HARRI HAKULA \& VOLUNTEERS

MS-C1650 NUMERICAL
ANALYSIS

Contents

Basic Concepts and Definitions 13

Solving Equations 19

Interpolation 21

Bezier 29

Numerical Integration 31

Initial Value Problems 37

List of Figures

1 Buffon's needle. 31

List of Tables

Introduction

This document covers the material of MS-Ci650 Numerical Analysis.

Basic Concepts and Definitions

Floating-point arithmetic

Definition

A floating-point number with a base b and length n is defined as

$$
x= \pm\left(. d_{1} d_{2} \ldots d_{n}\right)_{b} \cdot b^{e}
$$

where $m \leq e \leq M$ is the exponent and $\left(. d_{1} d_{2} \ldots d_{n}\right)$ is the mantissa. A floating-point number is normalized if $d_{1} \neq 0$.

The book uses notation $d_{1} \cdot d_{2} \ldots d_{n}$.

IEEE:

$k=2,64$ bits; 1 for the sign, 11 for the exponent and 52 for the mantissa.
"double precision"
All floating-point systems have a machine epsilon that is the smallest defined number after zero. IEEE-standard uses subnormal numbers that fill (one way or another) the underflow gap $[0, \epsilon]$.

IEEE: Double precision

Exponent	Number	Type
$0 \ldots .0$	$\pm\left(0 . b_{1} b_{2} \ldots b_{52}\right)_{2} \cdot 2^{-1022}$	0 or subnormal
$0 \ldots .01=1_{10}$	$\pm\left(1 . b_{1} b_{2} \ldots b_{52}\right)_{2} \cdot 2^{-1022}$	Normalized
\vdots	\vdots	Note! Exponent $=$ "real" +1023 $01 \ldots .1=1023_{10}$$\quad \ldots \quad \cdot 2^{0}$
\vdots		
$11 \ldots .10=2046_{10}$	\ldots	$\cdot 2^{1023}$

Exceptions: $\pm \infty, \mathrm{NaN}$
$\left.\begin{array}{l}\text { Overflow } \\ \text { Underflow }\end{array}\right\} \Rightarrow$ value depends on the chosen rounding method

Rounding

$$
\begin{array}{rll}
\text { down }: & \hat{x}=\operatorname{round}(x) & ; \hat{x} \leq x \\
\text { up : } & \hat{x}=\operatorname{round}(x) & ; \hat{x} \geq x \\
\text { up : } & \hat{x}=\operatorname{round}(x) & ; \hat{x} \geq x
\end{array}
$$

towards 0 : up or down, depending $; \hat{x} \in[0, x]$
nearest : $\hat{x}=\operatorname{round}(x)$; the nearest, in case of a tie, the one with a rightmost zero
Assumption: rounding to the nearest value
Holds: $\operatorname{round}(x)=x(1+\delta)$, where $|\delta|<\varepsilon$, (or $|\delta|<\frac{\varepsilon}{2}$, when default rounding mode is used.)

The standard gives:

$$
\begin{aligned}
& a \oplus b=\operatorname{round}(a+b)=(a+b)\left(1+\delta_{1}\right) \\
& a \ominus b=\operatorname{round}(a-b)=(a-b)\left(1+\delta_{2}\right) \\
& a \otimes b=\operatorname{round}(a \cdot b)=(a \cdot b)\left(1+\delta_{3}\right) \\
& a \oslash b=\operatorname{round}(a / b)=(a / b)\left(1+\delta_{4}\right)
\end{aligned}
$$

Documenting the rounding is non-trivial.

Condition numbers

Definition

A condition number describes how sensitive the output value is to a small change in the input argument. (A property of the function, not the algorithm)

Assumption: $f: \mathbb{R} \rightarrow \mathbb{R}, \hat{x}$ and x close to each other,
e.g. $\hat{x}=\operatorname{round}(x)$.

Question: How close is $y=f(x)$ to $\hat{y}=f(\hat{x})$?

Definition

Absolute condition number $C(x)$

$$
|\hat{y}-y| \simeq C(x)|\hat{x}-x|
$$

Definition

Relative condition number $\kappa(x)$

$$
\left|\frac{\hat{y}-y}{y}\right| \simeq \kappa(x)\left|\frac{\hat{x}-x}{x}\right|
$$

Model 1

$$
\begin{aligned}
\hat{y}-y=f(\hat{x})-f(x)= & \frac{f(\hat{x})-f(x)}{\hat{x}-x}(\hat{x}-x) \\
& \frac{f(\hat{x})-f(x)}{\hat{x}-x} \simeq f^{\prime}(x) \\
& \Rightarrow C(x)=\left|f^{\prime}(x)\right|
\end{aligned}
$$

Model 2

Similarly,

$$
\begin{aligned}
\frac{\hat{y}-y}{y}= & \frac{f(\hat{x})-f(x)}{\hat{x}-x} \cdot \frac{\hat{x}-x}{x} \cdot \frac{x}{f(x)} \\
& \frac{f(\hat{x})-f(x)}{\hat{x}-x} \simeq f^{\prime}(x) \\
& \Rightarrow \kappa(x)=\left|\frac{x f^{\prime}(x)}{f(x)}\right|
\end{aligned}
$$

Lecture problem

Examine the two functions $f(x)=2 x, f(x)=\sqrt{2}$.

$$
\begin{aligned}
f(x)=2 x, \quad f^{\prime}(x)=2 & \Rightarrow C(x)=2, \quad \kappa(x)=1 \\
f(x)=x^{\frac{1}{2}}, \quad f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}} & \Rightarrow C(x)=\frac{1}{2} x^{-\frac{1}{2}}, \quad \kappa(x)=\frac{1}{2}
\end{aligned}
$$

Stability in algorithms

$f l(x+y) \equiv \operatorname{round}(x) \oplus \operatorname{round}(y)=\left(x\left(1+\delta_{1}\right)+y\left(1+\delta_{2}\right)\right)\left(1+\delta_{3}\right)$
Forward error analysis FEA:
How much does the answer $f l(x+y)$ differ from the precise value $x+y$?

Backward error analysis BEA:

What problem yields the obtained precise value?

FEA:
$f l(x+y)=x+y+x\left(\delta_{1}+\delta_{2}+\delta_{1} \delta_{3}\right)+y\left(\delta_{2}+\delta_{3}+\delta_{2} \delta_{3}\right)$
Absolute error:

$$
|f l(x+y)-(x+y)| \leq(|x|+|y|)\left(2 \varepsilon+\varepsilon^{2}\right)
$$

Relative error:

$$
\frac{|f l(x+y)-(x+y)|}{x+y} \leq \frac{(|x|+|y|)\left(2 \varepsilon+\varepsilon^{2}\right)}{|x+y|}
$$

An interesting situation: $y \approx-x$
$B E A$:

$$
f l(x+y)=x\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)+y\left(1+\delta_{2}\right)\left(1+\delta_{3}\right)
$$

Sum of two numbers is therefore backwards stable.

$$
\begin{aligned}
& \text { Relative error } \\
& \quad x\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \leq 2 \varepsilon+\varepsilon^{2} \\
& \text { Ditto: } y\left(1+\delta_{2}\right)\left(1+\delta_{3}\right)
\end{aligned}
$$

Also
A problem can be well-posed even when an algorithm is unstable.
A well-posed problem can sometimes be approximated with an illconditioned function.

Numerical Differentiation

Difference quotient

Taylor: $f(x+h)=f(x)+h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(\xi), \quad \xi \in[x, x+h]$
Approximation for the derivative:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\frac{h}{2} f^{\prime \prime}(\xi)^{*},
$$

Because $f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}$ is a first-order approximation, discretization error is $O\left(h^{1}\right)$.

Assumption: $f(x)$ and $f(x+h)$ are precise: $\delta_{i}<\varepsilon, i=1,2$

$$
\begin{aligned}
\frac{f(x+h)\left(1+\delta_{1}\right)-\left(f(x)\left(1+\delta_{2}\right)\right.}{h}= & \frac{f(x+h)-f(x)}{h} \\
& +\frac{\delta_{1} f(x+h)-\delta_{2} f(x)}{h}
\end{aligned}
$$

| rounding error $\left\lvert\, \leq \frac{2 \varepsilon|f(x)|}{h}\right.$ (for small values of h)

Observed:

$$
\left.\begin{array}{ll}
\text { discretization error } & \sim h \\
\text { rounding error } & \sim \frac{1}{h}
\end{array}\right\} \Rightarrow \text { balanced }
$$

Example

$$
f(x)=\sin (x), \quad x=\frac{\pi}{4} ; \quad f^{\prime}(x)=\cos (x), \quad f^{\prime \prime}(x)=-\sin (x)
$$

$\left.\begin{array}{ll}\text { discretization error } & \sim \frac{\sqrt{2} h}{4} \\ \text { rounding error } & \sim \frac{\sqrt{2} \varepsilon}{h}\end{array}\right\} \Rightarrow h=2 \sqrt{\varepsilon}$

Note:
absolute condition number $C(x)=|-\sin (x)|$
relative condition number $\kappa(x)=\left|-\frac{x \sin (x)}{\cos (x)}\right|$,
when $x=\frac{\pi}{4}$, we obtain
$C\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$;
$\kappa\left(\frac{\pi}{4}\right)=\frac{\pi}{4}$.
It is therefore the difference quotient that makes the problem illconditioned.

Solving Equations

Bisection

The mean value theorem for continuous functions states that $f(x)=$ 0 exists if $x_{1}<x<x_{2}$ so that $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ have different signs.

The bisection algorithm is based on halving the interval so that the sign requirement applies.

