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Introduction

This document covers the material of MS-C1650 Numerical Analysis.






Basic Concepts and Definitions

Floating-point arithmetic

Definition

A floating-point number with a base b and length # is defined as
X = :I:(.dldz...dn)b . bg,

where m < e < M is the exponent and (.d1d,...d,) is the mantissa. A
floating-point number is normalized if d; # 0.
The book uses notation d;.d5...d,,.

IEEE:

k = 2, 64 bits; 1 for the sign, 11 for the exponent and 52 for the
mantissa.

"double precision"

All floating-point systems have a machine epsilon that is the small-
est defined number after zero. IEEE-standard uses subnormal num-
bers that fill (one way or another) the underflow gap [0, €].

IEEE: Double precision

Exponent Number Type
0..0 +(0.b1by...bsp )5 - 271022 0 or subnormal
0...01 = 1y +(1.b1by...bsp), - 271022 Normalized
: : Note! Exponent
01...1 = 10234 - .20 = "real" + 1023
11....10 = 20469 - . 21023
11....1 +o0, if b; = 0, otherwise NaN Exception

Exceptions: £oo, NaN

Overflow

Underflow } = value depends on the chosen rounding method
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Rounding

down: 2% =round(x) ;% <x

up: f=round(x) ;¥>x

up: £ =round(x) ;%>x
towards 0: up or down, depending ;% € [0, x|

nearest: £ =round(x) ;the nearest, in case of a tie, the one with a rightmost zero

Assumption: rounding to the nearest value

Holds: round(x) = x(1+ 6), where |[§] < ¢, (or [§] < §, when
default rounding mode is used.)

The standard gives:

a®b= round(a+b)= ( )
a6b= round(a—0b)= (a—0b)(1+3)
a®@b= round(a-b) = ( (
a@b= round(a/b) = (

Documenting the rounding is non-trivial.

Condition numbers
Definition
A condition number describes how sensitive the output value is to a
small change in the input argument. (A property of the function, not
the algorithm)

Assumption: f: R—IR, £ and x close to each other,

e.g. £ = round(x).

Question: How close is y = f(x) to 7 = f(%) ?

Definition

Absolute condition number C(x)

Definition
Relative condition number x(x)

X —x
X

\y (x)
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Model 1
9y =)~ fx) LIS oy
f(f?\ *f(X) ~ f/(x)
= C(x) = [ (%)
Model 2
Similarly,
I-y _f®)—f(x) 2-x x
y 2—x x  f(x)
f(x% :i:(x) ~ f/(x)
=Kk(x) = xﬁi};)

Lecture problem

Examine the two functions f(x) = 2x, f(x) = v/2.

Stability in algorithms
fl(x +y) = round(x) ® round(y) = (x(1 +61) +y(1 +62)) (1 +43)

Forward error analysis FEA:

How much does the answer fI(x + y) differ from the precise value
x+y?

Backward error analysis BEA:

What problem yields the obtained precise value?

FEA:
fllx+y) = x+y+x(61 + 02+ 0193) +y (52 + 3 + 6293)
Absolute error:

f1c+y) = (et y)l < (Ix] + [y]) (2 + €)
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Relative error:

fllx+y) = (x+ )l _ (xl+lyD(2e+€)
x+y - |x 4+ y|

An interesting situation: y ~ —x

BEA:

flx+y)=x(14+86)1+86)+y(1+6)(1+63)

Relative error
x(1+61)(1+0) < 2e+¢€?
Ditto: y(l + 52)(1 + (53)

Sum of two numbers is therefore backwards stable.

Also

A problem can be well-posed even when an algorithm is unstable.
A well-posed problem can sometimes be approximated with an ill-
conditioned function.

Numerical Differentiation

Difference quotient

Taylor: f(x+h) = f(x) +hf'(x) + 3h*f"(§), &€ [x,x+H]
Approximation for the derivative:

x+h)—f(x) h .
*discretization error: O(h)
Because f'(x) = w is a first-order approximation, dis-
cretization error is O(h!).

Assumption: f(x) and f(x + h) are precise: §; < ¢,i=1,2

fe+h)(A+6) = (f(x)A+6) _flx+h) - f(x)

h h
S f(x+h)—3df(x)
+
h
| rounding error | < w (for small values of h)

Observed:

discretization error ~ h
. 1 = balanced
rounding error ~5
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Example

f(x) =sin(x), x=

=N

;o f(x) =cos(x), f"(x) = —sin(x)

discretization error ~ Y2
\% = h =2
rounding error ~
Note:
absolute condition number C(x) = | — sin(x)|
relative condition number x(x) = | — isgg(%) l,

when x = 7, we obtain
_ 1.

c(§) =

k(§)=7%.

It is therefore the difference quotient that makes the problem ill-
conditioned.






Solving Equations

Bisection

The mean value theorem for continuous functions states that f(x) =
0 exists if x1 < x < x so that f(x7) and f(x;) have different signs.
The bisection algorithm is based on halving the interval so that the
sign requirement applies.
Note that in practise the problem is to find an interval [x7, x7].
Rate of convergence: How fast can we obtain the solution, that is,
how fast does the error approach zero?

