
2Introduction to Computer Arithmetic

2.1 Basic Notions of Floating-Point Arithmetic

The aim of this section is to provide the reader with some basic concepts of floating-point arithmetic,
and to define notations that are used throughout the book. For further information, the reader is referred
to the IEEE-754-2008 Standard on Floating-Point Arithmetic [245] and to our Handbook on Floating-
Point Arithmetic [356]. Interesting and useful material can be found in Goldberg’s paper [206] and
Kahan’s lecture notes [265]. Further information can be found in [55, 95, 102, 103, 180, 217, 232,
266, 277, 286, 370, 373, 378, 469, 477]. Here we mainly focus on the binary formats specified by the
2008 release of the IEEE-754 standard for floating-point arithmetic. The first release of IEEE 754 [6],
that goes back to 1985, was a key factor in improving the quality of the computational environment
available to programmers. Before the standard, floating-point arithmetic was a mere set of cooking
recipes that sometimes worked well and sometimes did not work at all.1

2.1.1 Basic Notions

Everybody knows that a radix-β, precision-p floating-point number is a number of the form

±m × βe, (2.1)

where m is represented with p digits in radix β, m < β, and e is an integer. However, being able to
build trustable algorithms and proofs requires a more formal definition.

A floating-point format is partly2 characterized by four integers:

• a radix (or base) β ≥ 2;
• a precision p ≥ 2 (p is the number of “significant digits” of the representation);
• two extremal exponents emin and emax such that emin < emax. In all practical cases, emin < 0 < emax.

1We should mention a few exceptions, such as some HP pocket calculators and the Intel 8087 coprocessor, that were
precursors of the standard.
2Partly only, because bit strings must be reserved for representing exceptional values, such as the results of forbidden
operations (e.g., 0/0) and infinities.
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8 2 Introduction to Computer Arithmetic

A finite floating-point number in such a format is a number x for which there exists at least one
representation (M, e) that satisfies

x = M · βe−p+1, (2.2)

where

• M is an integer of absolute value less than or equal to β p − 1. It is called the integral significand
of the representation of x ;

• e is an integer such that emin ≤ e ≤ emax is called the exponent of the representation of x .

We can now go back to (2.1), and notice that if we define m = |M | · β1−p and s = 0 if x ≥ 0, 1
otherwise, then

x = (−1)s · m · βe.

• m is called the real significand (or, more simply, the significand of the representation). It has one
digit before the radix point, and at most p − 1 digits after; and

• s is the sign of x .

Notice that for some numbers x , there may exist several possible representations (M, e) or (s,m, e).
Just consider the “toy format”β = 10 and p = 4. In that formatM = 4560 and e = −1, andM = 0456
and e = 0 are valid representations of the number 0.456.

It is frequently desirable to require unique representations. In order to have a unique representation,
one may want to normalize the finite nonzero floating-point numbers by choosing the representation
for which the exponent is minimum (yet larger than or equal to emin). The obtained representation will
be called a normalized representation. Two cases may occur.

• In general, such a representation satisfies 1 ≤ |m| < β, or, equivalently, β p−1 ≤ |M | < β p. In
such a case, one says that x is a normal number.

• Otherwise, one necessarily has e = emin, and the corresponding value x is called a subnormal
number (the term denormal number is often used too). In that case, |m| < 1 or, equivalently,
|M | ≤ β p−1 − 1. Notice that a subnormal number is of absolute value less than βemin : subnormal
numbers are very tiny numbers.

An interesting consequence of that normalization, when the radix β is equal to 2, is that the first
bit of the significand of a normal number must always be “1”, and the first bit of the significand of
a subnormal number must always be “0”. Hence if we have information3 on the normality of x there
is no need to store its first significand bit, and in many computer systems, it is actually not stored
(this is called the “hidden bit” or “implicit bit” convention). Table2.1 gives the basic parameters of
the floating-point systems that have been implemented in various machines. Those figures have been
taken from references [232, 265, 277, 370]. For instance, the largest representable finite number in the
IEEE-754 double-precision/binary64 format [245] is

(
2 − 2−52

)
× 21023 ≈ 1.7976931348623157 × 10308,

3In practice that information is encoded in the exponent field, see Section2.1.6.
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Table 2.1 Basic parameters of various floating-point systems (p, the precision, is the size of the significand, expressed
in number of digits in the radix of the computer system). The “+1” is due to the hidden bit convention. The binary32 and
binary64 formats were called “single precision” and “double precision” in the 1985 release of the IEEE-754 standard.

System β p emin emax max. value

DEC VAX 2 24 −128 126 1.7 · · · × 1038

(D format) 2 56 −128 126 1.7 · · · × 1038

HP 28, 48G 10 12 −500 498 9.9 · · · × 10498

IBM 370 16 6 (24 bits) −65 62 7.2 · · · × 1075

and 3090 16 14 (56 bits) −65 62 7.2 · · · × 1075

IEEE-754 binary32 2 23+1 −126 127 3.4 · · · × 1038

IEEE-754 binary64 2 52+1 −1022 1023 1.8 · · · × 10308

IEEE-754 binary128 2 112+1 −16382 16383 1.2 · · · × 104932

IEEE-754 decimal64 10 16 −383 384 9.999 · · · 9 × 10384

the smallest positive number is

2−1074 ≈ 4.940656458412465 × 10−324,

and the smallest positive normal number is

2−1022 ≈ 2.225073858507201 × 10−308.

Arithmetic based on radix 10 has frequently been used in pocket calculators.4 Also, it is used in
financial calculations, and several decimal formats are specified by the 2008 version of IEEE 754.
Decimal arithmetic remains an object of active study [114, 117, 183, 222, 453]. A Russian computer
named SETUN [72] used radix 3 with digits−1, 0, and 1 (this is called the balanced ternary system). It
was built5 at Moscow University, during the 1960s [275]. Almost all other current computing systems
use base 2. Various studies [55, 95, 286] have shown that radix 2 with the hidden bit convention gives
better accuracy than all other radices (by the way, this does not imply that operations—e.g., divisions or
square roots—cannot benefit from being done in a higher radix inside the arithmetic operators [181]).