Note that in practise the problem is to find an interval $\left[x_{1}, x_{2}\right]$.
Rate of convergence: How fast can we obtain the solution, that is, how fast does the error approach zero?

Analysis: Let us have an interval $[a, b]$. After k steps the interval examined is $\frac{|b-a|}{2^{k}}(\rightarrow 0$, when $k \rightarrow \infty)$. Let us centralize the solution by examining the interval 2δ :

$$
\frac{|b-a|}{2^{k}} \leq 2 \delta \Leftrightarrow 2^{k+1} \geq \frac{|b-a|}{\delta} \Leftrightarrow k \geq \log _{2}\left(\frac{|b-a|}{\delta}\right)-1
$$

The error decreases by a constant factor of $\frac{1}{2}$ on every step. Thus, the algorithm is linearly converging.

Newton's Method

Let the initial guess be x_{0}. The iteration $x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}$ is Newton's method.

Connection to Taylor polynomial:

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} f^{\prime \prime}(\xi), \quad \xi \in\left[x_{0}, x\right]
$$

Let x_{*} be a zero of $f(x): f\left(x_{*}\right)=0$
Let us ignore the truncation error and write $x_{1}=x_{*}$:
$0=f\left(x_{0}\right)+\left(x_{1}-x_{0}\right) f^{\prime}\left(x_{0}\right)$

Theorem

If $f \in C^{2}$, the initial value x_{0} is good enough and $f^{\prime}\left(x_{*}\right) \neq 0$, Newton's iteration converges asymptotically to the zero x_{*} with quadratic speed.

Proof (quadraticity)

Taylor polynomial at x_{k} :

$$
x_{*}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}-\frac{\left(x_{*}-x_{k}\right)^{2}}{2} \frac{f^{\prime \prime}\left(\xi_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Let us calculate the difference $x_{k+1}-x_{*}$:

$$
x_{k+1}-x_{*}=\frac{f^{\prime \prime}\left(\tilde{\xi}_{k}\right)}{2 f^{\prime}\left(x_{k}\right)}\left(x_{k}-x_{*}\right)^{2}
$$

With the assumption $\left|\frac{f^{\prime \prime}\left(\tilde{\xi}_{k}\right)}{2 f^{\prime}\left(x_{k}\right)}\right| \leq C$ the theorem is proved.
(In the book: $C_{*}=\left|\frac{f^{\prime \prime}\left(x_{*}\right)}{2 f^{\prime}\left(x_{*}\right)}\right|$ so that $\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x_{*}\right|}{\left|x_{k}-x_{*}\right|^{2}}=C_{*}$)

Quasi Newton's Methods

In practise, finding the derivative $f^{\prime}\left(x_{k}\right)$ can be difficult or unreasonably expensive.

Newton's iteration is modified by approximating the derivative with difference quotient:

Secant method

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)\left(x_{k}-x_{k-1}\right)}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}, \quad k=1,2, \ldots
$$

Thus, two initial guesses are needed to start the iteration.
The rate of convergence is $\frac{1+\sqrt{5}}{2} \simeq 1.62$.

Interpolation

Lagrange polynomials

Idea: Approximating a function $f(x)$ over the interval $x \in[a, b]$ with a polynomial $p(x)$ so that at the data points $\left(x_{i}, y_{i}\right), \quad i=0,1, \ldots, n$ the approximation is precise: $y_{i}=p\left(x_{i}\right)$.

Example

Data points: $(1,2),(2,3),(3,6) \quad\left(\left(x_{i}, y_{i}\right), i=0,1,2\right)$
A possible interval: [1,3]; $\quad p_{2}(x)=\sum_{j=0}^{2}=c_{j} x^{j}$
A second order polynomial \Leftrightarrow three unknown coefficients.
\Rightarrow three data points define a unique second order polynomial In matrix form (Vandermonde):

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & x_{0} & x_{0}^{2} \\
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2}
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{lll}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right) \text { that is }\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
6
\end{array}\right) \\
\Rightarrow & c_{0}=3, \quad c_{1}=-2, \quad c_{2}=1 ; \quad p_{2}(x)=x^{2}-2 x+3
\end{aligned}
$$

Unfortunately, this method is highly sensitive to error in the input values.

The complexity of solving a linear system of equations: $O\left(n^{3}\right)$
Idea: Let us replace the basis x^{j} with a "better" one. The best possible scenario:

$$
p(x)=\sum_{i} y_{i} \varphi_{i}(x), \quad \text { when }\left\{\begin{array}{l}
\varphi_{i}\left(x_{i}\right)=1 \\
\varphi_{i}\left(x_{j}\right)=0, \quad i \neq j
\end{array}\right.
$$

We find that the construction of $\varphi_{i}(x)$ is simple.

Definition Lagrange polynomials

$\varphi_{i}(x)=\prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}} ; \quad p(x)=\sum y_{i} \varphi_{i}(x) \quad$ is the so-called Lagrange's form

Example
$\left\{\begin{array}{l}\varphi_{0}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)} \\ \varphi_{1}(x)=\frac{(x-1)(x-3)}{(2-1)(2-3)} \\ \varphi_{2}(x)=\frac{(x-1)(x-2)}{(3-1)(3-2)}\end{array} \quad \Rightarrow p(x)=2 \varphi_{0}(x)+3 \varphi_{1}(x)+6 \varphi_{2}(x)=x^{2}-2 x+3\right.$
Now the complexity is: $O\left(n^{2}\right)$

Side step 1:
The evaluation of a polynomial in basis x^{j} is linear: $O\left(n^{2}\right)$
Horner: $y=c_{n} ; \quad y=y x+c_{n-1} ; \ldots n$ steps $\Rightarrow y=\sum_{j=0}^{n} c_{j} x^{j}$

Side step 2:
Theorem Interpolation polynomial $p_{n}(x)$ is unique
Central idea for the proof:
$p_{n}(x)$ has n zeros. Let $p_{n}(x)$ and $q_{n}(x)$ be interpolation polynomials. $\left(p_{n}\left(x_{i}\right)-q_{n}\left(x_{i}\right)\right)=0, \quad i=0,1, . ., n$ so there is $n+1$ zeros. The difference: $p_{n}(x)-q_{n}(x)=0$

Back to business

The Lagrange form can be written more efficiently in the so-called barycentric form, where the evaluation is faster.

Definition of a new basis polynomials: $\hat{\varphi}_{i}(x)=\prod_{j=0}^{n} \frac{x-x_{j}}{x-x_{I}}$ Then let

$$
\varphi(x)=\prod_{j=0}^{n}\left(x-x_{j}\right) \text { so } p(x)=\varphi(x) \sum_{i=0}^{n} \frac{w_{i}}{x-x_{i}}, \quad w_{i}=\frac{1}{\prod_{j \neq i}^{\left(x_{i}-x_{j}\right)}}
$$

We have formed the first barycentric form. The calculation of the weights w_{i} is $\left(n^{2}\right)$, but the evaluation is only $O(n)$.

We observe that if $y_{i}=1$, then $p_{n}(x)=1$. Therefore must be:
$1=\varphi(x) \sum_{i=0}^{n} \frac{w_{i}}{x-x_{i}}, \quad$ for all x.

Definition Barycentric interpolation formula

$$
p(x)=\left(\sum_{i=0}^{n} \frac{w_{i}}{x-x_{i}} y_{i}\right) /\left(\sum_{i=0}^{n} \frac{w_{i}}{x-x_{i}}\right)
$$

Example

$$
\begin{aligned}
y_{0} & =2, \quad y_{1}=3, \quad y_{2}=6 \\
w_{0} & =\frac{1}{(1-2)(1-3)}=\frac{1}{2}, \quad w_{1}=\frac{1}{(2-1)(2-3)}=-1, \quad w_{2}=\frac{1}{(3-1)(3-2)}=\frac{1}{2} \\
p(x) & =\left(\frac{2}{2(x-1)}-\frac{3}{x-2}+\frac{6}{2(x-3)}\right) /\left(\frac{1}{2(x-1)}-\frac{1}{x-2}+\frac{1}{2(x-3)}\right)
\end{aligned}
$$

Does this yield us the same result?

$$
\begin{aligned}
p(x) & =\left(\frac{x^{2}-2 x+3}{(x-1)(x-2)(x-3)}\right) /\left(\frac{1}{(x-1)(x-2)(x-3)}\right) \\
& =x^{2}-2 x+3
\end{aligned}
$$

Hurray!

Newton polynomials

An extension to the natural basis is the set
$1, x-x_{0},\left(x-x_{0}\right)(x-1), \cdots, \prod_{j=0}^{n-1}\left(x-x_{j}\right)$.

Definition Newton's interpolation polynomials

$p_{n}(x)=a_{0}+a_{1}\left(x_{1}-x_{0}\right)+\ldots+a_{n} \prod_{j=0}^{n-1}$,
where a_{i} is chosen such that the interpolation condition is true for every x_{i}.

The construction is equivalent to solving a lower triangular matrix: $O\left(n^{2}\right)$

$$
\begin{aligned}
& p\left(x_{0}\right)=a_{0}=y_{0} \\
& p\left(x_{1}\right)=a_{=}+a_{1}\left(x_{1}-x_{0}\right)=y_{1} \Rightarrow a_{1}=\frac{y_{1}-a_{0}}{x_{1}-x_{0}}
\end{aligned}
$$

That is:

$$
\left(\begin{array}{ccccc}
1 & & & & \\
1 & x_{1}-x_{0} & & & \\
1 & x_{2}-x_{0} & \left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) & & \\
\vdots & & & \ddots & \\
1 & x_{n}-x_{0} & \left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) & \cdots & \prod_{j=0}^{n-1}\left(x_{n}-x_{j}\right)
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

Two remarks:
a) The order of the points makes no difference.*
b) Adding a data point doesn't affect the previously calculated coefficients.

