(x) = a0 + a1(x1 − x0) + ... + an
n−1
∏
j=0

,

where ai is chosen such that the interpolation condition is true for
every xi.

The construction is equivalent to solving a lower triangular matrix:
O(n2)

p(x0) = ao = y0

p(x1) = a= + a1(x1 − x0) = y1 ⇒ a1 =
y1 − a0

x1 − x0
...

That is:

1
1 x1 − x0

1 x2 − x0 (x2 − x0)(x2 − x1)
...

. . .

1 xn − x0 (xn − x0)(xn − x1) · · ·
n−1
∏
j=0

(xn − xj)




a0

a1

a2
...

an

 =


y0

y1

y2
...

yn


Two remarks:

24 ms-c1650 numerical analysis

a) The order of the points makes no difference.* *stabililty varies between permutations

b) Adding a data point doesn’t affect the previously calculated
coefficients.

In the barycentric interpolation above the weights wi can also be
updated incrementally.

Example

p(x) = a0 + a1(x− 1) + a2(x− 1)(x− 2)

System:

1
1 1
1 2 2


a0

a1

a2

 =

2
3
6

 ⇒


a0 = 2

a1 = 1

a2 = 1

p(x) = x2 − 2x + 3

Potential problem: Overflow and underflow in large systems

Divided differences

Let us consider the interpolating polynomial in the natural basis:

pn(x) =
n

∑
k=0

akxk

Notice that ak are exaclty the coefficients of the Newton interpolation
polynomial.

Definition Divided differences

kth-order divided difference f [x0, x1, x2, · · · , xk] = ak, where ak is the
coefficient of the term xk in the polynomial of degree k that interpo-
lates the points xi.

Why is this a sensible definition?
One data point: f [xj] = f j = yj (Correct!)

Two data points: f [xi, xj] =
f j− fi
xj−xi

=
f [xj]− f [xi]

xj−xi

Three data points: f [xi, xj, xk] =
f [xj ,xk]− f [xi ,xj]

xk−xi

Theorem

f [xo, x1, · · · , xk] =
f [x1,··· ,xk]− f [x0,··· ,xk−1]

xk−x0

Proof

Three interpolating polynomials:

interpolation 25

p of degree k; (xo, f0), · · · , (xk, fk)

q of degree k− 1; (xo, f0), · · · , (xk−1, fk−1)

r of degree k− 1; (x1, f1), · · · , (xk, fk)

Claim: p(x) = q(x) + x−x0
xk−x0

(r(x)− q(x)
x0 : p(x0) = q(x0) = f0

x1, · · · , xk−1 : p(xi) = q(xi) = r(xi) = fi, i = 1, · · · , k− 1
xk : p(xk) = r(xk) = fk; RHS : q(xk) + 1 · (r(xk)− q(xk) = r(xk) �

Example

f [x0] = 2

f [x1] = 3 f [x0, x1] =
3− 2
2− 1

= 1

f [x2] = 6 f [x1, x2] =
6− 3
3− 2

= 3

f [x0.x1, x2] =
3− 1
3− 1

= 1

We have gained the exact coefficients ak!

Interpolation error

R(x) = f (x)− p(x) Let us assume that f differentiable (n + 1) times.
Let x′ be some point other than xi.

Formation of an aiding function: h(x) = f (x) − p(x) − c · w(x),

where W(x) =
n
∏
j=0

(x − xj) and c = f (x′)−p(x′)
w(x′) . The zeros of the

function h(x) are x0, · · · , xn (n+1 zeros) and x′. Hence, there are at
least n + 2 zeros. By using Rolle’s theorem, we can conclude that
h(n+1) has at least one zero, denoted by ξ. h(n+1) = f (n+1)(x) −
p(n+1)(x) − cw(n + 1)(x) = f (n+1)(x) − c(n + 1)! ⇒ h(n+1)(ξ) =

f (n+1)(ξ)− c(n + 1)! = 0⇒ c = f (n+1)(ξ)
(n+1)!

At the point x′ : R(x′) = f (n+1)(ξ)
(n+1)!

n
∏
j=0

(x′ − xj)

Theorem

R(x) = f (n+1)(ξ)
(n+1)!

n
∏
j=0

(x− xj), where ξ = ξ(x)

Mark that by the definition of h(x) the constant c is the coefficient
of the highest order term. Based on the previous result, c is some
divided difference: f [x0, · · · , xn, x] = 1

(n+1)! f (n+1)(ξ(x)).

26 ms-c1650 numerical analysis

Piecewise polynomial approximation

Idea: Let us subdivide an interval [a, b] into subintervals of length
h = b−a

n , where n is the number of subintervals. Each subinterval will
be approximated separately with a low-degree polynomial.