Analysis: Let us have an interval [a,b]. After k steps the interval
b—

| Zkﬂl
by examining the interval 24:

‘bz—k‘” < 26 & 2K+ ZLg”' @k210g2<|bga) 1

examined is (— 0, when k — o0). Let us centralize the solution

The error decreases by a constant factor of % on every step. Thus,
the algorithm is linearly converging.

Newton’s Method

Let the initial guess be x¢. The iteration xy 1 = x; — j:,((i’;)) is New-
ton’s method.
Connection to Taylor polynomial:

(x

~x)?
£x) = f0) + (= x0)f (o) + ES 1), ¢ € fra ]

Let x, be a zero of f(x): f(x«) =0
Let us ignore the truncation error and write x; = x.:

0= f(xo) + (x1 —x0)f'(x0)

Theorem

If f € C2, the initial value xj is good enough and f’(x,) # 0, New-
ton’s iteration converges asymptotically to the zero x, with quadratic
speed.
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Proof (quadraticity)

Taylor polynomial at xj:

T {7 R € —x)? f" (&)
TR () 2 fi(w)

Let us calculate the difference xjq — x«:

f" (8

B T E)

(xk - X *)2
With the assumption ‘ g},,((i’;))

c | )
(In the book: C, = 57(x,)

< C the theorem is proved.

so that lim;_,o, “’2‘:1;7;‘ =C,)

Quasi Newton's Methods

In practise, finding the derivative f’(x;) can be difficult or unreason-

ably expensive.
Newton’s iteration is modified by approximating the derivative

with difference quotient:

Secant method

o [ 1)
=T ) fl) ¢

Thus, two initial guesses are needed to start the iteration.

The rate of convergence is HT\@ ~ 1.62.



Interpolation

Lagrange polynomials

Idea: Approximating a function f(x) over the interval x € [a,b] with
a polynomial p(x) so that at the data points (x;,y;), i =0,1,..,n

the approximation is precise: y; = p(x;).

Example
Data points: (1,2), (2,3), (3,6) ((x;,y;), i=0,1,2)
2 .
A possible interval: [1,3]; pa(x) = ¥ = ;¢
j=0
A second order polynomial < three unknown coefficients.
= three data points define a unique second order polynomial
In matrix form (Vandermonde):

1 x 23\ [co Yo 1 1 1\ [co 2
1 x1 2| |a|=|y|thatis[1 2 4| || =13
1 x %) \o Yo 1 3 9/ \e» 6

=c0=3 cq=-2 =1 p(x)=x>-2x+3

Unfortunately, this method is highly sensitive to error in the input
values.

The complexity of solving a linear system of equations: O(n%)

Idea: Let us replace the basis x/ with a "better" one. The best possi-
ble scenario:

We find that the construction of ¢;(x) is simple.

Definition Lagrange polynomials

pi(x) =11 ;: — J;] ; p(x) =) vigi(x) is the so-called Lagrange’s form
j# T
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Example

)
)

75 = p(x) = 290 (x) +3¢1 (x) +6¢2(x) = x> —2x+3
)
)

Now the complexity is: O(n?)

Side step 1:

The evaluation of a polynomial in basis x/ is linear: O(n?)

n .
Horner: y =c¢y; y=yx+cy1; ... nsteps =y =} ¢/
j=0

Side step 2:
Theorem Interpolation polynomial p,(x) is unique

Central idea for the proof:

pn(x) has n zeros. Let p,(x) and g, (x) be interpolation polynomi-
als. (pn(x;) —qu(x;)) =0, i=0,1,..,nso thereis n+ 1 zeros. The
difference: p,(x) —qu(x) =0

Back to business

The Lagrange form can be written more efficiently in the so-called

barycentric form, where the evaluation is faster.
n —
Definition of a new basis polynomials: ¢;(x) = T] -
=0
n no ! 1
p(x) = IT(x —x) 50 p(x) = 9(x) ¥ %, w0 = sy
]=0 i=0 l#‘ ! U

We have formed the first barycentric form. The calculation of the

xi Then let

X—Xx

weights w; is (n?), but the evaluation is only O(n).
We observe that if y; = 1, then p,(x) = 1. Therefore must be:
n

1=g(x) ¥ -2, forallx.

. x—x;’
i=0

Definition Barycentric interpolation formula

p(x) = ()ni x?ixiyf) / (Z xz—wxf>

i=0 i=0




Example

yOZZI y1:3/ y2:6

B 1 1 B 1 4 B 1
s R A e R

= (s vt aey) / (e rat )

Does this yield us the same result?

x? —2x
w0 = (genmz ) (enean=s)
:x2—2x—|—3

Hurray!