In the barycentric interpolation above the weights w_{i} can also be updated incrementally.

Example

$$
\begin{aligned}
p(x) & =a_{0}+a_{1}(x-1)+a_{2}(x-1)(x-2) \\
\text { System: } & \left(\begin{array}{lll}
1 & \\
1 & 1 & \\
1 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
6
\end{array}\right) \Rightarrow\left\{\begin{array}{l}
a_{0}=2 \\
a_{1}=1 \\
a_{2}=1
\end{array}\right. \\
p(x) & =x^{2}-2 x+3
\end{aligned}
$$

Potential problem: Overflow and underflow in large systems

Divided differences

Let us consider the interpolating polynomial in the natural basis:

$$
p_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}
$$

Notice that a_{k} are exaclty the coefficients of the Newton interpolation polynomial.

Definition Divided differences

$k^{\text {th }}$-order divided difference $f\left[x_{0}, x_{1}, x_{2}, \cdots, x_{k}\right]=a_{k}$, where a_{k} is the coefficient of the term x^{k} in the polynomial of degree k that interpolates the points x_{i}.

Why is this a sensible definition?
One data point: $f\left[x_{j}\right]=f_{j}=y_{j} \quad$ (Correct!)
Two data points: $f\left[x_{i}, x_{j}\right]=\frac{f_{j}-f_{i}}{x_{j}-x_{i}}=\frac{f\left[x_{j}\right]-f\left[x_{i}\right]}{x_{j}-x_{i}}$
Three data points: $f\left[x_{i}, x_{j}, x_{k}\right]=\frac{f\left[x_{j}, x_{k}\right]-f\left[x_{i}, x_{j}\right]}{x_{k}-x_{i}}$

Theorem

$$
f\left[x_{0}, x_{1}, \cdots, x_{k}\right]=\frac{f\left[x_{1}, \cdots, x_{k}\right]-f\left[x_{0}, \cdots, x_{k-1}\right]}{x_{k}-x_{0}}
$$

Proof
Three interpolating polynomials:

```
p of degree k; (x, f0. ), ., ( }\mp@subsup{x}{k}{},\mp@subsup{f}{k}{}
q of degree }k-1;(\mp@subsup{x}{0}{},\mp@subsup{f}{0}{}),\cdots,(\mp@subsup{x}{k-1}{},\mp@subsup{f}{k-1}{}
r of degree k-1; (x, f
Claim: }p(x)=q(x)+\frac{x-\mp@subsup{x}{0}{}}{\mp@subsup{x}{k}{}-\mp@subsup{x}{0}{}}(r(x)-q(x
x}0:p(\mp@subsup{x}{0}{})=q(\mp@subsup{x}{0}{})=\mp@subsup{f}{0}{
x,},\cdots,\mp@subsup{x}{k-1}{}:p(\mp@subsup{x}{i}{})=q(\mp@subsup{x}{i}{})=r(\mp@subsup{x}{i}{})=\mp@subsup{f}{i}{},\quadi=1,\cdots,k-
x
```


Example

$$
\begin{aligned}
& f\left[x_{0}\right]=2 \\
& f\left[x_{1}\right]=3 \quad f\left[x_{0}, x_{1}\right]=\frac{3-2}{2-1}=1 \\
& f\left[x_{2}\right]=6 \quad f\left[x_{1}, x_{2}\right]=\frac{6-3}{3-2}=3 \\
& f\left[x_{0} \cdot x_{1}, x_{2}\right]=\frac{3-1}{3-1}=1
\end{aligned}
$$

We have gained the exact coefficients a_{k} !

Interpolation error

$R(x)=f(x)-p(x)$ Let us assume that f differentiable $(n+1)$ times. Let x^{\prime} be some point other than x_{i}.

Formation of an aiding function: $h(x)=f(x)-p(x)-c \cdot w(x)$, where $W(x)=\prod_{j=0}^{n}\left(x-x_{j}\right)$ and $c=\frac{f\left(x^{\prime}\right)-p\left(x^{\prime}\right)}{w\left(x^{\prime}\right)}$. The zeros of the function $h(x)$ are x_{0}, \cdots, x_{n} (n+1 zeros) and x^{\prime}. Hence, there are at least $n+2$ zeros. By using Rolle's theorem, we can conclude that $h^{(n+1)}$ has at least one zero, denoted by ξ. $h^{(n+1)}=f^{(n+1)}(x)-$ $p^{(n+1)}(x)-c^{w}(n+1)(x)=f^{(n+1)}(x)-c(n+1)!\Rightarrow h^{(n+1)}(\xi)=$ $f^{(n+1)}(\xi)-c(n+1)!=0 \Rightarrow c=\frac{f^{(n+1)}(\xi)}{(n+1)!}$

At the point $x^{\prime}: \quad R\left(x^{\prime}\right)=\frac{f^{(n+1)(\tilde{\xi})}}{(n+1)!} \prod_{j=0}^{n}\left(x^{\prime}-x_{j}\right)$

Theorem

$R(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^{n}\left(x-x_{j}\right)$, where $\xi=\xi(x)$
Mark that by the definition of $h(x)$ the constant c is the coefficient of the highest order term. Based on the previous result, c is some divided difference: $f\left[x_{0}, \cdots, x_{n}, x\right]=\frac{1}{(n+1)!} f^{(n+1)}(\xi(x))$.

Piecewise polynomial approximation

Idea: Let us subdivide an interval $[a, b]$ into subintervals of length $h=\frac{b-a}{n}$, where n is the number of subintervals. Each subinterval will be approximated separately with a low-degree polynomial.

Linear piecewise interpolation polynomial (Interpolant)

$l(x)=f\left(x_{i-1}\right) \frac{x-x_{i}}{x_{i-1}-x_{i}}+f\left(x_{i}\right) \frac{x-x_{i}}{x_{i}-x_{i-1}}, \quad x \in\left[x_{i}, x_{i-1}\right]$ Interpolation error: $f(x)-l(x)=\frac{f^{\prime \prime}(\xi)}{2!}\left(x-x_{i-1}\right)\left(x-x_{i}\right)$ Assume: $\left|f^{\prime \prime}(x)\right| \leq M$: $|f(x)-l(x)| \leq M \frac{h^{2}}{8}, \quad x \in\left[x_{i-1}, x_{i}\right]$

If the derivative is bounded over the whole interval $[a, b]$ the error is the same.

Hermite interpolation

We require the derivative to be continuous. Let $p(x)$ be a third order polynomial. The derivative of $p(x)$ is quadratic: $p^{\prime}(x)=$ $f^{\prime}\left(x_{x-1}\right) \frac{x-x_{1}}{x_{x-1}-x_{i}}+f^{\prime}\left(x_{i}\right) \frac{x-x_{x-i}}{x_{i}-x_{i-1}}+\alpha\left(x-x_{i-1}\right)\left(x-x_{i}\right)$ Must be: $p^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right)$. We must fit parameter α to the data: Integrating: $p(x)=-\frac{f^{\prime}\left(x_{i-1}\right)}{h} \int_{x_{i-1}}^{x}\left(t-x_{i}\right) d t+\frac{f^{\prime}\left(x_{i}\right)}{h} \int_{x_{i-1}}^{x}\left(t-x_{i-1}\right) d t+\alpha \int_{x_{i-1}}^{x}(t-$ $\left.x_{i}\right)\left(t-x_{i}\right) d t+C$ Instantly: $p\left(x_{i-1}\right)=f\left(x_{i-1}\right) \Rightarrow C=f\left(x_{i-1}\right)$ Accordingly: $p\left(x_{i}\right)=f\left(x_{i}\right) \Rightarrow \alpha=\frac{3}{h^{2}}\left(f^{\prime}\left(x_{i-1}\right)+f^{\prime}\left(x_{i}\right)\right)+\frac{6}{h^{2}}\left(f\left(x_{i-1}\right)-f\left(x_{i}\right)\right)$

Splines

If we abandon the need to fit the derivative, we can construct a third order polynomial which has two continuous derivatives at points $x_{i}: s(x)$

Problem: To choose the coefficients we require the solution to a global problem. For each interval we derive a single spline: $s(x)$

Construction: Let us assume that $z_{i}=s^{\prime \prime}\left(x_{i}\right), \quad i=1, \cdots, n-1$ is known. In addition, $h=x_{i}-x_{i-1}$ (=constant).

Interval: $\left[x_{i-1}, x_{i}\right]: \quad s_{i}^{\prime \prime}(x)=\frac{1}{h} z_{i-1}\left(x_{i}-x\right)+\frac{1}{h} z_{i}(x-x i-1)$ By integrating twice:

$$
s_{i}(x)=\frac{1}{h} z_{i-1} \frac{\left(x_{i}-x\right)^{3}}{6}+\frac{1}{h} z_{i} \frac{\left(x-x_{i-1}\right)^{3}}{6}+C_{i}\left(x-x_{i-1}\right)+D_{i}
$$

Interpolation condition attaches the constants C_{i} and D_{i} :
$D_{i}=f_{i-1}-\frac{h^{2}}{6} z_{i-1}$
$C_{i}=\frac{1}{h}\left[f_{i}-f_{i-1}+\frac{h^{2}}{6}\left(z_{i-1}-z_{i}\right)\right]$
We have derived a formula that evaluates the spline over every subinterval. However, we still must solve z_{i} and set a value for the boundaries z_{0} and z_{n}.