Linear piecewise interpolation polynomial (Interpolant)

l(x) = f (xi−1)
x−xi

xi−1−xi
+ f (xi)

x−xi
xi−xi−1

, x ∈ [xi, xi−1] Interpolation

error: f (x)− l(x) = f ′′(ξ)
2! (x − xi−1)(x − xi) Assume: | f ′′(x)| ≤ M :

| f (x)− l(x)| ≤ M h2

8 , x ∈ [xi−1, xi]

If the derivative is bounded over the whole interval [a, b] the error
is the same.

Hermite interpolation

We require the derivative to be continuous. Let p(x) be a third
order polynomial. The derivative of p(x) is quadratic: p′(x) =

f ′(xx−1)
x−x1

xx−1−xi
+ f ′(xi)

x−xx−i
xi−xi−1

+ α(x − xi−1)(x − xi) Must be:
p′(xi) = f ′(xi). We must fit parameter α to the data: Integrating:

p(x) = − f ′(xi−1)
h

x∫
xi−1

(t − xi)dt + f ′(xi)
h

x∫
xi−1

(t − xi−1)dt + α
x∫

xi−1

(t −

xi)(t− xi)dt + C Instantly: p(xi−1) = f (xi−1) ⇒ C = f (xi−1) Accord-
ingly: p(xi) = f (xi)⇒ α = 3

h2 (f ′(xi−1) + f ′(xi)) +
6
h2 (f (xi−1)− f (xi))

Splines

If we abandon the need to fit the derivative, we can construct a third
order polynomial which has two continuous derivatives at points
xi : s(x)

Problem: To choose the coefficients we require the solution to a
global problem. For each interval we derive a single spline: s(x)

Construction: Let us assume that zi = s′′(xi), i = 1, · · · , n− 1 is
known. In addition, h = xi − xi−1 (=constant).

Interval: [xi−1, xi] : s′′i (x) = 1
h zi−1(xi − x) + 1

h zi(x − xi− 1) By
integrating twice:

si(x) = 1
h zi−1

(xi−x)3

6 + 1
h zi

(x−xi−1)
3

6 + Ci(x− xi−1) + Di

Interpolation condition attaches the constants Ci and Di:
Di = fi−1 − h2

6 zi−1

Ci =
1
h [fi − fi−1 +

h2

6 (zi−1 − zi)]

We have derived a formula that evaluates the spline over every
subinterval. However, we still must solve zi and set a value for the
boundaries z0 and zn.

By calculating the derivative of s(x) and then exploiting continu-
ity:

interpolation 27

s′i(xi) = s′i+1(xi) :
h
2 zi +

1
h (fi − fi−1) +

h2

6 (zi−1 − zi) =

− h
2 zi +

1
h (fi+1 − fi) +

h2

6 (zi − zi−1), i = 1, · · · n− 1,
which is a tridiagonal matrix:

2h
3

zi +
h
6

zi−1 +
h
6

zi+1 = −2
h

fi +
1
h

fi−1 +
1
h

fi+1

=
1
h
(fi+1 − 2 fi + fi−1)

= bi

Taking z0 and zn to the right side
b1 = 1

h (f2 − 2 f1 + f0)− h
6 z0,

bn−1 = 1
h (fn − 2 fn−1 + fn−2)− h

6 zn

We form a so-called natural spline by choosing z0 = zn = 0
Other options for choosing the value for z0 and zn:
a) The first derivative at the end points is precise.
b) The third derivative is continuous at x1 and xn−1, this is known

as the not-a-knot condition.

Bezier

Bernstein Polynomials; Bn
k (t), t ∈ [0, 1]

Definition Bn
k (t) = (n

k)t
k(1− t)n−k

Bernstein polynomials have useful properties:

1)
n

∑
k=0

Bn
k (t) = 1 (= (t + 1− t)n)

2) 0 ≤ Bn
k (t) ≤ 1, for each k, n ≥ 0

3) Bn
0 (0) = Bn

n(1) = 1, otherwise Bn
k (0) = Bn

k (1) = 0

From combinatorics we obtain the fundamental property of recur-
sion:

Bn
k (t) = (1− t)Bn−1

k (t) + tBn−1
k−1 (t)

Bézier Curves

Let us use the notation xk ∈ Rn (point).

Definition

Given is the set of points x = x1, ..., xk ∈ Rn, the convex hull of which
is:

CHull(x) = {y ∈ Rn | y =
k

∑
i=1

aixi, ai ≥ 0,
k

∑
i=1

ai = 1}

Definition: Bezier curve

The following curve, determined by the set of points x, is a Bezier
curve.

βn(t) =
n

∑
k=0

xkBn
k (t)

The Bezier curve βn(t) is within the convex hull formed by points
x (control points, Bezier-points). It follows from the properties of
Bernstein polynomials that βn(t) passes through the first and last
control point.

30 ms-c1650 numerical analysis

Closed curves: control points: x0 = xn

If the closed curve is to be smooth at the starting point, the tangent
vectors at the endpoints must be codirectional.