Newton polynomials

An extension to the natural basis is the set

n—1
1,x—x9, (x —x0)(x—1), -, 1_[()(x — X))
j=

Definition Newton’s interpolation polynomials

n—1
pn(x) = ao +a1(x1 — x0) + ... +an 1,
j=0
where a; is chosen such that the interpolation condition is true for
every Xx;.
The construction is equivalent to solving a lower triangular matrix:
O(n?)

p(x0) = ao = yo
— _ _Y1—4o
p(x1) =a=+a1(x1 —x0) =y = a1 =——
X1 — Xo
That is:
1 a
1 X1 — X aO zo
1 1
1 X2 — Xq (XQ*XO)(Xzfxl)
M| =Y
n—1
1 xn—x0 (xn_xO)(xﬂ_xl) H(xﬂ_xj) n Yn
j=0

Two remarks:

3-1)(3-2)

1

2

INTERPOLATION

23
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a) The order of the points makes no difference.*

b) Adding a data point doesn’t affect the previously calculated
coefficients.

In the barycentric interpolation above the weights w; can also be
updated incrementally.

Example

p(x) = ag+ a1 (x — 1) + ay(x — 1) (x —2)

1 a 2 agp =2
System: 11 ap| =13 = a; =1
1 2 2 an 6 a, =1

p(x) =% —2x+3

Potential problem: Overflow and underflow in large systems

Divided differences

Let us consider the interpolating polynomial in the natural basis:
-k
pn(x) = Z axx
k=0

Notice that a; are exaclty the coefficients of the Newton interpolation
polynomial.

Definition Divided differences

kth-order divided difference flxo,x1,x2, -+, x¢] = ag, where ay is the
coefficient of the term x¥ in the polynomial of degree k that interpo-
lates the points x;.

Why is this a sensible definition?

One data point: f[x;] = f; =y; (Correct!)

Two data points: f[x;, x;] = 3{’ :Q = f[x;]:ﬁi[xi]
Three data points: f[x;, xj, xx] = %

Theorem
f[xal X1, ka] — f[XLII./xk}(;fJ[CT)O'm'xk’l]
Proof

Three interpolating polynomials:

*stabililty varies between permutations



p of degree k; (x,, fo), -+, (%%, fx)

q of degree k —1; (%o, f0), -+, (Xk—1, fr—1)

r of degree k —1; (x1, f1),- -+, (xk, fx)

Claim: p(x) = q(x) + ;=% (r(x) — q(x)

xo : p(x0) = 4(x0) = fo

xi, Xt p(x) = q(x) =r(x) =fi, i=1---,k-1

X2 plxg) = r(xg) = fio RHS 1 q(xg) + 1 (r(xk) — q(x) = r(xx) o

Example

flxo] =2

f[xl]:3 f[xo,xl]:%:1
6—3

flx] =6 flx,x] = 3753

flxo.x1,x2] = % =1

We have gained the exact coefficients a;!

Interpolation error

R(x) = f(x) — p(x) Let us assume that f differentiable (n + 1) times.

Let x” be some point other than x;.
Formation of an aiding function: h(x
n
where W(x) = H(x—x)andc = [&)opx)
=0
function h(x) are xg,- - - , X, (n+1 zeros) and x’. Hence, there are at

) = f(x) = plx) —c-w(x),
) —p(x')

BT . The zeros of the

least n + 2 zeros. By using Rolle’s theorem, we can conclude that
h("+1) has at least one zero, denoted by & h("t1) = fir+1)(x) —
P (x) = (n+1)(x) = fO(x) —c(n+ 1)1 = K@) =
(n+1)
FOrD(@E) —c(n+1)!=0=c= f( +1() )
LT - x))

f(n+l
j=0

At the point " :  R(x')

Theorem

(n+1) n
R(x) = L8 1 (x — x;), where & = &(x)
Mark that by the definition of /(x) the constant c is the coefficient

of the highest order term. Based on the previous result, c is some
divided difference: f[xg, -+, xy, x| = (nil)!f(”ﬂ)({j(x)).

INTERPOLATION 25
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Piecewise polynomial approximation

Idea: Let us subdivide an interval [, b] into subintervals of length
h = =2 where 1 is the number of subintervals. Each subinterval will
be approx1mated separately with a low-degree polynomial.

Linear piecewise interpolation polynomial (Interpolant)

I(x) = f(xim1) = + f(x) =1 x € [x;,x;_1] Interpolation

Xi_1—X; Xi—Xj_1’
error: f(x) —I(x) = il (é)(x—xz 1)(x — x;) Assume: |f"(x)] < M :
f() = 1) < M¥, x € [xi0,x]

If the derivative is bounded over the whole interval [a, b] the error
is the same.

Hermite interpolation

We require the derivative to be continuous. Let p(x) be a third
order polynomial. The derivative of p(x) is quadratic: p’(x) =
F1) 25 4 () T a(x — x1)(x — x;) Must be:

p'(xi) = f'(x;). We must fit parameteructo the data: Integratmg
p(x) = —£G=) [ (- x)de + L0 [(t—xidt+a [ (t-

Xi-1 Xi-1 Xi-1

x;)(t — x;)dt + C Instantly: p(x;_1) = f(xj—1) = C = f(x;_1) Accord-
ingly: p(x;) = f(xi) = a = %(f’(xz 1)+ f1 () + & (f (i) = f(x:))

Splines

If we abandon the need to fit the derivative, we can construct a third
order polynomial which has two continuous derivatives at points
x;:s(x)

Problem: To choose the coefficients we require the solution to a
global problem. For each interval we derive a single spline: s(x)

Construction: Let us assume that z; = s (x;), i=1,---,n—1is
known. In addition, & = x; — x;_1 (=constant).