2.1.2 Rounding Functions

Let us define a machine number to be a number that can be exactly represented in the floating-point
system under consideration. In general, the sum, the product, and the quotient of two machine numbers
is not a machine number and the result of such an arithmetic operation must be rounded.

In a floating-point system that follows the IEEE-754 standard, the user can choose a rounding
function (also called rounding mode) from:

4A major difference between computers and pocket calculators is that usually computers do much computation between
input and output of data, so that the time needed to perform a radix conversion is negligible compared to the whole
processing time. If pocket calculators used radix 2, they would perform radix conversions before and after almost every
arithmetic operation. Another reason for using radix 10 in pocket calculators is the fact that many simple decimal numbers
such as 0.1 are not exactly representable in radix 2.
5See http://www.computer-museum.ru/english/setun.htm.

http://www.computer-museum.ru/english/setun.htm
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Figure 2.1 Different
possible roundings of a
real number x in a radix-β
floating-point system. In
this example, x > 0.

RU(x)
RZ(x)
RN (x)
RD(x)

x
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• rounding towards −∞: RD(x) is the largest machine number less than or equal to x ;
• rounding towards +∞: RU(x) is the smallest machine number greater than or equal to x ;
• rounding towards 0: RZ(x) is equal to RD(x) if x ≥ 0, and to RU(x) if x < 0;
• rounding to nearest: RN(x) is the machine number that is the closest to x (if x is exactly halfway

between two consecutive machine numbers, the default convention is to return the “even” one, i.e.,
the one whose last significand digit is even—a zero in radix 2).

This is illustrated using the example in Figure2.1.
If the active rounding function is denoted by �, and u and v aremachine numbers, then the IEEE-754

standard [6, 109] requires that the obtained result should always be � (u�v) when computing u�v (�
is+,−,×, or÷). Thus the systemmust behave as if the result were first computed exactly, with infinite
precision, and then rounded. Operations that satisfy this property are called “correctly rounded” (or,
sometimes, “exactly rounded”). There is a similar requirement for the square root. Such a requirement
has a number of advantages:

• it leads to full compatibility6 between computing systems: the same program will give the same
values on different computers;

• many algorithms can be designed that use this property. Examples include performing large precision
arithmetic [22, 231, 389, 423], designing “compensated” algorithms for evaluating with excellent
accuracy the sum of several floating-point numbers [8, 264, 274, 386, 389, 404, 405], or making
decisions in computational geometry [341, 387, 423];

• one can easily implement interval arithmetic [287, 288, 349], or more generally one can get lower
or upper bounds on the exact result of a sequence of arithmetic operations;

• the mere fact that the arithmetic operations become fully specified makes it possible to elaborate
formal proofs of programs and algorithms, which is very useful for certifying the behavior of
numerical software used in critical applications [39, 41–44, 129, 133, 216–220, 315, 339, 340].

In radix-β, precision-p floating-point arithmetic, if an arithmetic operation is correctly rounded and
there is no overflow or underflow7 then the relative error of that operation is bounded by

6At least in theory: one must make sure that the order of execution of the operations is not changed by the compiler, that
there are no phenomenons of “double roundings” due to the possible use of a wider format in intermediate calculations,
and that an FMA instruction is called only if one has decided to use it.
7Let us say, as does the IEEE-754 standard, that an operation underflows when the result is subnormal and inexact.
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1

2
β1−p,

if the rounding function is round to nearest, and

β1−p

with the other rounding functions.
Very useful algorithms that can be proved assuming correct rounding are the error-free transforms

presented in Section2.2.1 (the first ideas that underlie them go back to Møller [346]).
An important property of the various rounding functions defined by the IEEE-754 standard is that

they are monotonic. For instance, if x ≤ y, then RN(x) ≤ RN(y).
In the 1985 version of the IEEE-754 standard, there was no correct rounding requirement for the

elementary functions, probably because it had been believed for many years that correct rounding of
the elementary functions would be much too expensive. The situation has changed significantly in the
recent years [125, 131, 136] and with the 2008 release of the IEEE-754 standard, correct rounding of
some functions becomes recommended (yet not mandatory). These functions are:

ex , ex − 1, 2x , 2x − 1, 10x , 10x − 1,
ln(x), log2(x), log10(x), ln(1 + x), log2(1 + x), log10(1 + x),√

x2 + y2, 1/
√
x, (1 + x)n, xn, x1/n(n is an integer), x y,

sin(πx), cos(πx), arctan(x)/π, arctan(y/x)/π,

sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x), arctan(y/x),
sinh(x), cosh(x), tanh(x), sinh−1(x), cosh−1(x), tanh−1(x).

We analyze the problem of correctly rounding the elementary functions in Chapter12. Another
frequently used notion is faithful rounding: a function is faithfully rounded if the returned result is
always one of the two floating-point numbers that surround the exact result, and is equal to the exact
result whenever this one is exactly representable. Faithful rounding cannot rigourously be called a
rounding since it is not a deterministic function.

The availability of subnormal numbers (see Section2.1.1) is a feature of the IEEE-754 standard
that offers nice properties at the price of a slight complication of some arithmetic operators. It allows
underflow to be gradual (see Figure2.2). The minimum subnormal positive number in the IEEE-754
double-precision/binary64 floating-point format is

2−1074 ≈ 4.94065645841246544 × 10−324.

In a floating-point system with correct rounding and subnormal numbers, the following theorem
holds.

Theorem 1 (Sterbenz Lemma) In a floating-point system with correct rounding and subnormal num-
bers, if x and y are floating-point numbers such that

x/2 ≤ y ≤ 2x,

then x − y is a floating-point number, which implies that it will be computed exactly, with any rounding
function.

http://dx.doi.org/10.1007/978-1-4899-7983-4_12
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0 2emin 2emin +1 2emin +2

0 2emin 2emin +1 2emin +2

aa− b b

aa− b b

Figure 2.2 Above is the set of the nonnegative, normal floating-point numbers (assuming radix 2 and 2-bit significands).
In that set, a − b is not exactly representable, and the floating-point computation of a − b will return 0 with the round
to nearest, round to 0, or round to −∞ rounding functions. Below is the same set with subnormal numbers. Now, a − b
is exactly representable, and the properties a 	= b and a 
 b 	= 0 (where a 
 b denotes the computed value of a − b)
become equivalent.