Let us differentiate:

d
dt

βn(t) =
d
dt

n

∑
k=0

xkBn
k (t)

Bernstein: d
dt Bn

k (t) = n(Bn−1
k−1 (t)− Bn−1

k (t))

d
dt

βn(t) = n
n

∑
k=0

(Bn−1
k−1 (t)− Bn−1

k (t))xk

= n
n−1

∑
k=0

(xk+1 − xk)Bn−1
k (t)

Note that the derivative of the Bezier curve is also a Bezier curve!
Thus, we obtain:  d

dt βn(0) = n(x1 − x0)
d
dt βn(1) = n(xn − xn−1)

Geometrically: x0, x1, xn−1 are on the same line and x0 is between
x1 and xn−1.

Lifting algorithm

The control points uniquely define a curve, but the opposite does not
hold true.

Now, the following applies:

βn(t) =
n

∑
k=0

xkBn
k (t) =

n+1

∑
k=0

ykBn+1
k (t) = αn+1(t)

By setting x−1 = xn+1 = 0, we obtain the condition

yk =

(
1− k

n + 1

)
xk +

(
k

n + 1

)
xk−1 .

De Casteljau Algorithm

The previously described ideas can be combined into a practical
algorithm. Let the control points be x0, x1,...,xn:

(1) The constant curves are defined: β0
i (t) = xi

(2) βr
i (t) = (1− t)βr−1

i (t) + tβr−1
i+1 (t) ; r = 1, ..., n ; i = 0, ..., n− r.

The algorithm ends with the curve βn
0(t).

Numerical Integration

Monte Carlo

Central limit theorem

Let Xi be independent and identically distributed random variables
with an expected value µ and a variance σ2. In this case, for the sam-
ple average AN = 1

N ∑N
i=1 Xi we have the variance

Var(AN) =
1

N2

N

∑
i=1

Var(Xi) =
σ2

N
.

The standard deviation σ has the same units as Xi: σ(AN) =
σ√
N

.
Thus, the speed of convergence for Monte Carlo methods is of the

order O(1√
N
), where N is the amount of integration points. Remark-

ably, this holds regardless of the dimension!

Buffon’s needle

The distance between two lines is denoted by D. What is the proba-
bility that a dropped needle with the length L intersects a line?

Let y be the distance from the center of the needle to the closest
line and θ the angle shown in Figure 1.

Figure 1: Buffon’s needle.

Let us choose L = D = 1; y and θ random variables with distribu-
tions y ∼ Unif(0, 1

2), θ ∼ Unif(0, π). The condition for intersection:
y ≤ 1

2 sin θ.
Determining the probability requires calculating the ratio of areas:

Possible configurations are the points [0, π]× [0, 1
2] i.e. the area π

2 , the
condition is fulfilled by

∫ π
0

1
2 sin θ dθ = 1;

P =
1

(π
2)

=
2
π

Hence the approximation: π ≈ 2(#drops / #intersections).

32 ms-c1650 numerical analysis

Example Difficult geometry

I =
∫∫∫

V
γ(x, y, z) dx dy dz, for the density γ(x, y, z) = ez/2.

V is defined by the inequations

xyz ≤ 1,

−5 ≤ x, y, z ≤ 5.
Due to the exponential distribution of the density, the volume

and mass integrals over the same region V converge in a different
manner: the standard deviation of the volume is lower.

In many cases, a suitable change of variables turns the situation
around: u = ez/2 : −5 ≤ z ≤ 5 → e−2.5 ≈ 0.08 ≤ u ≤ e2.5 ≈ 12.2

I = 2
∫ e2.5

e−2.5

∫ 5

−5

∫ 5

−5

0, 2xy ln u > 1

1, 2xy ln u ≤ 1
dx dy du

To halve the standard deviation one must typically quadruple the
integration points. A custom fitted distribution is usually more effi-
cient.

Example Higher dimension

Let us examine the general case:

I =
∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an
f (x1, x2, . . . , xn) dxn . . . dx2 dx1,

(∫ ∫
· · ·

∫
V

f dV
)

where the limits of inner integrals can be functions of outer variables:
a2 ≡ a2(x1), bn ≡ bn(x1, . . . , xn−1).

Proceeding as above, we obtain limits of the surrounding volume
(min/max) for each dimension: [A1, B1], [A2, B2], . . . , [An, Bn] and
V̂ = [A1, B1]× [A2, B2]× · · · × [An, Bn].

Let us define a function g so that

g(x1, x2, . . . , xn) =

0, if (x1, . . . , xn) ∈ V̂ \V

1, if (x1, . . . , xn) ∈ V̂

I ≈
N

∑
i=1

gi

(
|V̂|
N

)
, where |V̂| = (B1 − A1) . . . (Bn − An).

High-dimensional problems are of great interest currently. Monte
Carlo methods are natural, however, the slow rate of convergence is
problematic.