By calculating the derivative of $s(x)$ and then exploiting continuity:
$s_{i}^{\prime}\left(x_{i}\right)=s_{i+1}^{\prime}\left(x_{i}\right):$
$\frac{h}{2} z_{i}+\frac{1}{h}\left(f_{i}-f_{i-1}\right)+\frac{h^{2}}{6}\left(z_{i-1}-z_{i}\right)=$ $-\frac{h}{2} z_{i}+\frac{1}{h}\left(f_{i+1}-f_{i}\right)+\frac{h^{2}}{6}\left(z_{i}-z_{i-1}\right), \quad i=1, \cdots n-1$,
which is a tridiagonal matrix:

$$
\begin{aligned}
\frac{2 h}{3} z_{i}+\frac{h}{6} z_{i-1}+\frac{h}{6} z_{i+1} & =-\frac{2}{h} f_{i}+\frac{1}{h} f_{i-1}+\frac{1}{h} f_{i+1} \\
& =\frac{1}{h}\left(f_{i+1}-2 f_{i}+f_{i-1}\right) \\
& =b_{i}
\end{aligned}
$$

Taking z_{0} and z_{n} to the right side
$b_{1}=\frac{1}{h}\left(f_{2}-2 f_{1}+f_{0}\right)-\frac{h}{6} z_{0}$,
$b_{n-1}=\frac{1}{h}\left(f_{n}-2 f_{n-1}+f_{n-2}\right)-\frac{h}{6} z_{n}$
We form a so-called natural spline by choosing $z_{0}=z_{n}=0$
Other options for choosing the value for z_{0} and z_{n} :
a) The first derivative at the end points is precise.
b) The third derivative is continuous at x_{1} and x_{n-1}, this is known as the not-a-knot condition.

Bezier

Bernstein Polynomials; $B_{k}^{n}(t), t \in[0,1]$
Definition $B_{k}^{n}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}$
Bernstein polynomials have useful properties:

1) $\quad \sum_{k=0}^{n} B_{k}^{n}(t)=1\left(=(t+1-t)^{n}\right)$
2) $0 \leq B_{k}^{n}(t) \leq 1$, for each $k, n \geq 0$
3) $\quad B_{0}^{n}(0)=B_{n}^{n}(1)=1$, otherwise $B_{k}^{n}(0)=B_{k}^{n}(1)=0$

From combinatorics we obtain the fundamental property of recursion:

$$
B_{k}^{n}(t)=(1-t) B_{k}^{n-1}(t)+t B_{k-1}^{n-1}(t)
$$

Bézier Curves

Let us use the notation $x^{k} \in \mathbb{R}^{n}$ (point).

Definition

Given is the set of points $x=x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$, the convex hull of which is:

$$
\operatorname{CHull}(x)=\left\{y \in \mathbb{R}^{n} \mid y=\sum_{i=1}^{k} a_{i} x^{i}, a_{i} \geq 0, \sum_{i=1}^{k} a_{i}=1\right\}
$$

Definition: Bezier curve

The following curve, determined by the set of points x, is a Bezier curve.

$$
\beta^{n}(t)=\sum_{k=0}^{n} x^{k} B_{k}^{n}(t)
$$

The Bezier curve $\beta^{n}(t)$ is within the convex hull formed by points x (control points, Bezier-points). It follows from the properties of Bernstein polynomials that $\beta^{n}(t)$ passes through the first and last control point.

Closed curves: control points: $x^{0}=x^{n}$
If the closed curve is to be smooth at the starting point, the tangent vectors at the endpoints must be codirectional.

Let us differentiate:

$$
\frac{d}{d t} \beta^{n}(t)=\frac{d}{d t} \sum_{k=0}^{n} x^{k} B_{k}^{n}(t)
$$

Bernstein: $\frac{d}{d t} B_{k}^{n}(t)=n\left(B_{k-1}^{n-1}(t)-B_{k}^{n-1}(t)\right)$

$$
\begin{aligned}
\frac{d}{d t} \beta^{n}(t) & =n \sum_{k=0}^{n}\left(B_{k-1}^{n-1}(t)-B_{k}^{n-1}(t)\right) x^{k} \\
& =n \sum_{k=0}^{n-1}\left(x^{k+1}-x^{k}\right) B_{k}^{n-1}(t)
\end{aligned}
$$

Note that the derivative of the Bezier curve is also a Bezier curve!
Thus, we obtain:

$$
\left\{\begin{array}{l}
\frac{d}{d t} \beta^{n}(0)=n\left(x^{1}-x^{0}\right) \\
\frac{d}{d t} \beta^{n}(1)=n\left(x^{n}-x^{n-1}\right)
\end{array}\right.
$$

Geometrically: x^{0}, x^{1}, x^{n-1} are on the same line and x^{0} is between x^{1} and x^{n-1}.

Lifting algorithm

The control points uniquely define a curve, but the opposite does not hold true.

Now, the following applies:

$$
\beta^{n}(t)=\sum_{k=0}^{n} x^{k} B_{k}^{n}(t)=\sum_{k=0}^{n+1} y^{k} B_{k}^{n+1}(t)=\alpha^{n+1}(t)
$$

By setting $x^{-1}=x^{n+1}=0$, we obtain the condition

$$
y^{k}=\left(1-\frac{k}{n+1}\right) x^{k}+\left(\frac{k}{n+1}\right) x^{k-1} .
$$

De Casteljau Algorithm

The previously described ideas can be combined into a practical algorithm. Let the control points be $x^{0}, x^{1}, \ldots, x^{n}$:
(1) The constant curves are defined: $\beta_{i}^{0}(t)=x^{i}$

$$
\begin{equation*}
\beta_{i}^{r}(t)=(1-t) \beta_{i}^{r-1}(t)+t \beta_{i+1}^{r-1}(t) ; r=1, \ldots, n ; i=0, \ldots, n-r . \tag{2}
\end{equation*}
$$

The algorithm ends with the curve $\beta_{0}^{n}(t)$.

Numerical Integration

Monte Carlo

Central limit theorem

Let X_{i} be independent and identically distributed random variables with an expected value μ and a variance σ^{2}. In this case, for the sample average $A_{N}=\frac{1}{N} \sum_{i=1}^{N} X_{i}$ we have the variance

$$
\operatorname{Var}\left(A_{N}\right)=\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)=\frac{\sigma^{2}}{N}
$$

The standard deviation σ has the same units as $X_{i}: \sigma\left(A_{N}\right)=\frac{\sigma}{\sqrt{N}}$.
Thus, the speed of convergence for Monte Carlo methods is of the order $O\left(\frac{1}{\sqrt{N}}\right)$, where N is the amount of integration points. Remarkably, this holds regardless of the dimension!

Buffon's needle

The distance between two lines is denoted by D. What is the probability that a dropped needle with the length L intersects a line?

Let y be the distance from the center of the needle to the closest line and θ the angle shown in Figure 1.

Figure 1: Buffon's needle.
Let us choose $L=D=1 ; y$ and θ random variables with distributions $y \sim \operatorname{Unif}\left(0, \frac{1}{2}\right), \theta \sim \operatorname{Unif}(0, \pi)$. The condition for intersection: $y \leq \frac{1}{2} \sin \theta$.

Determining the probability requires calculating the ratio of areas: Possible configurations are the points $[0, \pi] \times\left[0, \frac{1}{2}\right]$ i.e. the area $\frac{\pi}{2}$, the condition is fulfilled by $\int_{0}^{\pi} \frac{1}{2} \sin \theta d \theta=1$;

$$
P=\frac{1}{\left(\frac{\pi}{2}\right)}=\frac{2}{\pi}
$$

Hence the approximation: $\pi \approx 2$ (\#drops / \#intersections).

Example Difficult geometry

$$
I=\iiint_{V} \gamma(x, y, z) d x d y d z \text {, for the density } \gamma(x, y, z)=e^{z / 2} .
$$

V is defined by the inequations $\left\{\begin{array}{l}x y z \leq 1, \\ -5 \leq x, y, z \leq 5 .\end{array}\right.$
Due to the exponential distribution of the density, the volume and mass integrals over the same region V converge in a different manner: the standard deviation of the volume is lower.

In many cases, a suitable change of variables turns the situation around: $u=e^{z / 2} \quad:-5 \leq z \leq 5 \quad \rightarrow e^{-2.5} \approx 0.08 \leq u \leq e^{2.5} \approx 12.2$

$$
I=2 \int_{e^{-2.5}}^{e^{2.5}} \int_{-5}^{5} \int_{-5}^{5}\left\{\begin{array}{l}
0,2 x y \ln u>1 \\
1,2 x y \ln u \leq 1
\end{array} \quad d x d y d u\right.
$$

To halve the standard deviation one must typically quadruple the integration points. A custom fitted distribution is usually more efficient.

Example Higher dimension

Let us examine the general case:
$I=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \cdots \int_{a_{n}}^{b_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{n} \ldots d x_{2} d x_{1},\left(\iint \cdots \int_{V} f d V\right)$
where the limits of inner integrals can be functions of outer variables:
$a_{2} \equiv a_{2}\left(x_{1}\right), b_{n} \equiv b_{n}\left(x_{1}, \ldots, x_{n-1}\right)$.
Proceeding as above, we obtain limits of the surrounding volume $(\mathrm{min} / \mathrm{max})$ for each dimension: $\left[A_{1}, B_{1}\right],\left[A_{2}, B_{2}\right], \ldots,\left[A_{n}, B_{n}\right]$ and $\hat{V}=\left[A_{1}, B_{1}\right] \times\left[A_{2}, B_{2}\right] \times \cdots \times\left[A_{n}, B_{n}\right]$.