This result is extremely useful when computing accurate error bounds for some elementary function
algorithms.

The IEEE-754 standard also defines special representations for exceptions:

• NaN (Not a Number) is the result of an invalid arithmetic operation such as 0/0,
√−5, ∞/∞,

+∞ + (−∞), …;
• ±∞ can be the result of an overflow, or the exact result of the division of a nonzero number by

zero; and
• ±0: there are two signed zeroes that can be the result of an underflow, or the exact result of a division

by ±∞.

The reader is referred to [265, 356] for an in-depth discussion on these topics. Subnormal numbers
and exceptions must not be neglected by the designer of an elementary function circuit and/or library.
They may of course be used as input values, and the circuit/library must be able to produce them as
output values when needed.

2.1.3 ULPs

If x is exactly representable in a floating-point format and is not an integer power of the radix β, the
term ulp (x) (for unit in the last place) denotes the magnitude of the last significand digit of x . That
is, if,

x = ±x0.x1x2 · · · xp−1 × βex
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then ulp (x) = βex−p+1. Defining ulp (x) for all reals x (and not only for the floating-point numbers)
is desirable, since the error bounds for functions frequently need to be expressed in terms of ulps.
There are several slightly different definitions in the literature [206, 217, 247, 267, 331, 373]. They
differ when x is very near a power of β, and they sometimes have counterintuitive properties.

In this book, we will use the following definition.

Definition 1 (ulp of a real number in radix-β, precision-p arithmetic of minimum exponent emin) If
x is a nonzero number, |x | ∈ [βe, βe+1), then ulp (x) = βmax(e,emin)−p+1. Furthermore, ulp (0) =
βemin−p+1.

The major advantage of this definition (at least, in radix-2 arithmetic) is that in all cases (even the
most tricky), rounding to nearest corresponds to an error of at most 1/2 ulp of the real value. More
precisely, we have

Property 1 In radix 2, if X is a floating-point number, then

|X − x | <
1

2
ulp (x) ⇒ X = RN(x).

(beware: that property does not always hold in radix-10 arithmetic)

Property 2 For any radix,

X = RN(x) ⇒ |X − x | ≤ 1

2
ulp (x).

We also have,

Property 3 For any radix,

X = RN(x) ⇒ |X − x | ≤ 1

2
ulp (X).

(the differencewith the previous property is thatwehaveused the ulp of the computedvalue).Notice that
ulp (t) is a monotonic function of |t |: if |t1| ≤ |t2| then ulp (t1) ≤ ulp (t2). This has an interesting and
useful consequence: if we know that the result of a correctly rounded (with round-to-nearest rounding
function) arithmetic operation belongs to some interval [a, b], then the rounding error due to that
operation is bounded by

1

2
· max { ulp (a), ulp (b)} = 1

2
· ulp (max{|a|, |b|}) .

2.1.4 Infinitely Precise Significand

Implicitly assuming radix 2, we will extend the notion of significand to all real numbers as follows.
Let x be a real number. If x = 0, then the infinitely precise significand of x equals 0, otherwise, it
equals

x

2
log2 |x |� .

The infinitely precise significand of a nonzero real number has an absolute value between 1 and 2. If
x is a normal floating-point number, then its infinitely precise significand is equal to its significand.
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2.1.5 Fused Multiply–Add Operations

The FMA instruction evaluates expressions of the form ab+ c with one rounding error instead of two
(that is, if ◦ is the rounding function, FMA(a, b, c) = ◦(ab+c)). That instructionwas first implemented
on the IBM RS/6000 processor [235, 348]. It was then implemented on several processors such as the
IBM PowerPC [256], the HP/Intel Itanium [115], the Fujitsu SPARC64 VI, and the STI Cell, and is
available on current processors such as the Intel Haswell and theAMDBulldozer.More importantly, the
FMA instruction is included in the 2008 release of the IEEE-754 standard for floating-point arithmetic
[245], so that within a few years, it will probably be available on most general-purpose processors.

Such an instruction may be extremely helpful for the designer of arithmetic algorithms:

• it facilitates the exact computation of division remainders, which allows the design of efficient
software for correctly rounded division [68, 113, 115, 265, 331, 333];

• it makes the evaluation of polynomials faster and—in general—more accurate: when usingHorner’s
scheme,8 the number of necessary operations (hence, the number of roundings) is halved. This is
extremely important for elementary function evaluation, since polynomial approximations to these
functions are frequently used (see Chapter 3). Markstein, and Cornea, Harrison, and Tang devoted
very interesting books to the evaluation of elementary functions using the fused multiply–add
operations that are available on the HP/Intel Itanium processor [115, 331];

• as noticed by Karp and Markstein [269], it makes it possible to easily get the exact product of two
floating-point variables. More precisely, once we have computed the floating-point product π of two
variables a and b (which is RN(ab) if we assume that the rounding function is round to nearest), one
FMA operation suffices to compute the error of that floating-point multiplication, namely ab − π

(see Section2.2.1).

And yet, as noticed by Kahan [265] a clumsy use (by an unexperienced programmer or a compiler)
of a fusedmultiply–add operationmay lead to problems. Depending on how it is implemented, function

f (x, y) =
√
x2 − y2

may sometimes return an NaN when x = y. Consider the following as an example:

x = y = 1 + 2−52.

In binary64/double-precision arithmetic this number is exactly representable. The binary64 number
that is closest to x2 is

S = 2251799813685249

2251799813685248
= 251 + 1

251
,

and the binary64 number that is closest to S − y2 is

− 1

20282409603651670423947251286016
= −2−104.