Example MATLAB Another estimation of π

The area of a circle: A = πr2

Let us set r = 1, in which case V̂ = [−1, 1]× [−1, 1] and |V̂| = 4 .

numerical integration 33

Counter: gi =

1, if the point is inside the circle

0, otherwise.
The routine: (N denotes the number of points)

numberin = 0

for i = 1:N

x = 2 * rand - 1

y = 2 * rand - 2

if x^2 + y^2 < 1

numberin = numberin + 1

end

end

pio4 = numberin / N // ratio of areas = pi/4

piapprox = 4 * pio4

Spread? Var(aX) = a2Var(X)

Var(Xi) = E(X2
i)− (E(Xi))

2, and here: X2
i = Xi (= gi)

varpio4 = (pio4 - pio4^2) / N

varpi = 16 * varpio4

stdpi = sqrt(varpi)

Newton-Cotes

Idea: Let us approximate the integral
∫ b

a f (x) dx by integrating an
interpolant of the function f .

Lagrange:
∫ b

a
f (x) dx ≈

n

∑
i=0

f (xi)
∫ b

a

 n

∏
j=0
i 6=j

x− xj

xi − xj

 dx

The familiar trapezoidal rule is obtained by choosing n = 1:

p1(x) = f (a)
x− b
a− b

+ f (b)
x− a
b− a

,

i.e.
∫ b

a
f (x) dx '

∫ b

a
p1(x) dx =

b− a
2

[f (a) + f (b)]

The error is the integral of the interpolation error; for the trapezoid:

∫ b

a
f (x) dx−

∫ b

a
p1(x) dx =

1
2

∫ b

a
f ′′(ξ(x))(x− a)(x− b) dx

=
1
2

f ′′(η)
∫ b

a
(x− a)(x− b) dx

= − 1
12

(b− a)3 f ′′(η)

34 ms-c1650 numerical analysis

Over n subintervals:∫ b

a
f (x) dx ' h

2
[f (x0) + 2 f (x1) + 2 f (x2) + · · ·+ f (xn)]

and an error of O(h2).
What about n = 2?

Required:
∫ b

a
f (x) dx ≈ A1 f (a) + A2 f

(
a + b

2

)
+ A3 f (b),

accurate for all second-degree (or lower) polynomials. Evidently,
the coefficients Ai are obtained from the integrals of the polynomial
bases. Let us proceed with the undefined coefficients:∫ b

a
1 dx = b− a ⇒ A1 + A2 + A3 = b− a∫ b

a
x dx =

1
2
(b2 − a2) ⇒ A1a + A2

a + b
2

+ A3b =
1
2
(b2 − a2)∫ b

a
x2 dx =

1
3
(b3 − a3) ⇒ A1a2 + A2

(
a + b

2

)2
+ A3b2 =

1
3
(b3 − a3)

We obtain: A1 = A3 = b−a
6 , A2 = 4(b−a)

6
This is known as Simpson’s rule:∫ b

a
f (x) dx ' b− a

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
Over n subintervals:∫ b

a
f (x) dx ' h

6
[f (x0) + 4 f (x1/2) + 2 f (x1) + . . .

+ 2 f (xn−1) + 4 f (xn−1/2) + f (xn)]

And the error: (Accurate for polynomials of degree three)
For one interval: 1

2880 (b− a)5 f (4)(ξ) and for n subintervals O(h4).

Gaussian quadrature

Idea: Let us choose the points and weights simultaneously.

Problem: n = 1 :
∫ b

a
f (x) dx ' A0 f (x0) + A1 f (x1)

As above:∫ b

a
1 dx = b− a ⇒ A0 + A1 = b− a∫ b

a
x dx =

1
2
(b2 − a2) ⇒ A0x0 + A1x1 =

1
2
(b2 − a2)∫ b

a
x2 dx =

1
3
(b3 − a3) ⇒ A0x2

0 + A1x2
1 =

1
3
(b3 − a3)

...

numerical integration 35

We have a nonlinear system of equations!
The answer: Orthogonal polynomials

Definition Orthogonal polynomials

Two polynomials are are orthogonal over the interval [a, b] if their
inner product is zero.

〈p, q〉 =
∫ b

a
p(x)q(x) dx = 0

For orthonormal polynomials 〈p, p〉 = 〈q, q〉 = 1 .

Gram-Schmidt: {1, x, x2, . . . } → {q0, q1, q2, . . . } ⇐ orthonormal

q0 = 1/
[∫ b

a
12 dx

]1/2

=
1√

b− a
n.b. ||q(x)|| ≡

[∫ b

a
(q(x))2 dx

]1/2

For j = 1, 2, . . .

q̃j(x) = xqj−1(x)−
j−1

∑
i=0
〈 xqj−1(x), qi(x) 〉 qi(x)

qj(x) = q̃j(x) / ||q̃j(x)||

Observation: qj−1(x) is orthogonal to all polynomials of degree j− 2
or less.