Let us define a function g so that

$$
\begin{gathered}
g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
0, \text { if }\left(x_{1}, \ldots, x_{n}\right) \in \hat{V} \backslash V \\
1, \text { if }\left(x_{1}, \ldots, x_{n}\right) \in \hat{V}
\end{array}\right. \\
I \approx \sum_{i=1}^{N} g_{i}\left(\frac{|\hat{V}|}{N}\right), \text { where }|\hat{V}|=\left(B_{1}-A_{1}\right) \ldots\left(B_{n}-A_{n}\right) .
\end{gathered}
$$

High-dimensional problems are of great interest currently. Monte Carlo methods are natural, however, the slow rate of convergence is problematic.

Example MATLAB Another estimation of π

The area of a circle: $A=\pi r^{2}$
Let us set $r=1$, in which case $\hat{V}=[-1,1] \times[-1,1]$ and $|\hat{V}|=4$.

Counter: $g_{i}=\left\{\begin{array}{l}1, \text { if the point is inside the circle } \\ 0, \text { otherwise. }\end{array}\right.$
The routine: (N denotes the number of points)

```
numberin = 0
for i = 1:N
    x = 2 * rand - 1
    y = 2 * rand - 2
    if x^2 + y^2 < 1
            numberin = numberin + 1
    end
end
pio4 = numberin / N // ratio of areas = pi/4
piapprox = 4 * pio4
Spread? Var (aX)= a}\mp@subsup{a}{}{2}\operatorname{Var}(X
    Var}(\mp@subsup{X}{i}{})=\textrm{E}(\mp@subsup{X}{i}{2})-(\textrm{E}(\mp@subsup{X}{i}{})\mp@subsup{)}{}{2},\mathrm{ and here: }\mp@subsup{X}{i}{2}=\mp@subsup{X}{i}{}(=\mp@subsup{g}{i}{}
varpio4 = (pio4 - pio4^2) / N
varpi = 16 * varpio4
stdpi = sqrt(varpi)
```


Newton-Cotes

Idea: Let us approximate the integral $\int_{a}^{b} f(x) d x$ by integrating an interpolant of the function f.

$$
\text { Lagrange: } \int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} f\left(x_{i}\right) \int_{a}^{b}\left(\prod_{\substack{j=0 \\ i \neq j}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}\right) d x
$$

The familiar trapezoidal rule is obtained by choosing $n=1$:

$$
\begin{aligned}
& \quad p_{1}(x)=f(a) \frac{x-b}{a-b}+f(b) \frac{x-a}{b-a} \\
& \text { i.e. } \int_{a}^{b} f(x) d x \simeq \int_{a}^{b} p_{1}(x) d x=\frac{b-a}{2}[f(a)+f(b)]
\end{aligned}
$$

The error is the integral of the interpolation error; for the trapezoid:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x-\int_{a}^{b} p_{1}(x) d x & =\frac{1}{2} \int_{a}^{b} f^{\prime \prime}(\xi(x))(x-a)(x-b) d x \\
& =\frac{1}{2} f^{\prime \prime}(\eta) \int_{a}^{b}(x-a)(x-b) d x \\
& =-\frac{1}{12}(b-a)^{3} f^{\prime \prime}(\eta)
\end{aligned}
$$

Over n subintervals:

$$
\int_{a}^{b} f(x) d x \simeq \frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right]
$$

and an error of $O\left(h^{2}\right)$.
What about $n=2$?

$$
\text { Required: } \int_{a}^{b} f(x) d x \approx A_{1} f(a)+A_{2} f\left(\frac{a+b}{2}\right)+A_{3} f(b),
$$

accurate for all second-degree (or lower) polynomials. Evidently,
the coefficients A_{i} are obtained from the integrals of the polynomial bases. Let us proceed with the undefined coefficients:

$$
\begin{array}{ll}
\int_{a}^{b} 1 d x=b-a & \Rightarrow A_{1}+A_{2}+A_{3}=b-a \\
\int_{a}^{b} x d x=\frac{1}{2}\left(b^{2}-a^{2}\right) & \Rightarrow A_{1} a+A_{2} \frac{a+b}{2}+A_{3} b=\frac{1}{2}\left(b^{2}-a^{2}\right) \\
\int_{a}^{b} x^{2} d x=\frac{1}{3}\left(b^{3}-a^{3}\right) & \Rightarrow A_{1} a^{2}+A_{2}\left(\frac{a+b}{2}\right)^{2}+A_{3} b^{2}=\frac{1}{3}\left(b^{3}-a 3\right)
\end{array}
$$

We obtain: $A_{1}=A_{3}=\frac{b-a}{6}, A_{2}=\frac{4(b-a)}{6}$
This is known as Simpson's rule:

$$
\int_{a}^{b} f(x) d x \simeq \frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]
$$

Over n subintervals:

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \simeq \frac{h}{6}\left[f\left(x_{0}\right)+4 f\left(x_{1 / 2}\right)+2 f\left(x_{1}\right)+\ldots\right. \\
&\left.+2 f\left(x_{n-1}\right)+4 f\left(x_{n-1 / 2}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

And the error: (Accurate for polynomials of degree three)
For one interval: $\frac{1}{2880}(b-a)^{5} f^{(4)}(\xi)$ and for n subintervals $O\left(h^{4}\right)$.

Gaussian quadrature

Idea: Let us choose the points and weights simultaneously.

$$
\text { Problem: } n=1: \int_{a}^{b} f(x) d x \simeq A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)
$$

As above:

$$
\begin{array}{ll}
\int_{a}^{b} 1 d x=b-a & \Rightarrow A_{0}+A_{1}=b-a \\
\int_{a}^{b} x d x=\frac{1}{2}\left(b^{2}-a^{2}\right) & \Rightarrow A_{0} x_{0}+A_{1} x_{1}=\frac{1}{2}\left(b^{2}-a^{2}\right) \\
\int_{a}^{b} x^{2} d x=\frac{1}{3}\left(b^{3}-a^{3}\right) & \Rightarrow A_{0} x_{0}^{2}+A_{1} x_{1}^{2}=\frac{1}{3}\left(b^{3}-a 3\right)
\end{array}
$$

We have a nonlinear system of equations!
The answer: Orthogonal polynomials

Definition Orthogonal polynomials

Two polynomials are are orthogonal over the interval $[a, b]$ if their inner product is zero.

$$
\langle p, q\rangle=\int_{a}^{b} p(x) q(x) d x=0
$$

For orthonormal polynomials $\langle p, p\rangle=\langle q, q\rangle=1$.
Gram-Schmidt: $\left\{1, x, x^{2}, \ldots\right\} \rightarrow\left\{q_{0}, q_{1}, q_{2}, \ldots\right\} \Leftarrow$ orthonormal

$$
q_{0}=1 /\left[\int_{a}^{b} 1^{2} d x\right]^{1 / 2}=\frac{1}{\sqrt{b-a}} \text { n.b. }\|q(x)\| \equiv\left[\int_{a}^{b}(q(x))^{2} d x\right]^{1 / 2}
$$

For $j=1,2, \ldots$

$$
\begin{aligned}
& \tilde{q}_{j}(x)=x q_{j-1}(x)-\sum_{i=0}^{j-1}\left\langle x q_{j-1}(x), q_{i}(x)\right\rangle q_{i}(x) \\
& q_{j}(x)=\tilde{q}_{j}(x) /\left\|\tilde{q}_{j}(x)\right\|
\end{aligned}
$$

Observation: $q_{j-1}(x)$ is orthogonal to all polynomials of degree $j-2$ or less.

$$
\begin{array}{r}
\left\langle x q_{j-1}(x), q_{i}(x)\right\rangle=\left\langle q_{j-1}(x), x q_{i}(x)\right\rangle=0, i \leq j-3 \\
\Rightarrow \tilde{q}_{j}(x)=x q_{j-1}(x)-\left\langle x q_{j-1}(x), q_{j-1}(x)\right\rangle q_{j-1}(x) \\
-\left\langle x q_{j-1}(x), q_{j-2}(x)\right\rangle q_{j-2}(x)
\end{array}
$$

Alas, we obtain a recursion of three terms!
Quadrature points are zeros of orthogonal polynomials:

Theorem

Let $x_{0}, x_{1}, \ldots, x_{n}$ be the zeros of the orthogonal polynomial $q_{n+1}(x)$ over the interval $[a, b]$, in which case

$$
\begin{aligned}
& \qquad \int_{a}^{b} f(x) d x \simeq \sum_{i=0}^{n} A_{i} f\left(x_{i}\right), \\
& \text { where } A_{i}=\int_{a}^{b} \varphi_{i}(x) d x, \varphi_{i}(x)=\prod_{\substack{j=0 \\
i \neq j}}^{n} \frac{x-x_{j}}{x_{i}-x_{i}},
\end{aligned}
$$

is accurate for all polynomials of degree $2 n+1$ or less.

Proof

Let f be a polynomial of degree $2 n+1$ or less. When f is divided by q_{n+1}, the remainder is of degree n or less. The division algorithm:

$$
f=q_{n+1} p_{n}+r_{n} \text { and } f\left(x_{i}\right)=r_{n}\left(x_{i}\right), q_{n+1}\left(x_{i}\right)=0 .
$$

Let us integrate:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{a}^{b} q_{n+1}(x) p_{n}(x) d x+\int_{a}^{b} r_{n}(x) d x \\
& =\int_{a}^{b} r_{n}(x) d x, \text { because }\left\langle q_{n+1}(x), p_{n}(x)\right\rangle=0 \\
& =\sum_{i=0}^{n} A_{i} r_{n}\left(x_{i}\right)=\sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
\end{aligned}
$$

Definition Weighted orthogonal polynomials

Let us define the inner product

$$
\langle p, q\rangle_{w}=\int_{a}^{b} p(x) q(x) w(x) d x
$$

where $w(x)$ is a positive weight function.