8Horner’s scheme consists in evaluating a degree-n polynomial anxn + an−1xn−1 + · · · + a0 as (· · · (((anx + an−1)x +
an−2)x +an−3) · · · )x +a0. This requires n multiplications and n additions if we use conventional operations, or n fused
multiply–add operations. See Chapter5 for more information.

http://dx.doi.org/10.1007/978-1-4899-7983-4_3
http://dx.doi.org/10.1007/978-1-4899-7983-4_5
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Hence, if the floating-point computation of x2 − y2 is implemented as RN(RN(x2) − y × y), then the
obtained result will be less than 0 and computing its square root will generate a NaN, whereas the exact
result is 0. The problem does not occur if we do not use the FMA operation: the rounding functions
are monotonic, so that if |x | ≥ |y| then the computed value of x2 will be larger than or equal to the
computed value of y2.

2.1.6 The Formats Specified by the IEEE-754-2008 Standard for Floating-Point
Arithmetic

Table2.2 gives the widths of the various fields (significand, exponent) and the main parameters of
the binary interchange formats specified by IEEE 754, and Table2.3 gives the main parameters of the
decimal formats. Let us describe the internal encoding of numbers represented in the binary formats
of the Standard (for the internal encodings of decimal numbers, see [356]). The ordering of bits in
the encodings is as follows. The most significant bit is the sign (0 for positive values, 1 for negative
ones), followed by the exponent (represented as explained below), followed by the significand (with
the hidden bit convention: what is actually stored is the “trailing significand,” i.e., the significand
without its leftmost bit). This ordering allows one to compare floating-point numbers as if they were
sign-magnitude integers.

Table 2.2 Widths of the various fields and main parameters of the binary interchange formats of size up to 128 bits
specified by the 754-2008 standard. [245]

IEEE 754-2008 name binary16 binary32 binary64 binary128

Former name N/A Single precision Double precision Quad precision

Storage width 16 32 64 128

Trailing significand
width

10 23 52 112

WE , exponent field
width

5 8 11 15

b, bias 15 127 1023 16383

Precision p 11 24 53 113

emax +15 +127 +1023 +16383

emin −14 −126 −1022 −16382

Largest finite number 65504 2128 − 2104

≈ 3.403 × 1038
21024 − 2971

≈ 1.798 × 10308
216384 − 216271

≈ 1.190 × 104932

Smallest positive
normal number

2−14 ≈ 6.104 × 10−5 2−126

≈ 1.175 × 10−38
2−1022

≈ 2.225 × 10−308
2−16382

≈ 3.362 × 10−4932

Smallest positive
number

2−24 ≈ 5.960 × 10−8 2−149

≈ 1.401 × 10−45
2−1074

≈ 4.941 × 10−324
2−16494

≈ 6.475 × 10−4966

Table 2.3 Main parameters of the decimal interchange formats of size up to 128 bits specified by the 754-2008 standard
[245].

IEEE-754-2008 name decimal32 decimal64 (basic) decimal128 (basic)

p 7 16 34

emax +96 +384 +6144

emin −95 −383 −6143
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The exponents are represented using a bias. Assume the exponent is stored with WE bits, and
regard these bits as the binary representation of an unsigned integer Ne. Unless Ne = 0 (which
corresponds to subnormal numbers and the two signed zeros), the (real) exponent of the floating-point
representation is Ne − b, where b = 2WE−1 − 1 is the bias. The value of that bias b is given in
Table2.2. Ne is called the biased exponent. All actual exponents from emin to emax are represented by
Ne between 1 and 2WE − 2 = 1111 · · · 1102. With WE bits, one could represent integers from 0 to
2WE −1 = 1111 · · · 1112. The two extremal values 0 and 2WE −1, not needed for representing normal
numbers, are used as follows.

• The extremal value 0 is reserved for subnormal numbers and ±0. The bit encoding for a zero is the
appropriate sign (0 for +0 and 1 for −0), followed by a string of zeros in the exponent field as well
as in the significand field.

• The extremal value 2WE − 1 is reserved for infinities and NaNs:

– The bit encoding for infinities is the appropriate sign, followed by Ne = 2WE − 1 (i.e., a string
of ones) in the exponent field, followed by a string of zeros in the significand field.

– The bit encoding for NaNs is an arbitrary sign, followed by 2WE − 1 (i.e., a string of ones) in
the exponent field, followed by any bit string different from 000 · · · 00 in the significand field.
Hence, there are several possible encodings for NaNs. This allows the implementer to distinguish
between quiet and signaling NaNs (see [6, 245, 356] for a definition).

This encoding of binary floating-point numbers has a nice property: one obtains the successor of a
floating-point number by considering its binary representation as the binary representation of an integer,
and adding one to that integer.

2.1.7 Testing Your Computational Environment

The various parameters (radix, significand and exponent lengths, rounding functions…) of the floating-
point arithmetic of a computing system may strongly influence the result of a numerical program. An
amusing example of this is the following program, given by Malcolm [204, 330], that returns the radix
of the floating-point system being used (beware: an aggressively “optimizing” compiler might decide
to replace ((A+1.0)-A)-1.0 by 0).

A := 1.0;
B := 1.0;
while ((A+1.0)-A)-1.0 = 0.0 do A := 2*A;
while ((A+B)-A)-B <> 0.0 do B := B+1.0;
return(B)

Similar—yet much more sophisticated—algorithms are used in rather old inquiry programs such
as MACHAR [98] and PARANOIA [270], that provide a means for examining your computational
environment. Other programs for checking conformity of your computational system to the IEEE
Standard for Floating Point Arithmetic are Hough’s UCBTEST (available at http://www.netlib.org/fp/
ucbtest.tgz), and a more recent tool presented by Verdonk, Cuyt and Verschaeren [462, 463].

http://www.netlib.org/fp/ucbtest.tgz
http://www.netlib.org/fp/ucbtest.tgz
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2.2 Advanced Manipulation of FP Numbers

2.2.1 Error-Free Transforms: Computing the Error of a FP Addition or
Multiplication

Let a and b be two precision-p floating-point numbers, and define s = RN(a+b), i.e., a+b correctly
rounded to the nearest precision-p floating-point number. It can be shown that if the addition of a and
b does not overflow, then the error of that floating-point addition, namely (a + b) − s, is a precision-p
floating-point number.9 Interestingly enough, that error can be computed by very simple algorithms,
as shown below.