〈 xqj−1(x), qi(x) 〉 = 〈 qj−1(x), xqi(x) 〉 = 0, i ≤ j− 3

⇒ q̃j(x) = xqj−1(x)− 〈 xqj−1(x), qj−1(x) 〉 qj−1(x)

− 〈 xqj−1(x), qj−2(x) 〉 qj−2(x)

Alas, we obtain a recursion of three terms!
Quadrature points are zeros of orthogonal polynomials:

Theorem

Let x0, x1, . . . , xn be the zeros of the orthogonal polynomial qn+1(x)
over the interval [a, b], in which case

∫ b

a
f (x) dx '

n

∑
i=0

Ai f (xi) ,

where Ai =
∫ b

a
ϕi(x) dx , ϕi(x) =

n

∏
j=0
i 6=j

x− xj

xi − xi
,

is accurate for all polynomials of degree 2n + 1 or less.

36 ms-c1650 numerical analysis

Proof

Let f be a polynomial of degree 2n + 1 or less. When f is divided by
qn+1, the remainder is of degree n or less. The division algorithm:

f = qn+1 pn + rn and f (xi) = rn(xi) , qn+1(xi) = 0 .

Let us integrate:∫ b

a
f (x) dx =

∫ b

a
qn+1(x)pn(x) dx +

∫ b

a
rn(x) dx

=
∫ b

a
rn(x) dx , because 〈 qn+1(x), pn(x) 〉 = 0

=
n

∑
i=0

Airn(xi) =
n

∑
i=0

Ai f (xi) �

Definition Weighted orthogonal polynomials

Let us define the inner product

〈p, q〉w =
∫ b

a
p(x)q(x)w(x) dx ,

where w(x) is a positive weight function.

Theorem

Building on our previous Theorem (qn+1 w-orthogonal):∫ b

a
f (x)w(x) dx '

n

∑
i=0

Ai f (xi) , where Ai =
∫ b

a
ϕi(x)w(x) dx .

Once again, accurate for polynomials of degree 2n + 1 or less.

Example Gaussian quadrature: x ∈ [−1, 1], n = 1

The zeros do not require normalization.
Basis: {1, x, x2}

Gram-Schmidt: q̃0 = 1

q̃1 = x− 〈 x, 1 〉
〈 1, 1 〉 · 1 = x−

∫ 1
−1 x dx∫ 1
−1 1 dx

· 1 = x

q̃2 = x2 − 〈 x2, 1 〉
〈 1, 1 〉 · 1−

〈 x2, x 〉
〈 x, x 〉 x = x2 − 1

3

The roots of q̃2: ± 1√
3

Thus, the formula is:
∫ 1

−1
f (x) dx ' A0 f

(
− 1√

3

)
+ A1 f

(
1√
3

)
This is accurate all the way up to x3.

Initial Value Problems

General problem: y′(t) = f (t, y(t)) t ≥ t0

y(t0) = y0
(1)

Let us assume that we have considered the question of whether
or not a solution exists and whether it is the only solution. Let us
especially assume that the function f is continuous and Lipschitz
continuous in y: for each y1, y2, t ∈ [a, b],

| f (t, y2)− f (t, y1)| ≤ L|y2 − y1| (2)

,
where L is a constant, t0 ∈ [a, b].
The numerical solution approximates the solution curve deter-

mined by the initial value. Ordinary methods approximate the solu-
tion at time tk+1 using the solution at time tk. Multistep methods use
deeper dependence.

Euler’s method

Constant step size h; y0 = y(t0):

yk+1 = yk + h f (tk, yk), k = 0, 1, ... (3)

We get from one point to another on the solution curve by moving
along the tangent line.

Method follows directly from Taylor’s theorem:

y(tk+1) = y(tk) + hy′(tk) +
h2

2
y′′(ξk)

= y(tk) + h f (tk, y(tk)) +
h2

2
y′′(ξk), ξk ∈ [tk, tk+1] (4)

Types of errors: The truncation error (local) and the global error
Now:

38 ms-c1650 numerical analysis

yk+1 − yk
h

= f (tk, yk) (5)

.
Inserting the solution y(tk):

y(tk+1)− y(tk)

h
= f (tk, y(tk)) +

h
2

y′′(ξk) (6)

,
where h

2 y′′(ξk) is the local error O(h).
Euler’s method is first order.
NB: Often the truncation error is described as O(h2). Here we

are considering an approximation, which has on the left side the
approximation of the derivative.