Interval: [x;_1,x;]: s/(x) = +zi_1(x; — x) + +zi(x —xi — 1) By
integrating twice:

si(x) = by B 4 L2 B 4 Gy - xiy) + Dy

Interpolatlon cond1t1on attaches the constants C; and D;:

D; = fl Zz 1

=3lfi— fH + 2 (24 —2)]

We have derived a formula that evaluates the spline over every

subinterval. However, we still must solve z; and set a value for the
boundaries zy and z;,.
By calculating the derivative of s(x) and then exploiting continu-

ity:
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si(xi) = sy q(xi) i
bz (i fi) + (i —z) =
2 .
Az i — )+ 5G@i—zia), i=1,--n—1,
which is a tridiagonal matrix:

2h h h 2 1 1
3Etghi-1t i = _ﬁfi + Efifl + Efiﬂ

= %(fiﬂ —2fi+ fi-1)
— b,

Taking zp and z to the right side

by = L(fa —2fi + fo) — Bz,

by1= %(fn —2fu1 +fn72) - %Zn

We form a so-called natural spline by choosing zg = z, = 0
Other options for choosing the value for zy and z;:

a) The first derivative at the end points is precise.

b) The third derivative is continuous at x; and x,,_1, this is known
as the not-a-knot condition.






Bezier

Bernstein Polynomials; B} (t), t € [0,1]

Definition B} (t) = (Z)tk(l — fynk

Bernstein polynomials have useful properties:

n
1) Y Bl =1(=(t+1-1")
k=0
2) 0 < B{(t) <1, foreach k,n >0
3) By (0) = B;;(1) = 1, otherwise B (0) = Bj}(1) =0

From combinatorics we obtain the fundamental property of recur-
sion:
BE(t) = (1—t)By 1 (t) + tBy (t)

Bézier Curves

Let us use the notation x* € R" (point).

Definition
Given is the set of points x = x1, ..., x* € R", the convex hull of which
is:

koo k
CHull(x) ={y e R" |y =) aix',a; >0,) a; =1}
i=1 i=1

Definition: Bezier curve

The following curve, determined by the set of points x, is a Bezier
curve.

B = Y 2B (1)
k=0

The Bezier curve p"(t) is within the convex hull formed by points
x (control points, Bezier-points). It follows from the properties of
Bernstein polynomials that " (t) passes through the first and last
control point.
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Closed curves: control points: x° = x"

If the closed curve is to be smooth at the starting point, the tangent
vectors at the endpoints must be codirectional.
Let us differentiate:

d .\ _d 1 "
E'B (t) —Ek;]kak(f)

Bernstein: dtB”( ) = n(BZ:ll(t) - B;ilfl(t))

Lpn(r) = kiowz 0 - B )t
7121 k+1 Bn 1()

Note that the derivative of the Bezier curve is also a Bezier curve!
Thus, we obtain:

$6"(0) = n(x' — )
46(1) = n(x" — 1)

Geometrically: 20, 1,

n—1

x"~1 are on the same line and x¥ is between
x! and x

Lifting algorithm

The control points uniquely define a curve, but the opposite does not
hold true.
Now, the following applies:

-k ke 1
= ) XBi(t)= ) y'BITH(t) = a"TH(t)
k=0 k=0

By setting x ! = x"*! = 0, we obtain the condition

k k
k _ k k—1
<1 n—|—1>x+<n+1>x :

De Casteljau Algorithm

The previously described ideas can be combined into a practical

algorithm. Let the control points be X9, xb

(1) The constant curves are defined: p?(t) = x’

2) Bt =0—-0B () +tp () r=1,,n;i=0,.,n—r

The algorithm ends with the curve S (t).



Numerical Integration

Monte Carlo

Central limit theorem

Let X; be independent and identically distributed random variables
with an expected value y and a variance . In this case, for the sam-
ple average Ay = % Zfil X; we have the variance

1Y o?
Var(An) = Nz Z;Var(X,') =N
1=
The standard deviation ¢ has the same units as X;: 0(An) = .

Thus, the speed of convergence for Monte Carlo methods is of the
order O(LN), where N is the amount of integration points. Remark-
ably, this holds regardless of the dimension!

Buffon’s needle

The distance between two lines is denoted by D. What is the proba-
bility that a dropped needle with the length L intersects a line?

Let y be the distance from the center of the needle to the closest
line and 0 the angle shown in Figure 1.

Figure 1: Buffon’s needle.

Let us choose L = D = 1; y and 6 random variables with distribu-
tions y ~ Unif(0, 1), & ~ Unif(0, 7r). The condition for intersection:
y < % sin 0.