Theorem 2 (Fast2Sum algorithm) ([148], and Theorem C of [275], p. 236). Assume the radix β of the
floating-point system being considered is less than or equal to 3, and that the used arithmetic provides
correct rounding with rounding to the nearest. Let a and b be floating-point numbers, and assume that
the exponent of a is larger than or equal to that of b. Algorithm 1 below computes two floating-point
numbers s and t that satisfy:

• s + t = a + b exactly;
• s is the10 floating-point number that is closest to a + b.

Algorithm 1 The Fast2Sum algorithm [148].
s ← RN(a + b)
z ← RN(s − a)

t ← RN(b − z)

Algorithm 1 requires that the exponent of a should be larger than or equal to that of b. That condition
is satisfied when |a| ≥ |b|. When we do not have preliminary information on a and b that allows us to
make sure that the condition is satisfied, usingAlgorithm 1 requires a preliminary comparison of |a| and
|b|, followed by a possible swap of these variables. In most modern architectures, this comparison and
this swap may significantly hinder performance, so that in general, it is preferable to use Algorithm 2
below, which gives a correct result whatever the ordering of |a| and |b| is.

Algorithm 2 The 2Sum algorithm.
s ← RN(a + b)
a′ ← RN(s − b)
b′ ← RN(s − a′)
δa ← RN(a − a′)
δb ← RN(b − b′)
t ← RN(δa + δb)

9Beware: that property is not always true with rounding functions different fromRN. The error of a floating-point addition
with one of these other rounding functions may not sometimes be exactly representable by a floating-point number of
the same format.
10As a matter of fact there can be two such numbers (if a + b is the exact middle of two consecutive floating-point
numbers).
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We have [41, 275, 346],

Theorem 3 If a and b are normal floating-point numbers, then for any radix β, provided that no
overflow occurs, the values returned by Algorithm 2 satisfy a + b = s + t .

One can show that Algorithm 2 is optimal in terms of number of operations [280]. Algorithms 1
and 2 make it possible to compute the error of a floating-point addition. Interestingly enough, it is also
possible to compute the error of a floating-point multiplication. Unless overflow occurs, Algorithm 3
below returns two values p and ρ such that p is the floating-point number that is closest to ab, and
p + ρ = ab exactly, provided that ea + eb ≥ emin + p − 1 (where emin is the minimum exponent of
the floating-point format being used, ea and eb are the exponents of a and b, and p is the precision).
It requires one multiplication and one fused multiply–add (FMA). Although I present it with the
round-to-nearest function, it works as well with the other rounding functions.

Algorithm 3 The Fast2MultFMA algorithm.

π ← RN(ab);
ρ ← RN(ab − π)

Performing a similar calculation without a fused multiply–add operation is possible [148] but
requires 17 floating-point operations instead of 2. Some other interesting arithmetic functions are
easily implementable when a fused multiply–add is available [45, 67, 253].

Algorithms 1, 2, and 3 can be used for building compensated algorithms, i.e., algorithms in which
the errors of “critical” operations are computed to be later on “re-injected” in the calculation, in order
to partly compensate for these errors. For example, several authors have suggested “compensated
summation” algorithms (see for instance [261, 367, 386]). Another example is the following (notice
that the first two lines are nothing but Algorithm 3):

Algorithm 4 Kahan’s way to compute x = ad − bc with fused multiply–adds.
w ← RN(bc)
e ← RN(w − bc) // this operation is exact: e = ŵ − bc.
f ← RN(ad − w)

x ← RN( f + e)
return x

In [253], it is shown that in precision-p binary floating-point arithmetic, the relative error of
Algorithm 4 is bounded by 2−p+1, and that the error in ulps is bounded by 3/2 ulps.

2.2.2 Manipulating Double-Word or Triple-Word Numbers

As we will see in Chapter3, the elementary functions are very often approximated by polynomials.
Hence, an important part of the function evaluation reduces to the evaluation of a polynomial. This
requires a sequence of additions andmultiplications (or a sequence of FMAs). However, when wewant
a very accurate result, it may not suffice to represent the coefficients of the approximating polynomial
in the “target format.”11 Furthermore, to avoid a too large accumulation of rounding errors, it may

11Throughout the book, we call “target format” the floating-point format specified for the returned result, and “target
precision” its precision.

http://dx.doi.org/10.1007/978-1-4899-7983-4_3
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sometimes be necessary to represent intermediate variables of the polynomial evaluation algorithmwith
a precision larger than the target precision. All this is easily handled when a wider floating-point format
is available in hardware. When this is not the case, one can represent some high-precision variables
as the unevaluated sum of two or three floating-point numbers. Such unevaluated sums are called
“double-word” or “triple-word” numbers. Since the floating-point format used for implementing such
numbers is almost always the binary64 format, previously called “double precision,” these numbers
are often called “double double” or “triple double” numbers in the literature.

Algorithms 1, 2, and 3 are the basic building blocks that allow one to manipulate double-word or
triple-word numbers. For instance, Dekker’s algorithm for adding two double-word numbers (xh, x�)

and (yh, y�) is shown in Algorithm 5 below.

Algorithm 5 Dekker’s algorithm for adding two double-word numbers (xh, x�) and (yh, y�) [148].
if |xh | ≥ |yh | then
(rh, r�) ← Fast2Sum(xh, yh)
s ← RN(RN(r� + y�) + x�)

else
(rh, r�) ← Fast2Sum(yh, xh)
s ← RN(RN(r� + x�) + y�)
end if
(th, t�) ← Fast2Sum(rh, s)
return (th, t�)

The most accurate algorithm for double-word addition in Bailey’s QD library, as presented in [317],
is Algorithm 6 below.