The method is consistent:

lim
h→0

y(tk+1)− y(tk)

h
= y′(tk) = f (tk, y(tk)) (7)

The truncation error→ 0 , when h→ 0.
What about the global error? At time tk: |y(tk)− yk| ≤ ?
Convergent method: max|y(tk)− yk| → 0 , when h→ 0.
Theorem
Let us assume that the general problem is well-posed. Let T ∈

[a, b], T > t0 and h = (T − t0)/N. Let

yk+1 = yk + h f (tk, yk), k = 0, 1, ..., N − 1

Let us assume that y0 → y(t0), when h→ 0. Thus, for every k with
tk ∈ [t0, T], yk → y(tk), when h→ 0 and max

k
|y(tk)− yk| → 0.

Proof: Let us denote dj = y(tj)− yj.
Subtracting Taylor and Euler:

dk+1 = dk + h[f (tk, y(tk))− f (tk, yk)] +
h2

2
y′′(ξk) (8)

Lipschitz and |y′′(t)| ≤ M:

|dk+1| ≤ |dk|+ hL|dk|+
h2

2
M

= (1 + hL)|dk|+
h2

2
M (9)

Generally holds:

γk+1 ≤ (1 + α)γk + β, α > 0, β ≥ 0, k = 0, 1, ...

⇒ γn ≤ enαy0 +
enα − 1

α
β (10)

initial value problems 39

Thus,

|dk+1| ≤ e(k+1)hL|d0|+
e(k+1)hL − 1

L
h
2

M (11)

kh ≤ T − t0:

max
k
|dk| ≤ eL(T−t0)|d0|+

eL(T−t0)−1

L
h
2

M (12)

,
where |d0| → 0 and h

2 M→ 0, when h→ 0. �
Thus, the global error O(h) is obtained with Euler’s method. With

the same technique, it is possible to examine the effect of the round-
ing error. Let us calculate the difference of the floating-point solution
and the exact arithmetic (with corresponding denotations)

|dk+1| ≤ (1 + hL)|dk|+ δ

⇒ |dk+1| ≤ eL(T−t0)|d0|+
eL(T−t0) − 1

hL
δ (13)

where |d0| is the error at the beginning, and the latter term domi-
nates when h is small.

Guideline: Minimize the global error without forgetting the round-
ing!

Explicit and implicit method
Quadrature:

y(t + h) = y(t) +
∫ t+h

t
f (s, y(s))ds

= y(t) +
h
2
[f (t, y(t)) + f (t + h, y(t + h))] + O(h3) (14)

leads to the trapezoidal:

yk+1 = yk +
h
2
[f (tk, yk) + f (tk+1, yk+1)] (15)

The method is implicit: yk+1 must be solved at every step using
some solution method. Euler’s method is explicit: yk+1 is obtained by
addition; yk+1 appears only on one side of the equation.

Idea: Predict and correct.
Heun’s method:
ỹk+α = yk + αh f (tk, yk); prediction
yk+1 = yk + βh f (tk, yk) + γh f (tk + αh, ỹk+α); correction
Three parameters: α, β, γ ⇒ Let us fit them in Taylor’s theorem.
Heun: α = 1, β = γ = 1

2
Generally: β + γ = 1, αγ = 1

2
For all methods like this, the truncation error is O(h2).

40 ms-c1650 numerical analysis

Synthesis

Synthesis: yk+1 = yk + hΨ(tk, yk, h)
a) consistency: lim

h→0
Ψ(t, y, h) = f (t, y)

b) stability: If there exists a constant K and a step size h0 > 0
such that |yn − ỹn| ≤ K|y0 − ỹ0|, where yn, ỹn and y0, ỹ0 are initial
conditions, which holds when h ≤ h0 and nh ≤ T − t0, the method is
stable.

c) a) & b)⇒ the method is convergent
If the truncation error is of the following form

τ(t, h) =
y(t + h)− y(t)

h
−Ψ(t, y(t), h)

the global error of the stable method, which has the truncation
error O(hp), is O(hp).

NB! The proof is similar to the one shown for Euler’s method.

γk+1 ≤ (1 + α)γk + β ⇒ γn ≤ enαγ0 +
enα − 1

α
β

γn ≤ (1 + α)2γn−2 + [(1 + α) + 1]β

≤ (1 + α)nγ0 + [
n−1

∑
j=0

(1 + α)j]β

= (1 + α)nγ0 +
(1 + α)n − 1

α
β

(1 + α) ≤ eα = 1 + α +
α2

2
eξ , ξ ∈ (0, α)

For Euler systems:

y′ = f (t, y), y(t0) = y0 ⇒ yk+1 = yk + h f (tk, yk)

Components: yi,k+1 = yik + h fi(tk, y1k, . . . , ynk), i = 1, . . . , n

Multistep methods

Let us consider (once again) the integral

y(tk+1) = y(tk) +
∫ tk+1

tk

f (s, y(s))) ds

Idea: Let us replace the f(t,y) with a suitable interpolation polyno-
mial, which takes the solution history into consideration.