Determining the probability requires calculating the ratio of areas:
Possible configurations are the points [0, 77] x [0, 3] i.e. the area Z, the

condition is fulfilled by [;* 3 sin6d6 = 1;

Hence the approximation: 7t ~ 2( #drops / #intersections ).
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Example Difficult geometry

1= /// v(x,y,2) dx dy dz, for the density v(x,y,z) = ¢*/2.
14

xyz <1,
-5 <xy,z<5.
Due to the exponential distribution of the density, the volume

V is defined by the inequations

and mass integrals over the same region V converge in a different
manner: the standard deviation of the volume is lower.

In many cases, a suitable change of variables turns the situation
around: u = ¢#/2  : —5<z<5 —e25x008<u<e?dx~122

e 5 05 10, 2xylnu > 1
122/ / / e dxdydu
e 25J)-5/-5 1,2xylnu <1
To halve the standard deviation one must typically quadruple the

integration points. A custom fitted distribution is usually more effi-
cient.

Example Higher dimension

Let us examine the general case:

by by by
I = / f(xl,xz,...,xn)dxn...dxzdx1,<//~~~/de)
ap Jap an \%

where the limits of inner integrals can be functions of outer variables:
ap = ax(x1), by = bu(x1,...,%4-1).

Proceeding as above, we obtain limits of the surrounding volume
(min/max) for each dimension: [Ay, B1], [A2, B2], ..., [An, Bn] and
V = [Al,Bﬂ X [Az,BZ] X e X [An,Bn].

Let us define a function g so that

0,if (x1,...,x,) €V\V

X1,X0, -0, Xp) = N
8 " {1,if(x1,...,xn)€V

N .
%4 N
I~) g (N|> , where |V| = (By — A1) ... (By — An).
i=1

High-dimensional problems are of great interest currently. Monte
Carlo methods are natural, however, the slow rate of convergence is
problematic.

Example MATLAB Another estimation of 7t

The area of a circle: A = 772

Let us set 7 = 1, in which case V = [~1,1] x [-1,1] and |V| =4 .



1, if the point is inside the circle
Counter: g; =

0, otherwise.
The routine: (N denotes the number of points)

numberin = 0
for i = 1:N
x = 2 x rand 1
y = 2 x rand 2
if x2 +y2<1
numberin = numberin + 1

end
end
pio4 = numberin / N // ratio of areas = pi/4
piapprox = 4 * pio4

Spread? Var(aX) = a*Var(X)
Var(X;) = E(X?) — (E(X;))? and here: X? = X; (= gi)

varpio4 = (pio4 - piod4"2) / N
varpi = 16 x varpio4
stdpi = sqrt(varpi)

Newton-Cotes

Idea: Let us approximate the integral [ ub f(x) dx by integrating an
interpolant of the function f.

b n b nox— x]-
Lagrange:/ f(x)dx =~ Zf(xz)/ H Y — 1 dx
a i=0 a j=0 "1 ]
i#]

The familiar trapezoidal rule is obtained by choosing n = 1:

P = f@ =] )0
b b b—a
ie. [ f)dx= [ pxdxe= 222 [f(0) + £(0)]

The error is the integral of the interpolation error; for the trapezoid:

[ @ [[pde =3 [ @0 a) - by
L [
= of (;ﬂ/ﬂ (x — a) (x — b) dx

— 50— aPf" ()

NUMERICAL INTEGRATION 33
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Over n subintervals:

/f

and an error of O(h?).
What about n = 2?

Required: /f x)dx ~ 1f()+A2f< >+A3f(b)/

accurate for all second-degree (or lower) polynomials. Evidently,

[f (x0) +2f(x1) +2f(x2) + - + f(xn)]

I\)\R‘

a+b

the coefficients A; are obtained from the integrals of the polynomial
bases. Let us proceed with the undefined coefficients:

b
/1dx:b—a S A4+ Ay+As—b—a
a
a+b

b
/ xdx:%(bz—az) = A+ A +A3b:%(b27a2)
Ja

a+b

b 2
/ xzdx:%(b3—a3) ;»A1a2+A2( ) +A3b2:%(b3—a3)
a

We obtain: A; = Az = b%ﬂ , Ay = @
This is known as Simpson’s rule:

[ = @ ar (50) + 0]
Over n subintervals:
[ fyar = gty a0 421 +

+2f(xn-1) +4f (xp_1/2) + f(xn)]

And the error: (Accurate for polynomials of degree three)
For one interval: g (b —a)°f (4)(#) and for n subintervals O (h*).

Gaussian quadrature

Idea: Let us choose the points and weights simultaneously.

Problem: n =1: ./;f(x)dx ~ Aof(xo) + A1f(x1)

As above:
b
/1dx:b—a = Ag+ A =b—a
Ja
b 1., - 1., -
/ xdxzi(b —a) :>A0x0+A1x1:§(b —a%)
a

b 1 1
/ x> dx = g(b“o’ —a%) = Agxd + Ayxd = §(b3 —a3)
a
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We have a nonlinear system of equations!
The answer: Orthogonal polynomials

Definition Orthogonal polynomials

Two polynomials are are orthogonal over the interval [a, b] if their
inner product is zero.

b
(h.a) = [ p)q(x)dx =0
For orthonormal polynomials (p, p) = (9,9) = 1.