Algorithm 6 The most accurate algorithm implemented in Bailey’s QD library for adding two double-
word numbers x = (xh, x�) and y = (yh, y�) [317].

(sh, s�) ← 2Sum(xh , yh)
(th, t�) ← 2Sum(x�, y�)
c ← RN(s� + th)
(vh, v�) ← Fast2Sum(sh, c)
w ← RN(t� + v�)

(zh, z�) ← Fast2Sum(vh, w)

return (zh, z�)

Assuming |x�| ≤ 2−p · |x |, where p is the precision of the binary floating-point arithmetic being
used, one can show that the relative error of Algorithm 6 is bounded by

2−2p · (
3 + 13 · 2−p) ,

(the bound is valid provided that p ≥ 3, which always holds in practice).
Bailey’s algorithm for multiplying a double-word number by a floating-point number is given below

(here, we assume that an FMA is available, so that we can use Algorithm 3 to represent the product of
two floating-point numbers by a double-word number).
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Algorithm7The algorithm implemented in Bailey’s QD library formultiplying a double-word number
x = (xh, x�) by a floating-point number y [317]. Here, we assume that an FMA instruction is available,
so that we can use the Fast2MultFMA algorithm (Algorithm 3).

(ch, c�1) ← Fast2MultFMA(xh, y)
c�2 ← RN(x� · y)
(th, t�1) ← Fast2Sum(ch, c�2)

t�2 ← RN(t�1 + c�1)

(zh, z�) ← Fast2Sum(th, t�2)
return (zh, z�)

Assuming |x�| ≤ 2−p · |x |, one can show that the relative error of Algorithm 7 is bounded by

2 · 2−2p

Lauter [300] gives basic building blocks for a triple-word arithmetic. These blocks have been used
for implementing critical parts in the CRLIBM library for correctly rounded elementary functions in
binary64/double-precision arithmetic (seeSection14.4). For instance, here is one ofLauter’s algorithms
for adding two triple-word numbers and obtaining the result as a triple-word number.

Algorithm 8 An algorithm suggested by Lauter [300] for adding two triple-word numbers a =
(ah, am, a�) and b = (bh, bm, b�)—a and b must satisfy the conditions of Theorem 4 below.

(rh, t1) ← Fast2Sum(ah, bh)
(t2, t3) ← 2Sum(am , bm)

(t7, t4) ← 2Sum(t1, t2)
t6 ← RN(a� + b�)

t5 ← RN(t3 + t4)
t8 ← RN(t5 + t6)
(rm , r�) ← 2Sum(t7, t8)
return (rh, rm , r�)

Lauter showed the following result.

Theorem 4 If Algorithm 8 is run in binary64 arithmetic with two input triple-word numbers a =
(ah, am, a�) and (b = (bh, bm, b�) satisfying:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|bh | ≤ (3/4) · |ah |
|am | ≤ 2−α0 · |ah |, with α0 ≥ 4
|a�| ≤ 2−αu · |am |, with αu ≥ 1
|bm | ≤ 2−β0 · |bh |, with β0 ≥ 4
|b�| ≤ 2−βu · |bm |, with βu ≥ 1

then the returned result (rh, rm, r�) satisfies

⎧⎪⎪⎨
⎪⎪⎩

rh + rm + r� = ((ah + am + a�) + (bh + bm + b�)) · (1 + ε),

with |ε| ≤ 2−min(α0+αu ,β0+βu)−47 + 2−min(α0,β0)−98,

|rm | ≤ 2−min(α0,β0)+5 · |rh |,
|r�| ≤ 2−53 · |rm |.

http://dx.doi.org/10.1007/978-1-4899-7983-4_14
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The following is one of Lauter’s algorithms for multiplying two double-word numbers and getting
the result as a triple-word number.

Algorithm 9 An algorithm suggested by Lauter [300] for multiplying two double-word numbers
a = (ah, a�) and b = (bh, b�), assuming a binary64 underlying arithmetic, and obtaining the product as
a triple-word number—a and bmust satisfy the conditions of Theorem 5 below.ADD22 isAlgorithm 5.

(rh, t1) ← Fast2MultFMA(ah , bh)
(t2, t3) ← Fast2MultFMA(ah, b�)

(t4, t5) ← Fast2MultFMA(a�, bh)
t6 ← RN(a�b�)

(t7, t8) ← ADD22((t2, t3), (t4, t5))
(t9, t10) ← 2Sum(t1, t6)
(rm , r�) ← ADD22((t7, t8), (t9, t10))
return (rh, rm , r�)

Lauter showed the following result.

Theorem 5 If Algorithm 9 is run in binary64 arithmetic with two input double-word numbers a =
(ah, a�) and b = (bh, b�) satisfying |a�| ≤ 2−53|ah | and |b�| ≤ 2−53|bh |, then the returned result
(rh, rm, r�) satisfies ⎧⎪⎪⎨

⎪⎪⎩

rh + rm + r� = ((ah + a�) · (bh + b�)) · (1 + ε),

with |ε| ≤ 2−149,

|rm | ≤ 2−48 · |rh |,
|r�| ≤ 2−53 · |rm |.

2.2.3 An Example that Illustrates What We Have Learnt so Far

The following polynomial, generated by the Sollya tool (see Section4.2) approximates function cos(x),
for x ∈ [−0.0123,+0.0123] (that domain is a tight enclosure of [−π/256,+π/256]), with an error
less than 1.9 × 10−16:

P(x) = 1 + a2x
2 + a4x

4,

where a2 and a4 are the following binary64/double-precision numbers:

{
a2 = −2251799813622611 × 2−52 ≈ −0.499999999986091
a4 = 1501189276987675 × 2−55 ≈ 0.04166637249080271

Here we wish to have a tight upper bound on the error committed if we evaluate P as follows
(Algorithm 10) in binary64/double-precision arithmetic. We wish to obtain the result as a double-word
number (sh, s�).