If tk+1 is taken into account, the method is implicit.
Adams-Bashforth: Explicit
Let us interpolate at points tk, tk+1,...,tk−m+1; pm−1(s)

yk+1 = yk +
∫ tk+1

tk

pm−1(s) ds = yk + h
m−1

∑
l=0

bl f (tk−l , yk−l) (16)

initial value problems 41

where

bl =
1
h

∫ tk+1

tk

m−1

∏
j=0
j 6=l

s− tk−j

tk−l − tk−j

 ds

If m = 1, the Euler’s method is obtained!
Lecture exercise: What kind of method is obtained, when m = 2?

yk+1 = yk + h[
3
2

f (tk, yk)−
1
2

f (tk−1, yk−1)]

The truncation error is O(hm). (The error of the integral is O(hm+1).)
Adams-Moulton: Implicit
Let us consider the point tk+1 as well; qm(s).

yk+1 = yk + h
m

∑
l=0

cl f (tk+1−l , yk+1−l (17)

where

cl =
1
h

∫ tk+1

tk

 m

∏
j=0
j 6=l

s− tk+1−j

tk+1−l − tk+1−j

 ds

If m = 0, we obtain yk+1 = yk + h f (tk+1, yk+1), which is so called
implicit Euler’s method.

Lecture exercise: What kind of method is obtained, when m = 1?

yk+1 = yk +
h
2
[f (tk+1, yk+1) + f (tk, yk)]

which is a trapezoidal!
The truncation error is O(hm+1).
General format: ∑m

l=0 alyk+1 = h ∑m
l=0 bl f (tk+l , yk+l),

am = 1, bm = 0⇒ explicit, otherwise implicit
The high order of the truncation error does not implicate stability!

yk+1 − 3yk+1 + 2yk = h[
13
12

f (tk+2, yk+2)−
5
3

f (tk+1, yk+1)−
5

12
f (tk, yk)]

Exercise: y’ = 0, y(0) = 1

y1 = 1 + δ

y2 = 3y1 − 2y0 = 1 + 3δ

...
yk = 3yk−1 − 2yk−2 = 1 + (2k − 1)δ
δ ∼ 2−53 ⇒ k = 100 gives us an error ∼ 247 (!)

42 ms-c1650 numerical analysis

Stiff Equations

Problem: The solution contains different time scales.
Example:

y′1 = −100y1 +y2

y′2 = − 1
10 y2

⇔ y′ = Ay, A =

[
−100 1

0 − 1
10

]

Solution:y1(t) = e−100t(y1(0)− 10
999 y2(0)) + e−

t
10 10

999 y2(0)

y2(t) = e−
t

10 y2(0)
(18)

Question: Could the problem be solved by using Euler’s method?
Could the step size be chosen arbitrarily? (All gucci, if h→ 0.)

Component 2:

y2,k+1 = (1− h
10

)y2,k

⇒ y2,k = (1− h
10

)ky2(0) (19)

Component 1:

y1,k+1 = (1− 100h)y1,k + hy2,k

= (1− 100h)y1,k + h(1− h
10

)ky2(0)

= (1− 100h)2y1,k−1 + h[(1− 100h)(1− h
10

)k−1 + (1− h
10

)k]y2(0)

...

= (1− 100h)k+1y1(0) + h(1− h
10

)k[
k

∑
l=0

(
1− 100h

1− h
10

)l]y2(0) (20)

which leads us to:

y1,k+1 = (1− 100h)k+1[y1(0)−
10

999
y2(0)] + (1− h

10
)k+1 10

999
y2(0) (21)

We notice immediately that if h > 1
50 , then |1− 100h| > 1 and

(1 − 100h)k+1 grows geometrically. Even if the initial conditions
guaranteed that y1(0) − 10

999 y2(0) = 0, the rounding error grows
unbounded.

In that case, Euler’s method is unstable, when h > 1
50 .

Absolute stability

General problem: y′ = λy ⇒ y = eλty(0), λ ∈ C

initial value problems 43

We know that y(t)→ 0, when t→ ∞ only if Re λ < 0.
System: y′ = Ay; A is n× n-matrix
Let us assume that A is diagonalizable.

A = VΛV−1

where Λ is a diagonal matrix of eigenvalues and the columns of V
are eigenvectors.

With a variable change ỹ = V−1y, we obtain:

ỹ′ = Λỹ thus ỹi = λi ỹi, i = 1, ..., n

Modified system converges in modified coordinates, which is not
always simple to interpret.

However, the next definition is reasonable:
Definition: The region of absolute stability is the set {hλ ∈ C | yk →

0, when k → ∞}, where yk is the solution of the general problem and
h is a constant step size, h > 0.