Theorem

Building on our previous Theorem ($q_{n+1} w$-orthogonal):

$$
\int_{a}^{b} f(x) w(x) d x \simeq \sum_{i=0}^{n} A_{i} f\left(x_{i}\right), \text { where } A_{i}=\int_{a}^{b} \varphi_{i}(x) w(x) d x
$$

Once again, accurate for polynomials of degree $2 n+1$ or less.

Example Gaussian quadrature: $x \in[-1,1], n=1$
The zeros do not require normalization.
Basis: $\left\{1, x, x^{2}\right\}$
Gram-Schmidt: $\quad \tilde{q}_{0}=1$

$$
\begin{aligned}
& \tilde{q}_{1}=x-\frac{\langle x, 1\rangle}{\langle 1,1\rangle} \cdot 1=x-\frac{\int_{-1}^{1} x d x}{\int_{-1}^{1} 1 d x} \cdot 1=x \\
& \tilde{q}_{2}=x^{2}-\frac{\left\langle x^{2}, 1\right\rangle}{\langle 1,1\rangle} \cdot 1-\frac{\left\langle x^{2}, x\right\rangle}{\langle x, x\rangle} x=x^{2}-\frac{1}{3}
\end{aligned}
$$

The roots of $\tilde{q}_{2}: \pm \frac{1}{\sqrt{3}}$
Thus, the formula is: $\quad \int_{-1}^{1} f(x) d x \simeq A_{0} f\left(-\frac{1}{\sqrt{3}}\right)+A_{1} f\left(\frac{1}{\sqrt{3}}\right)$
This is accurate all the way up to x^{3}.

Initial Value Problems

General problem:

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)) \quad t \geq t_{0} \tag{1}\\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

Let us assume that we have considered the question of whether or not a solution exists and whether it is the only solution. Let us especially assume that the function f is continuous and Lipschitz continuous in y : for each $y_{1}, y_{2}, t \in[a, b]$,

$$
\begin{equation*}
\left|f\left(t, y_{2}\right)-f\left(t, y_{1}\right)\right| \leq L\left|y_{2}-y_{1}\right| \tag{2}
\end{equation*}
$$

where L is a constant, $t_{0} \in[a, b]$.
The numerical solution approximates the solution curve determined by the initial value. Ordinary methods approximate the solution at time t_{k+1} using the solution at time t_{k}. Multistep methods use deeper dependence.

Euler's method

Constant step size $h ; y_{0}=y\left(t_{0}\right)$:

$$
\begin{equation*}
y_{k+1}=y_{k}+h f\left(t_{k}, y_{k}\right), \quad k=0,1, \ldots \tag{3}
\end{equation*}
$$

We get from one point to another on the solution curve by moving along the tangent line.

Method follows directly from Taylor's theorem:

$$
\begin{align*}
y\left(t_{k+1}\right) & =y\left(t_{k}\right)+h y^{\prime}\left(t_{k}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(\xi_{k}\right) \\
& =y\left(t_{k}\right)+h f\left(t_{k}, y\left(t_{k}\right)\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(\xi_{k}\right), \quad \xi_{k} \in\left[t_{k}, t_{k+1}\right] \tag{4}
\end{align*}
$$

Types of errors: The truncation error (local) and the global error Now:

$$
\begin{equation*}
\frac{y_{k+1}-y_{k}}{h}=f\left(t_{k}, y_{k}\right) \tag{5}
\end{equation*}
$$

Inserting the solution $y\left(t_{k}\right)$:

$$
\begin{equation*}
\frac{y\left(t_{k+1}\right)-y\left(t_{k}\right)}{h}=f\left(t_{k}, y\left(t_{k}\right)\right)+\frac{h}{2} y^{\prime \prime}\left(\xi_{k}\right) \tag{6}
\end{equation*}
$$

where $\frac{h}{2} y^{\prime \prime}\left(\xi_{k}\right)$ is the local error $O(h)$.
Euler's method is first order.
NB: Often the truncation error is described as $O\left(h^{2}\right)$. Here we are considering an approximation, which has on the left side the approximation of the derivative.

The method is consistent:

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{y\left(t_{k+1}\right)-y\left(t_{k}\right)}{h}=y^{\prime}\left(t_{k}\right)=f\left(t_{k}, y\left(t_{k}\right)\right) \tag{7}
\end{equation*}
$$

The truncation error $\rightarrow 0$, when $h \rightarrow 0$.
What about the global error? At time $t_{k}:\left|y\left(t_{k}\right)-y_{k}\right| \leq$?
Convergent method: max $\left|y\left(t_{k}\right)-y_{k}\right| \rightarrow 0$, when $h \rightarrow 0$.
Theorem
Let us assume that the general problem is well-posed. Let $T \in$ $[a, b], T>t_{0}$ and $h=\left(T-t_{0}\right) / N$. Let

$$
y_{k+1}=y_{k}+h f\left(t_{k}, y_{k}\right), \quad k=0,1, \ldots, N-1
$$

Let us assume that $y_{0} \rightarrow y\left(t_{0}\right)$, when $h \rightarrow 0$. Thus, for every k with $t_{k} \in\left[t_{0}, T\right], y_{k} \rightarrow y\left(t_{k}\right)$, when $h \rightarrow 0$ and $\max _{k}\left|y\left(t_{k}\right)-y_{k}\right| \rightarrow 0$.

Proof: Let us denote $d_{j}=y\left(t_{j}\right)-y_{j}$.
Subtracting Taylor and Euler:

$$
\begin{equation*}
d_{k+1}=d_{k}+h\left[f\left(t_{k}, y\left(t_{k}\right)\right)-f\left(t_{k}, y_{k}\right)\right]+\frac{h^{2}}{2} y^{\prime \prime}\left(\xi_{k}\right) \tag{8}
\end{equation*}
$$

Lipschitz and $\left|y^{\prime \prime}(t)\right| \leq M$:

$$
\begin{align*}
\left|d_{k+1}\right| & \leq\left|d_{k}\right|+h L\left|d_{k}\right|+\frac{h^{2}}{2} M \\
& =(1+h L)\left|d_{k}\right|+\frac{h^{2}}{2} M \tag{9}
\end{align*}
$$

Generally holds:

$$
\begin{align*}
& \gamma_{k+1} \leq(1+\alpha) \gamma_{k}+\beta, \quad \alpha>0, \beta \geq 0, k=0,1, \ldots \\
\Rightarrow \quad & \gamma_{n} \leq e^{n \alpha} y_{0}+\frac{e^{n \alpha}-1}{\alpha} \beta \tag{10}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\left|d_{k+1}\right| \leq e^{(k+1) h L}\left|d_{0}\right|+\frac{e^{(k+1) h L}-1}{L} \frac{h}{2} M \tag{11}
\end{equation*}
$$

$k h \leq T-t_{0}:$

$$
\begin{equation*}
\max _{k}\left|d_{k}\right| \leq e^{L\left(T-t_{0}\right)}\left|d_{0}\right|+\frac{e^{L\left(T-t_{0}\right)-1}}{L} \frac{h}{2} M \tag{12}
\end{equation*}
$$

where $\left|d_{0}\right| \rightarrow$ o and $\frac{h}{2} M \rightarrow \mathrm{o}$, when $h \rightarrow \mathrm{o}$.
Thus, the global error $O(h)$ is obtained with Euler's method. With the same technique, it is possible to examine the effect of the rounding error. Let us calculate the difference of the floating-point solution and the exact arithmetic (with corresponding denotations)

$$
\begin{array}{r}
\left|d_{k+1}\right| \leq(1+h L)\left|d_{k}\right|+\delta \\
\Rightarrow\left|d_{k+1}\right| \leq e^{L\left(T-t_{0}\right)}\left|d_{0}\right|+\frac{e^{L\left(T-t_{0}\right)}-1}{h L} \delta \tag{13}
\end{array}
$$

where $\left|d_{0}\right|$ is the error at the beginning, and the latter term dominates when h is small.

Guideline: Minimize the global error without forgetting the rounding!

Explicit and implicit method
Quadrature:

$$
\begin{align*}
y(t+h) & =y(t)+\int_{t}^{t+h} f(s, y(s)) d s \\
& =y(t)+\frac{h}{2}[f(t, y(t))+f(t+h, y(t+h))]+O\left(h^{3}\right) \tag{14}
\end{align*}
$$

leads to the trapezoidal:

$$
\begin{equation*}
y_{k+1}=y_{k}+\frac{h}{2}\left[f\left(t_{k}, y_{k}\right)+f\left(t_{k+1}, y_{k+1}\right)\right] \tag{15}
\end{equation*}
$$

The method is implicit: y_{k+1} must be solved at every step using some solution method. Euler's method is explicit: y_{k+1} is obtained by addition; y_{k+1} appears only on one side of the equation.

Idea: Predict and correct.
Heun's method:
$\tilde{y}_{k+\alpha}=y_{k}+\alpha h f\left(t_{k}, y_{k}\right)$; prediction
$y_{k+1}=y_{k}+\beta h f\left(t_{k}, y_{k}\right)+\gamma h f\left(t_{k}+\alpha h, \tilde{y}_{k+\alpha}\right)$; correction
Three parameters: $\alpha, \beta, \gamma \Rightarrow$ Let us fit them in Taylor's theorem.
Heun: $\alpha=1, \beta=\gamma=\frac{1}{2}$
Generally: $\beta+\gamma=1, \alpha \gamma=\frac{1}{2}$
For all methods like this, the truncation error is $O\left(h^{2}\right)$.