Gram-Schmidt: {1,x,%%,...} — {qo, 91,492, ... } < orthonormal

1/2 . 1/2
=1/ [[ e = e bl = [ [ ) i
Forj=1,2,...
i1
) = 14 = L e (9,000} 02

qi(x) = qj(x) / [1g;(x)]]

Observation: g;_1(x) is orthogonal to all polynomials of degree j — 2
or less.

Il
—~
-
=
R
—
?/
=
=
=
=
SN—
~
I
L
VAN
~
|
w

(xgj-1(x),qi(x) )

Alas, we obtain a recursion of three terms!
Quadrature points are zeros of orthogonal polynomials:

Theorem

Let x¢, x1, ..., x, be the zeros of the orthogonal polynomial g,,1(x)
over the interval [a,b], in which case

b n
/H flx)dx =) Aif(x),
i=0
b noX =X
where A; =/ @i(x)dx, gi(x) = H - ’
a j=0 Xi = Xi
i#]

is accurate for all polynomials of degree 21 41 or less.
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Proof

Let f be a polynomial of degree 21 + 1 or less. When f is divided by
Gn+1, the remainder is of degree 7 or less. The division algorithm:

f = Gni1pn +rnand f(xi) = ra(x;) , guya1(x;) = 0.
Let us integrate:
b b b
| f@dx= [ quap@dx+ [ r(ax
a a a
b
= /a ru(x) dx , because (g, 11(x), pn(x)) =0

= Zn(:)Airn(xi> = Zn(;Aif(xi) O

Definition Weighted orthogonal polynomials

Let us define the inner product

b
() = [ () dz,

where w(x) is a positive weight function.

Theorem

Building on our previous Theorem (g, w-orthogonal):

b n b
/a f(x)w(x)dx ~ Y A;f(x;), where A; = /a @i(x)w(x)dx.

i=0
Once again, accurate for polynomials of degree 2n + 1 or less.

Example Gaussian quadrature: x € [—1,1], n =1

The zeros do not require normalization.
Basis: {1,x,x%}

Gram-Schmidt: §p =1

N~ 7<x11> 7filxdx. _
e RV
. <x2,1> (xz,x> 1
o SR VHE I P R

.. 1
The roots of §p: + 7

Thus, the formula is: /_11f(x) dx = Aof <_\%) +Auf (%)

This is accurate all the way up to x°.



Initial Value Problems

General problem:

(1)

y'(t) = f(ty(t) t=>t
y(to) = Yo

Let us assume that we have considered the question of whether
or not a solution exists and whether it is the only solution. Let us
especially assume that the function f is continuous and Lipschitz
continuous in y: for each yy, y2, t € [a,b],

|f(t,y2) = f(t,y1)| < Lly2 — 1l (2)

where L is a constant, ¢y € [a, b].

The numerical solution approximates the solution curve deter-
mined by the initial value. Ordinary methods approximate the solu-
tion at time ¢ using the solution at time t;. Multistep methods use
deeper dependence.

Euler’s method

Constant step size I; yo = y(to):

Vi1 =Y +hf(teyk), k=0,1,.. (3)

We get from one point to another on the solution curve by moving
along the tangent line.
Method follows directly from Taylor’s theorem:

hZ
y(tr) = y(te) +hy'(t) + =" ()
2
= () + ey () + 5y (), G € k] @

Types of errors: The truncation error (local) and the global error
Now:
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w = f(te vi) (5)
Inserting the solution y(#):

W) =0 _ gy, i) + By )

where %y”(@’k) is the local error O(h).

Euler’s method is first order.

NB: Often the truncation error is described as O(h?). Here we
are considering an approximation, which has on the left side the
approximation of the derivative.

The method is consistent:

tim VO] VU0 g ey n) )

The truncation error — o, when i — 0.

What about the global error? At time #;: |y () — yi| < ?

Convergent method: max|y(tx) — yx| — o, when h — 0.

Theorem

Let us assume that the general problem is well-posed. Let T ¢
[a,b], T >tyand h = (T — tp)/N. Let

Yer1 = Yk + ]/lf(fk,yk), k=01.,N—-1

Let us assume that yo — y(fp), when i — 0. Thus, for every k with
ty € [to, T], yx — y(tx), when h — 0 and max ly(te) — yk| — 0.

Proof: Let us denote d; = y(t;) — y;.
Subtracting Taylor and Euler:

K2
dipr = di+ h{f (b y () = f(teyi)] + Sy (8) ®)
Lipschitz and |y”(t)] < M:
h2
k1| < |di| + hL]dy| + 5M
K2
— (L) + M ©)

Generally holds:

Y1 < A+a)y+B, a>0>0k=0,1,..

p (10)

n«

= < e"“yo +

14
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Thus,
(k+1)hL _
]| < et g 4 & LR (11)
L 2
kh < T— to:
LT eL(T—to)=1p,
max|dy| < ¢ |do| 4+ ————> M (12)

where |dy| — o0 and %M —o,whenh —o. O

Thus, the global error O(h) is obtained with Euler’s method. With
the same technique, it is possible to examine the effect of the round-
ing error. Let us calculate the difference of the floating-point solution
and the exact arithmetic (with corresponding denotations)

|dia] < (L+hL)|di| 46
eL(T—t(]) _ 1

= |diy| < eHT=10)|dp| + L0 (13)

where |dp| is the error at the beginning, and the latter term domi-
nates when h is small.