Definiton: A-stability
A method is A-stable if its region of absolute stability contains

entire left half plane.
NB: On the region of absolute stability, it holds that if zk+1 =

(1 + hλ)zk, zk 6= yk, then

zk+1 − yk+1 = (1 + hλ)(zk − yk)

⇒ |zk+1 − yk+1| ≤ |zk − yk| (22)

Example: The backward Euler method

yk+1 = yk + hλyk+1 ⇒ yk+1 =
1

1− hλ
yk = ... =

1
(1− hλ)k+1 y0 (23)

Absolute stability: {hλ | |1− hλ| > 1}

|1− hλ| =
√
(1− h Reλ)2 + (Imλ)2 > 1, when Reλ < 0 (24)

The backward Euler method is A-stable.
One can prove that there are no explicit A-stable linear multistep

methods.
Theorem: The highest order of an A-stable multispe method is

two.
Depressing. Nevertheless, it is possible to form a high-order meth-

ods with the region of absolute stability "almost" the entire left half
plane.

44 ms-c1650 numerical analysis

Particular methods

BDF-methods: Backward Differentiation Formulas
m-step method with m-order: ∑m

l=0 alyk+1 = hbm f (tk+m, yk+m

All implicit.
Theorem: The truncation error of a multistep method is of order

p ≥ 1, if and only if

m

∑
l=0

al = 0 and
m

∑
l=0

l jal = j
m

∑
l=0

l j−1bl , j = 1, ..., p

With this theorem, let us choose suitable coefficients:
m = 1: a0 + a1 = 0, 0 · a0 + 1 · a1 = b1

Let us (always) choose a1 = 1 ⇒ a0 = −1, b1 = 1
Thus, we obtain: yk+1 = yk + h f (tk+1, yk+1), which is the backward

Euler.
We can continue this way, but when m = 3, the obtained method

cannot be A-stable.
IRK-methods: Implicit Runge-Kutta

ξ j = yk + h
v

∑
i=1

aji f (tk + cih, ξi), j = 1, ..., v (25)

yk+1 = yk + h
v

∑
j=1

bj f (tk + cjh, ξ j) (26)

Arbitrary parameters: aji, bj, cj

Consistent: ∑v
i=1 aji = cj, j = 1, ..., v

For every v ≤ 1, there is a unique A-stable IRK method of order
2v.

Implicit systems

Multistep methods: bm 6= 0

yk+m = hbm f (tk+m, yk+m) + γ, (27)

where γ = h ∑
l=0
∗m− 1bl f (tk+l , yk+l)−∑ ¯l = 0m−1alyk+l (28)

is known.

IRK: 
ξ1
...
ξv

yk+1

 = h


∑v

i=1 a1i f (tk + cih, ξi)

...
∑v

i=1 avi f (tk + cih, ξi)

∑v
j=1 bi f (tk + cjh, ξ j)

+


yk
...
yk
yk

 (29)

General format:

initial value problems 45

w = hg(w) + γ ; (30)

q(w) ≡ w− hg − γ = 0 (31)

Newton’s method:
An initial guess w(0); Taylor’s theorem for q in w(0):

q1(w1, ..., wn)

...
qn(w1, ..., wn)

 =

q1(w
(0)
1 , ..., w(0)

n)

...

qn(w
(0)
1 , ..., w(0)

n)

+
∑n

i=1
∂q1
∂wi

(w(0))(wi − w(0)
i)

...

∑n
i=1

∂qn
∂wi

(w(0))(wi − w(0)
i)

+


O(
∣∣∣∣∣∣w−w(0)

∣∣∣∣∣∣2)
...

O(
∣∣∣∣∣∣w−w(0)

∣∣∣∣∣∣2)


(32)

or in the matrix format

q(w) = q(w(0)) + Jq(w(0))(w−w(0)) + O(
∣∣∣∣∣∣w−w(0)

∣∣∣∣∣∣2) (33)

where Jq(w(0)) is the Jacobian evaluated at w(0).
Let us drop the quadratic term and solve q(w) = 0:

w(1) = w(0) − [Jq(w(0))]−1q(w(0)) (34)

We have obtained a step of Newton’s method.
Observations:
a) Rotating the matrix means solving the system of equations.
b) The Jacobian must be non-singular.
c) The initial guess has to be good enough.
In this context: q(w) = 0; we obtain

w(j+1) = w(j) − [I − hJg(w(j))]−1(w(j) − hg(w(j)))− γ (35)

where [I − hJg(w(j))]−1 is non-singular when h is sufficiently
small.

Interpretation: The error of the predictor step can be around O(h).

	Basic Concepts and Definitions
	Floating-point arithmetic
	IEEE:
	Condition numbers
	Stability in algorithms
	Numerical Differentiation

	Solving Equations
	Bisection
	Newton's Method
	Quasi Newton's Methods

	Interpolation
	Lagrange polynomials
	Newton polynomials
	Interpolation error
	Piecewise polynomial approximation

	Bezier
	Bernstein Polynomials; Bkn(t), t[0,1]
	Bézier Curves
	De Casteljau Algorithm

	Numerical Integration
	Monte Carlo
	Newton-Cotes
	Gaussian quadrature

	Initial Value Problems