Algorithm 10 This algorithm returns an approximation to P(x) as a double-word number (sh, s�). We
assume that an FMA instruction is available to compute RN(a2 + a4y) in line 2.
y ← RN(x2)
s1 ← RN(a2 + a4y)
s2 ← RN(s1y)
(sh, s�) ← Fast2Sum(1, s2)
return (sh, s�)

http://dx.doi.org/10.1007/978-1-4899-7983-4_4
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Since roundings are monotonic functions, we have

0 ≤ y ≤ RN(0.01232).

Let us call by that bound, i.e.,

by = 1395403955455759

9223372036854775808
.

We have ulp (y) ≤ ulp (by) = 2−65, therefore, since the computation of y is the result of a
correctly rounded floating-point multiplication:

|y − x2| ≤ 1

2
ulp (by) = 2−66. (2.3)

So we have bounded the error committed at the first line of Algorithm 10. Let us now deal with the
second line. We have

a2 + a4y ∈ [a2, a2 + a4by]

therefore
s1 = RN(a2 + a4y)

∈ [RN(a2),RN(a2 + a4by)] =
[
a2,−4503542848513793

253

]
.

(2.4)

Thus ulp (s1) ≤ ulp (max{|a2|, |a2 + a4by |}) = ulp (|a2|) = 2−54, from which we deduce

|s1 − (a2 + a4y)| ≤ 2−55.

This gives
|s1 − (a2 + a4x2)| ≤ |s1 − (a2 + a4y)| + |(a2 + a4y) − (a2 + a4x2)|

≤ 2−55 + a4 · |y − x2|,

from which we deduce, using (2.3),

|s1 − (a2 + a4x
2)| ≤ 2−55 + a4 · 2−66. (2.5)

We are now ready to tackle the third line of the algorithm. We have,

s1y ∈
[
a2y,−4503542848513793

253
· y

]
,

which implies,
s1y ∈ [

a2 · by, 0
]
,

therefore,
s2 = RN(s1 · y) ∈ [

RN
(
a2 · by

)
, 0

]
,
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therefore,

s2 ∈
[
−5581615821667775

266
, 0

]
. (2.6)

from this we deduce that ulp (s2) ≤ 2−66, which implies

|s2 − s1y| ≤ 2−67. (2.7)

We now have

|s2 − (a2x2 + a4x4)| ≤ |s2 − s1y| + |s1y − s1x2| + |s1x2 − (a2x2 + a4x4)|
≤ 2−67 + |s1| · |y − x2| + x2 · |s1 − (a2 + a4y)|
≤ 2−67 + |a2| · 2−66 + 0.01232 · (2−55 + a4 · 2−66)

using (2.3), (2.4), and (2.5).
Finally, (2.6) implies |s2| < 1, therefore Algorithm Fast2Sum is legitimately used at line 4 of the

algorithm, so that sh + s� = 1 + s2. We can therefore deduce a bound on the error committed when
evaluating polynomial P using Algorithm 10:

|(sh + s�) − P(x)| ≤ 2−67 + |a2| · 2−66 + 0.01232 · (2−55 + a4 · 2−66)

≤ 1.77518 × 10−20.
(2.8)

The obtained bound (2.8) is rather tight: for instance, if we apply Algorithm 10 to the input value
x = 1772616811707781/257, the evaluation error is 1.76697 × 10−20.

The “toy” example we have considered here can be generalized to the evaluation of polynomials
of larger degree, possibly using different evaluation schemes (see Chapter 5): the underlying idea is
to compute interval enclosures of all intermediate variables, which allows to compute bounds on the
rounding errors of the arithmetic operations. It can be adapted to compute relative error bounds instead
of absolute ones. However, the idea of computing evaluation errors as we just have done here has some
limitations:

• the process was already tedious and error prone with our toy example. In practical cases (degrees
of polynomials that can be as large as a few tens, with some coefficients that can be double-word
numbers), it may become almost impractical. Furthermore, to avoid inherent overestimations of
enclosures that occur in interval arithmetic, one may need to split the input domain into many
subintervals and redo the calculation for each of them;

• as we will see in Chapter5, when some parallelism is available on the target processor (pipelined
operators, several FPUs)—which is always the case with recent processors—many different eval-
uation schemes are possible (when the degree of the polynomial is large, the number of possible
schemes is huge). In general, choosing which evaluation scheme will be implemented results from a
compromise between the latency or throughput and accuracy. To find a good compromise, one may
wish to get, in reasonable time, a tight bound on the evaluation error for several tens of evaluation
schemes;

• if the function we are implementing is to be used in critical applications, one needs confidence in
the obtained error bounds, which is not so obvious when they are derived from long and tedious
calculations. One may even wish certified error bounds.

http://dx.doi.org/10.1007/978-1-4899-7983-4_5
http://dx.doi.org/10.1007/978-1-4899-7983-4_5
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These remarks call for an automation of the calculation of error bounds for small “straight-line”
numerical programs (such as those used for evaluating elementary functions), and for the possibility of
using proof checkers for certifying these bounds. These needs are fulfilled by the Gappa tool, presented
in the next section.

2.2.4 The GAPPA Tool

Thanks to the IEEE-754 standard, we now have an accurate definition of floating-point formats and
operations. This allows the use of formal proofs to verify pieces of mathematical software. For in-
stance, Harrison used HOL Light to formalize floating-point arithmetic [217] and check floating-point
trigonometric functions [218] for the Intel-HP IA64 architecture. Russinoff [406] used the ACL2
prover to check the AMD-K7 Floating-Point Multiplication, Division, and Square Root instructions.
Boldo, Daumas and Théry use the Coq proof assistant to formalize floating-point arithmetic and prove
properties of arithmetic algorithms [42, 315].