Guideline: Minimize the global error without forgetting the round-
ing!

Explicit and implicit method

Quadrature:

yrm =y + [ s yieas

=y() + g[f(fry(f)) +f(t+Ry(E+ )] +O0)  (14)

leads to the trapezoidal:

h
Yert = Yk + 5 [ (b yi) + f (B Y] (15)

The method is implicit: v, 1 must be solved at every step using
some solution method. Euler’s method is explicit: 4, is obtained by
addition; ¥, 1 appears only on one side of the equation.

Idea: Predict and correct.

Heun’s method:

ita = Y + ahf (t, yx); prediction

Yir1 = Yk + Bhf(te, yk) + Yhf (tk + ah, Giiq); correction

Three parameters: a, B, v = Let us fit them in Taylor’s theorem.

Heun:zle,/%:'y:%

Generally: B+v =1, ay = %

For all methods like this, the truncation error is O(h?).
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Synthesis

Synthesis: yii1 = yix + Y (t, v, 1)
a) consistency: }linéT(t, y,h) = f(ty)
—

b) stability: If there exists a constant K and a step size iy > 0
such that |y, — .| < Klyo — 70|, where y,,, J» and yo, §o are initial
conditions, which holds when h < hg and nh < T — ¢, the method is
stable.

¢) a) & b) = the method is convergent

If the truncation error is of the following form

T(t,h) = w —¥(ty(t),h)

the global error of the stable method, which has the truncation
error O(h*), is O(hP).

NB! The proof is similar to the one shown for Euler’s method.

ei’ltX

Y1 < (T+a)+B = 1<+ B

14
T < 1+ ) 2+ [(1+a) +1]B

n—1

< (14+a)" 0+ Y (1+a)]p
j=0
(1+a)" -1

= (1+a)"y0+ p

2
(14+a) <e* = 1+a+%e§, ¢e(0,n)
For Euler systems:

y =fty), ylto)=vy = Y=y +hf(tuyy)
Components: Vi1 = Yik + hfi(to ik, - Ynk), i=1,...,n

Multistep methods

Let us consider (once again) the integral

o) =y + [ Flsu(s)) ds

Idea: Let us replace the f(t,y) with a suitable interpolation polyno-
mial, which takes the solution history into consideration.

If t;14 is taken into account, the method is implicit.

Adams-Bashforth: Explicit

Let us interpolate at points ty, tg i1, tk—mi1; Pm—1(S)

tet1 m—1
Yis1 = Yk +/t pm—1(s)ds =y +h Y by f(tei, Y1) (16)
K =0
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where

m—1 _ .
1 [tk S tk,]

bl ds

N h ty =0 tk,l - i’k,]'
J#l

If m = 1, the Euler’s method is obtained!

Lecture exercise: What kind of method is obtained, when m = 2?

3 1
Ykr1 = Yk + h[ﬁf(tk/ Yk) — Ef(tk—lrl/k—l)]

The truncation error is O(h™). (The error of the integral is O(h"*1).)
Adams-Moulton: Implicit
Let us consider the point t, 1 as well; g, (s).

m
Virr =Yk + 1Y crf (b1 Yera—i (17)
1=0

where

1 e [ & S —tp1—j

C; ds

SRy =0 ter1-1 = B
Jj#l
If m = o, we obtain yx,1 = yx + hf(txs1, Y1), which is so called
implicit Euler’s method.
Lecture exercise: What kind of method is obtained, when m = 1?

h
Ykr1 =Ykt 5 [f (b1, Yrs1) + f (b )]

which is a trapezoidal!

The truncation error is O(h"*1).

General format: Z;n:() a1 =h Zlm=0 blf(tk+lryk+l)r

am =1, by, = 0 = explicit, otherwise implicit

The high order of the truncation error does not implicate stability!

13 5 5
Y1 — Ykt + 2k = h[ﬁf(tk+2/]/k+2> - gf(fk+1/]/k+1) - ﬁf(fkr]/k)}

Exercise: y' =0, y(0) = 1
y1= 1+6
Yo =3y1 —2yo=1+36

Yk =31 — W2 =1+ (2= 1)6
5 ~ 2753 = k =100 gives us an error ~ 2% (1)
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Stiff Equations

Problem: The solution contains different time scales.
Example:

[ =—100
=00 Ay, 4= | 710 11]
2= ~10Y2 R
Solution:
ni(®) = e 0 (0) — g 0) +e TR0 o
t
ya(t) = e 10y>(0)

Question: Could the problem be solved by using Euler’s method?
Could the step size be chosen arbitrarily? (All gucci, if h — o.)
Component 2:

h
Yoje1 = (1= E)]/Z,k
h\k
= o= (1- E) ¥2(0) (19)

Component 1:

Yikr1r = (1—=1001)yyx + hysx
h
= (1 -100h)y;x +h(1— *) y2(0)

= (1—1007)%y; k1 + h[(1 — 100h)(1 — 1h0)k T+(1- ﬁ) Jy2(0)

k
— (1= 1001) 1y (0) + h( 1—7 00,00 (o)

= 1-4

which leads us to:

10 h 10
Yiger = (1=1000) " y1(0) — 5os2(0)] + (1= 15) " 55592(0) (21)

We notice immediately that if & > 25, then |1 — 100k| > 1 and
(1 — 100h)*+1 grows geometrically. Even if the initial conditions
guaranteed that y1(0) — g52(0) = 0, the rounding error grows
unbounded.