Synthesis

Synthesis: $y_{k+1}=y_{k}+h \Psi\left(t_{k}, y_{k}, h\right)$
a) consistency: $\lim _{h \rightarrow 0} \Psi(t, y, h)=f(t, y)$
b) stability: If there exists a constant K and a step size $h_{0}>0$ such that $\left|y_{n}-\tilde{y}_{n}\right| \leq K\left|y_{0}-\tilde{y}_{0}\right|$, where y_{n}, \tilde{y}_{n} and y_{0}, \tilde{y}_{0} are initial conditions, which holds when $h \leq h_{0}$ and $n h \leq T-t_{0}$, the method is stable.
c) a) \& b) \Rightarrow the method is convergent

If the truncation error is of the following form

$$
\tau(t, h)=\frac{y(t+h)-y(t)}{h}-\Psi(t, y(t), h)
$$

the global error of the stable method, which has the truncation error $O\left(h^{p}\right)$, is $O\left(h^{p}\right)$.

NB! The proof is similar to the one shown for Euler's method.

$$
\begin{aligned}
\gamma_{k+1} & \leq(1+\alpha) \gamma_{k}+\beta \Rightarrow \gamma_{n} \leq e^{n \alpha} \gamma_{0}+\frac{e^{n \alpha}-1}{\alpha} \beta \\
\gamma_{n} & \leq(1+\alpha)^{2} \gamma_{n-2}+[(1+\alpha)+1] \beta \\
& \leq(1+\alpha)^{n} \gamma_{0}+\left[\sum_{j=0}^{n-1}(1+\alpha)^{j}\right] \beta \\
& =(1+\alpha)^{n} \gamma_{0}+\frac{(1+\alpha)^{n}-1}{\alpha} \beta \\
(1+\alpha) \leq e^{\alpha} & =1+\alpha+\frac{\alpha^{2}}{2} e^{\xi}, \quad \xi \in(0, \alpha)
\end{aligned}
$$

For Euler systems:

$$
\boldsymbol{y}^{\prime}=f(t, \boldsymbol{y}), \quad \boldsymbol{y}\left(t_{0}\right)=\boldsymbol{y}_{0} \quad \Rightarrow \quad \boldsymbol{y}_{k+1}=\boldsymbol{y}_{k}+h \boldsymbol{f}\left(t_{k}, \boldsymbol{y}_{k}\right)
$$

Components: $y_{i, k+1}=y_{i k}+h f_{i}\left(t_{k}, y_{1 k}, \ldots, y_{n k}\right), \quad i=1, \ldots, n$

Multistep methods

Let us consider (once again) the integral

$$
\left.y\left(t_{k+1}\right)=y\left(t_{k}\right)+\int_{t_{k}}^{t_{k+1}} f(s, y(s))\right) d s
$$

Idea: Let us replace the $f(\mathrm{t}, \mathrm{y})$ with a suitable interpolation polynomial, which takes the solution history into consideration.

If t_{k+1} is taken into account, the method is implicit.
Adams-Bashforth: Explicit
Let us interpolate at points $t_{k}, t_{k+1}, \ldots, t_{k-m+1} ; p_{m-1}(s)$

$$
\begin{equation*}
y_{k+1}=y_{k}+\int_{t_{k}}^{t_{k+1}} p_{m-1}(s) d s=y_{k}+h \sum_{l=0}^{m-1} b_{l} f\left(t_{k-l}, y_{k-l}\right) \tag{16}
\end{equation*}
$$

where

$$
b_{l}=\frac{1}{h} \int_{t_{k}}^{t_{k+1}}\left(\prod_{\substack{j=0 \\ j \neq l}}^{m-1} \frac{s-t_{k-j}}{t_{k-l}-t_{k-j}}\right) d s
$$

If $\mathrm{m}=1$, the Euler's method is obtained!
Lecture exercise: What kind of method is obtained, when $\mathrm{m}=2$?

$$
y_{k+1}=y_{k}+h\left[\frac{3}{2} f\left(t_{k}, y_{k}\right)-\frac{1}{2} f\left(t_{k-1}, y_{k-1}\right)\right]
$$

The truncation error is $O\left(h^{m}\right)$. (The error of the integral is $O\left(h^{m+1}\right)$.) Adams-Moulton: Implicit
Let us consider the point t_{k+1} as well; $q_{m}(s)$.

$$
\begin{equation*}
y_{k+1}=y_{k}+h \sum_{l=0}^{m} c_{l} f\left(t_{k+1-l}, y_{k+1-l}\right. \tag{17}
\end{equation*}
$$

where

$$
c_{l}=\frac{1}{h} \int_{t_{k}}^{t_{k+1}}\left(\prod_{\substack{j=0 \\ j \neq l}}^{m} \frac{s-t_{k+1-j}}{t_{k+1-l}-t_{k+1-j}}\right) d s
$$

If $\mathrm{m}=0$, we obtain $y_{k+1}=y_{k}+h f\left(t_{k+1}, y_{k+1}\right)$, which is so called implicit Euler's method.

Lecture exercise: What kind of method is obtained, when $m=1$?

$$
y_{k+1}=y_{k}+\frac{h}{2}\left[f\left(t_{k+1}, y_{k+1}\right)+f\left(t_{k}, y_{k}\right)\right]
$$

which is a trapezoidal!
The truncation error is $O\left(h^{m+1}\right)$.
General format: $\sum_{l=0}^{m} a_{l} y_{k+1}=h \sum_{l=0}^{m} b_{l} f\left(t_{k+l}, y_{k+l}\right)$,
$a_{m}=1, b_{m}=0 \Rightarrow$ explicit, otherwise implicit
The high order of the truncation error does not implicate stability!
$y_{k+1}-3 y_{k+1}+2 y_{k}=h\left[\frac{13}{12} f\left(t_{k+2}, y_{k+2}\right)-\frac{5}{3} f\left(t_{k+1}, y_{k+1}\right)-\frac{5}{12} f\left(t_{k}, y_{k}\right)\right]$
Exercise: $y^{\prime}=0, y(0)=1$
$y_{1}=1+\delta$
$y_{2}=3 y_{1}-2 y_{0}=1+3 \delta$
$y_{k}=3 y_{k-1}-2 y_{k-2}=1+\left(2^{k}-1\right) \delta$
$\delta \sim 2^{-53} \Rightarrow k=100$ gives us an error $\sim 2^{47}(!)$

Stiff Equations

Problem: The solution contains different time scales.
Example:

$$
\left\{\begin{array}{ll}
y_{1}^{\prime}=-100 y_{1} & +y_{2} \\
y_{2}^{\prime}= & -\frac{1}{10} y_{2}
\end{array} \quad \Leftrightarrow y^{\prime}=A y, \quad A=\left[\begin{array}{cc}
-100 & 1 \\
0 & -\frac{1}{10}
\end{array}\right]\right.
$$

Solution:

$$
\left\{\begin{array}{l}
y_{1}(t)=e^{-100 t}\left(y_{1}(0)-\frac{10}{999} y_{2}(0)\right)+e^{-\frac{t}{10}} \frac{10}{999} y_{2}(0) \tag{18}\\
y_{2}(t)=e^{-\frac{t}{10}} y_{2}(0)
\end{array}\right.
$$

Question: Could the problem be solved by using Euler's method?
Could the step size be chosen arbitrarily? (All gucci, if $h \rightarrow 0$.)
Component 2:

$$
\begin{align*}
y_{2, k+1} & =\left(1-\frac{h}{10}\right) y_{2, k} \\
\Rightarrow \quad y_{2, k} & =\left(1-\frac{h}{10}\right)^{k} y_{2}(0) \tag{19}
\end{align*}
$$

Component 1 :

$$
\begin{align*}
y_{1, k+1} & =(1-100 h) y_{1, k}+h y_{2, k} \\
& =(1-100 h) y_{1, k}+h\left(1-\frac{h}{10}\right)^{k} y_{2}(0) \\
& =(1-100 h)^{2} y_{1, k-1}+h\left[(1-100 h)\left(1-\frac{h}{10}\right)^{k-1}+\left(1-\frac{h}{10}\right)^{k}\right] y_{2}(0) \\
& \cdots \tag{20}\\
& =(1-100 h)^{k+1} y_{1}(0)+h\left(1-\frac{h}{10}\right)^{k}\left[\sum_{l=0}^{k}\left(\frac{1-100 h}{1-\frac{h}{10}}\right)^{l}\right] y_{2}(0)
\end{align*}
$$

which leads us to:

$$
y_{1, k+1}=(1-100 h)^{k+1}\left[y_{1}(0)-\frac{10}{999} y_{2}(0)\right]+\left(1-\frac{h}{10}\right)^{k+1} \frac{10}{999} y_{2}(0)
$$

We notice immediately that if $h>\frac{1}{50}$, then $|1-100 h|>1$ and $(1-100 h)^{k+1}$ grows geometrically. Even if the initial conditions guaranteed that $y_{1}(0)-\frac{10}{999} y_{2}(0)=0$, the rounding error grows unbounded.

In that case, Euler's method is unstable, when $h>\frac{1}{50}$.