In that case, Euler’s method is unstable, when i > 51—0.

Absolute stability

General problem: y/ = Ay = y=eMy(0), AeC
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We know that y(t) — 0, when t — oo only if Re A < o.
System: y' = Ay; A is n X n-matrix
Let us assume that A is diagonalizable.

A=VAV!

where A is a diagonal matrix of eigenvalues and the columns of V
are eigenvectors.
With a variable change i = V~ly, we obtain:

yﬂl = Ay thus Ji=Avi, i=1,.,n

Modified system converges in modified coordinates, which is not
always simple to interpret.

However, the next definition is reasonable:

Definition: The region of absolute stability is the set {hA € C |y, —
0, whenk — oo}, where y is the solution of the general problem and
h is a constant step size, h > o.

Definiton: A-stability

A method is A-stable if its region of absolute stability contains
entire left half plane.

NB: On the region of absolute stability, it holds that if z; 1 =
(1+hA)zg,  zgx # yi, then

Zkr1 — Y1 = (T+RA) (2 — i)
= |zk — Y| < |z — v (22)

Example: The backward Euler method

=y t+hA = S . (23)
Yi+1 = Yk Yi+1 Yet1 = 7% = = 1— hA)kHyO 3

Absolute stability: {hA | |1 —hA| > 1}

1—hA| = \/(1 —hReA)2+ (ImA)2 >1, whenReA <0 (24)

The backward Euler method is A-stable.

One can prove that there are no explicit A-stable linear multistep
methods.

Theorem: The highest order of an A-stable multispe method is
two.

Depressing. Nevertheless, it is possible to form a high-order meth-
ods with the region of absolute stability "almost" the entire left half
plane.
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Particular methods

BDF-methods: Backward Differentiation Formulas
m-step method with m-order: Y3y a1 = hbu f (et m, Yirm
All implicit.
Theorem: The truncation error of a multistep method is of order
p > 1, if and only if

m m m
Zal = 0and Zl]al :jZlfflbl, ji=1,..,p
1=0 1=0 1=0

With this theorem, let us choose suitable coefficients:

m=1:.4a40+a;=0,0-ap+1-a; =b;

Let us (always) choose a1 =1 = a9 = -1, b1 =1

Thus, we obtain: yi1 = yi + hf (txi1, Yks1), which is the backward
Euler.

We can continue this way, but when m = 3, the obtained method
cannot be A-stable.

IRK-methods: Implicit Runge-Kutta

v
Gi=ye+h) aif(tc+ch &), j=1,..0 (25)
i=1
v
Yir1 = Yk + 1 Y bif (b +cih, &) (26)
=1

Arbitrary parameters: 4;i, bj, ¢

Consistent: } 7, aj=c¢j,j=1,..,0

For every v < 1, there is a unique A-stable IRK method of order
2v.

Implicit systems

Multistep methods: by, # 0

Yerm = hbmf(tk+m/yk+m) + v, (27)
where ¢ =nh Z w1 — 1byf (teq1, Yiyy) — Z‘l = Om_lalyk_H (28)
1=0
is known.
IRK:
[ i avif (te + cih, &) Y
S Ll ,
&y Y avif (t + cih, &) Yy 29)
Vi Y bif (te +cjh, &) Yk

General format:



w=hg(w) +7; (30)
gw)=w—-hg—v=0 (31)

Newton’s method:

An initial guess w(?); Taylor’s theorem for g in w(®)

d
g1 (w1, ..., wy) q1 (w§°),..., wglo)) ?:1 aiwli(w(o))(wi - wi(o))
= +
qn (w1, ..., wy) qn(wgo), i) " giafi(w(o))(wi - wz.(o))
(32)

or in the matrix format

a(w) = g(@) + Jy(w®) (@ - ) + 0([w - wO|[") 63

where ]q(w(o)) is the Jacobian evaluated at w(?).
Let us drop the quadratic term and solve g(w) = 0:

w = w® — [ ()] "g(w®) (34)

We have obtained a step of Newton’s method.

Observations:

a) Rotating the matrix means solving the system of equations.
b) The Jacobian must be non-singular.

c) The initial guess has to be good enough.

In this context: g(w) = 0; we obtain

wl ) = wl) — [1 = 1] (w?)] L (wh) - hg(w))) =y (35)

where [I — ], g(w(j ))]~1 is non-singular when h is sufficiently
small.
Interpretation: The error of the predictor step can be around O(h).

+
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