Absolute stability

General problem: $y^{\prime}=\lambda y \quad \Rightarrow \quad y=e^{\lambda t} y(0), \quad \lambda \in \mathbb{C}$

We know that $y(t) \rightarrow 0$, when $t \rightarrow \infty$ only if $\operatorname{Re} \lambda<0$.
System: $y^{\prime}=A y$; A is $n \times n$-matrix
Let us assume that A is diagonalizable.

$$
A=V \Lambda V^{-1}
$$

where Λ is a diagonal matrix of eigenvalues and the columns of V are eigenvectors.

With a variable change $\tilde{y}=V^{-1} y$, we obtain:

$$
\tilde{y}^{\prime}=\Lambda \tilde{y} \quad \text { thus } \quad \tilde{y}_{i}=\lambda_{i} \tilde{y}_{i}, \quad i=1, \ldots, n
$$

Modified system converges in modified coordinates, which is not always simple to interpret.

However, the next definition is reasonable:
Definition: The region of absolute stability is the set $\left\{h \lambda \in \mathbb{C} \mid y_{k} \rightarrow\right.$ 0 , when $k \rightarrow \infty\}$, where y_{k} is the solution of the general problem and h is a constant step size, $h>0$.

Definiton: A-stability
A method is A-stable if its region of absolute stability contains entire left half plane.

NB: On the region of absolute stability, it holds that if $z_{k+1}=$ $(1+h \lambda) z_{k}, \quad z_{k} \neq y_{k}$, then

$$
\begin{align*}
z_{k+1}-y_{k+1} & =(1+h \lambda)\left(z_{k}-y_{k}\right) \\
\Rightarrow \quad\left|z_{k+1}-y_{k+1}\right| & \leq\left|z_{k}-y_{k}\right| \tag{22}
\end{align*}
$$

Example: The backward Euler method

$$
\begin{equation*}
y_{k+1}=y_{k}+h \lambda y_{k+1} \Rightarrow y_{k+1}=\frac{1}{1-h \lambda} y_{k}=\ldots=\frac{1}{(1-h \lambda)^{k+1}} y_{0} \tag{23}
\end{equation*}
$$

Absolute stability: $\{h \lambda||1-h \lambda|>1\}$

$$
\begin{equation*}
|1-h \lambda|=\sqrt{(1-h \operatorname{Re} \lambda)^{2}+(\operatorname{Im} \lambda)^{2}}>1, \quad \text { when } \operatorname{Re} \lambda<0 \tag{24}
\end{equation*}
$$

The backward Euler method is A-stable.
One can prove that there are no explicit A-stable linear multistep methods.

Theorem: The highest order of an A-stable multispe method is two.

Depressing. Nevertheless, it is possible to form a high-order methods with the region of absolute stability "almost" the entire left half plane.

Particular methods

BDF-methods: Backward Differentiation Formulas
m -step method with m-order: $\sum_{l=0}^{m} a_{l} y_{k+1}=h b_{m} f\left(t_{k+m}, y_{k+m}\right.$ All implicit.
Theorem: The truncation error of a multistep method is of order $p \geq 1$, if and only if

$$
\sum_{l=0}^{m} a_{l}=0 \text { and } \sum_{l=0}^{m} l^{j} a_{l}=j \sum_{l=0}^{m} l^{j-1} b_{l}, j=1, \ldots, p
$$

With this theorem, let us choose suitable coefficients:
$\mathrm{m}=1: a_{0}+a_{1}=0,0 \cdot a_{0}+1 \cdot a_{1}=b_{1}$
Let us (always) choose $a_{1}=1 \Rightarrow a_{0}=-1, b_{1}=1$
Thus, we obtain: $y_{k+1}=y_{k}+h f\left(t_{k+1}, y_{k+1}\right)$, which is the backward Euler.

We can continue this way, but when $\mathrm{m}=3$, the obtained method cannot be A-stable.

IRK-methods: Implicit Runge-Kutta

$$
\begin{gather*}
\xi_{j}=y_{k}+h \sum_{i=1}^{v} a_{j i} f\left(t_{k}+c_{i} h, \xi_{i}\right), j=1, \ldots, v \tag{25}\\
y_{k+1}=y_{k}+h \sum_{j=1}^{v} b_{j} f\left(t_{k}+c_{j} h, \xi_{j}\right) \tag{26}
\end{gather*}
$$

Arbitrary parameters: $a_{j} i, b_{j}, c_{j}$
Consistent: $\sum_{i=1}^{v} a_{j i}=c_{j}, j=1, \ldots, v$
For every $v \leq 1$, there is a unique A-stable IRK method of order 2v.

Implicit systems

Multistep methods: $b_{m} \neq 0$

$$
\begin{align*}
& y_{k+m}=h b_{m} f\left(t_{k+m}, y_{k+m}\right)+\gamma \tag{27}\\
& \text { where } \quad \gamma=h \sum_{l=0} * m-1 b_{l} f\left(t_{k+l}, y_{k+l}\right)-\sum-l=0^{m-1} a_{l} y_{k+l} \tag{28}
\end{align*}
$$

is known.
IRK:

$$
\left[\begin{array}{c}
\boldsymbol{\xi}_{1} \tag{29}\\
\ldots \\
\boldsymbol{\zeta}_{v} \\
y_{k+1}
\end{array}\right]=h\left[\begin{array}{c}
\sum_{i=1}^{v} a_{1 i} \boldsymbol{f}\left(t_{k}+c_{i} h, \boldsymbol{\xi}_{i}\right) \\
\ldots \\
\sum_{i=1}^{v} a_{v i} f\left(t_{k}+c_{i} h, \boldsymbol{\xi}_{i}\right) \\
\sum_{j=1}^{v} b_{i} f\left(t_{k}+c_{j} h, \boldsymbol{\xi}_{j}\right)
\end{array}\right]+\left[\begin{array}{c}
y_{k} \\
\ldots \\
y_{k} \\
y_{k}
\end{array}\right]
$$

General format:

$$
\begin{array}{r}
\boldsymbol{w}=h \boldsymbol{g}(\boldsymbol{w})+\gamma \\
\boldsymbol{q}(\boldsymbol{w}) \equiv \boldsymbol{w}-h \boldsymbol{g}-\gamma=\mathbf{0} \tag{31}
\end{array}
$$

Newton's method:
An initial guess $\boldsymbol{w}^{(0)}$; Taylor's theorem for \boldsymbol{q} in $\boldsymbol{w}^{(0)}$:
$\left[\begin{array}{c}q_{1}\left(w_{1}, \ldots, w_{n}\right) \\ \ldots \\ q_{n}\left(w_{1}, \ldots, w_{n}\right)\end{array}\right]=\left[\begin{array}{c}q_{1}\left(w_{1}^{(0)}, \ldots, w_{n}^{(0)}\right) \\ \ldots \\ q_{n}\left(w_{1}^{(0)}, \ldots, w_{n}^{(0)}\right)\end{array}\right]+\left[\begin{array}{c}\sum_{i=1}^{n} \frac{\partial q_{1}}{\partial w_{i}}\left(\boldsymbol{w}^{(0)}\right)\left(w_{i}-w_{i}^{(0)}\right) \\ \ldots \\ \sum_{i=1}^{n} \frac{\partial q_{n}}{\partial w_{i}}\left(\boldsymbol{w}^{(0)}\right)\left(w_{i}-w_{i}^{(0)}\right)\end{array}\right]+\left[\begin{array}{c}O\left(\left\|\boldsymbol{w}-\boldsymbol{w}^{(0)}\right\|^{2}\right) \\ \ldots \\ O\left(\left\|\boldsymbol{w}-\boldsymbol{w}^{(0)}\right\|^{2}\right)\end{array}\right]$
or in the matrix format

$$
\begin{equation*}
\boldsymbol{q}(\boldsymbol{w})=\boldsymbol{q}\left(\boldsymbol{w}^{(0)}\right)+J_{\boldsymbol{q}}\left(\boldsymbol{w}^{(0)}\right)\left(\boldsymbol{w}-\boldsymbol{w}^{(0)}\right)+O\left(\left\|\boldsymbol{w}-\boldsymbol{w}^{(0)}\right\|^{2}\right) \tag{33}
\end{equation*}
$$

where $J_{\boldsymbol{q}}\left(\boldsymbol{w}^{(0)}\right)$ is the Jacobian evaluated at $\boldsymbol{w}^{(0)}$.
Let us drop the quadratic term and solve $\boldsymbol{q}(\boldsymbol{w})=0$:

$$
\begin{equation*}
\boldsymbol{w}^{(1)}=\boldsymbol{w}^{(0)}-\left[J_{\boldsymbol{q}}\left(\boldsymbol{w}^{(0)}\right)\right]^{-1} \boldsymbol{q}\left(\boldsymbol{w}^{(0)}\right) \tag{34}
\end{equation*}
$$

We have obtained a step of Newton's method.
Observations:
a) Rotating the matrix means solving the system of equations.
b) The Jacobian must be non-singular.
c) The initial guess has to be good enough.

In this context: $\boldsymbol{q}(\boldsymbol{w})=0$; we obtain

$$
\begin{equation*}
\boldsymbol{w}^{(j+1)}=\boldsymbol{w}^{(j)}-\left[I-h J_{\boldsymbol{g}}\left(\boldsymbol{w}^{(j)}\right)\right]^{-1}\left(\boldsymbol{w}^{(j)}-h \boldsymbol{g}\left(\boldsymbol{w}^{(j)}\right)\right)-\gamma \tag{35}
\end{equation*}
$$

where $\left[I-h J_{g}\left(\boldsymbol{w}^{(j)}\right)\right]^{-1}$ is non-singular when h is sufficiently small.

Interpretation: The error of the predictor step can be around $O(h)$.