The Gappa tool [128, 339] can be downloaded at http://gappa.gforge.inria.fr. It was designed by
Melquiond to help to prove properties of small (up to a few hundreds of operations) yet complicated
floating-point programs. Typical useful properties Gappa helps to prove are the fact that some value
stays within a given range (which is important in many cases, for instance if we wish to guarantee that
there will be no overflow), or that it is computed with a well-bounded relative error. The paper [134]
explains how Gappa has been used to certify functions of the CRLIBM library of correctly rounded
elementary functions. Gappa uses interval arithmetic, a database of rewriting rules, and hints given
by the user to prove a property, and generates a formal proof that can be mechanically checked by an
external proof checker. This was considered important by the authors of CRLIBM: as explained by de
Dinechin et al. [134], in the first versions of the library, the complete paper and pencil proof of a single
function required tens of pages, which inevitably cast some doubts on the trustability of the proof.

The following Gappa file automatically computes a bound on the error committed when eval-
uating the polynomial P of the previous section using Algorithm 10, with an input value in
[−0.0123,+0.0123]. It is made up of three parts: the first one describes the numerical algorithm,
the second one describes the exact value we are approximating, and the third one describes the theo-
rem we wish to prove. For more complex algorithms, we may need a fourth part that describes hints
given to Gappa.

@RN = float<ieee_64,ne>;
# defines RN as round-to-nearest in binary64 arithmetic

x = RN(xx);
a2 = -2251799813622611b-52;
a4 = 1501189276987675b-55;

# description of the program

y RN = x * x;
# now, we describe the action of the FMA
s1beforernd = a2 + a4*y;
s1 = RN(s1beforernd);
s2 RN = s1*y;
s = 1 + s2; # no rounding: Fast2Sum is an exact transformation

# description of the exact value we are approximating
# convention: an "M" as a prefix of the names of "exact" variables

http://gappa.gforge.inria.fr
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My = x * x;
Ms1 = a2 + a4 * My;
Ms2 = Ms1 * My;
Ms = 1 + Ms2;
epsilon = (Ms-s);

# description of what we want to prove

{
# input hypothesis
|x| <= 1.23e-02

->
# goal to prove
|epsilon| in ?
/\ |s2| <= 1

# first line of goal: bound we wish to obtain
# second line: necessary to allow one to use Fast2Sum
}

When running this file with Gappa, we obtain

Results:
|epsilon| in [0, 94384511554069319b-122 {1.77518e-20, 2ˆ(-65.6106)}]

Concerning the first goal |epsilon| in ?, Gappa found the same error bound as the one we have
computed in the previous section (which is not surprising: it probably uses the same method). There is
no answer to our second goal |s2|<= 1 which, in Gappa’s syntax, just means that the answer was
true.

For more complex programs, the way we have written the previous Gappa file is dangerous. We
wanted to have an estimate of the error committedwhen evaluating 1+a2x2+a4x4 usingAlgorithm 10.
Imagine we have committed an error in the description of the program (hence quite possibly in the
program itself), and that we have written

s1beforernd = a2 + a4*x;

instead of

s1beforernd = a2 + a4*y;

since the part of the Gappa file that describes the exact value was just obtained by directly rewriting,
without roundings, the description of the program, we would very likely have also written

Ms1 = a2 + a4 * x;

instead of

Ms1 = a2 + a4 * My;

so that Gappa would have concluded that the computation is very accurate, although we do not at all
compute what we wished to compute! The solution to that problem is to have a very simple description
of the exact value, as close as possible to the mathematical definition and as independent as possible
from the algorithm being used. We could for instance replace the four lines that describe the exact
value by

Ms = 1 + a2*x*x + a4*x*x*x*x;

Unfortunately, if we just do that, we obtain a poor error bound. Gappa returns
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Results:
|epsilon| in [0, 174426593954067b-60 {0.000151291, 2ˆ(-12.6904)}]

The solution is to give a hint toGappa, i.e., to explain how themathematical definition and the algorithm
are related. This is done very simply, just by adding the line

Ms -> 1 + (a2 + a4*(x*x))*(x*x);

Gappa will try to check that the expressions 1 + a2*x*x + a4*x*x*x*x and 1 + (a2 +
a4*(x*x))*(x*x) are equivalent, warn us if it does not succeed, and use the hint to compute a
much better error bound, very close to the first one:

Results:
|epsilon| in [0, 94391651810570331b-122 {1.77531e-20, 2ˆ(-65.6105)}]

Hence, our final Gappa file is as follows.

@RN = float<ieee_64,ne>;
# defines RN as round to the nearest in binary64 arithmetic

x = RN(xx);
a2 = -2251799813622611b-52;
a4 = 1501189276987675b-55;

# description of the program

y RN = x * x;
# now, we describe the action of the FMA
s1beforernd = a2 + a4*y;
s1 = RN(s1beforernd);
s2 RN = s1*y;
s = 1 + s2; # no rounding: Fast2Sum is an exact transformation

# description of the exact value we are approximating
# convention: an "M" as a prefix of the names of "exact" variables

Ms = 1 + a2*x*x + a4*x*x*x*x;
epsilon = (Ms-s);

# description of what we want to prove

{
# input hypothesis
|x| <= 1.23e-02

->
# goal to prove
|epsilon| in ?
/\ |s2| <= 1

# first line of goal: bound we wish to obtain
# second line: necessary to allow use of Fast2Sum

}

# Now some hints to help Gappa

Ms -> 1 + (a2 + a4*(x*x))*(x*x);

As we can see, compared to our approach of the previous section, Gappa frees us from long and
error-prone calculations. Furthermore, once the initial Gappa input file is written, small modifications
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allow one to easily explore variants of the evaluation scheme. The most important issue, however, is
that if called with option -Bcoq, Gappa generates a formal proof of the returned result. That proof
can then be verified by the Coq proof checker.12

2.2.5 Maple Programs that Compute binary32 and binary64 Approximations

The following Maple programs implement the round-to-nearest-even rounding functions in binary32/
single-precision and binary64/double-precision. They compute the binary32 and binary64 floating-
point numbers that are closest to t for any real number t (and they use the “round-to-nearest ties to
even” tie-breaking rule).

RN function, binary32 arithmetic
nearest_binary32 := proc(xx)
local x, sign, logabsx, exponent, mantissa, infmantissa, powermin,
expmin, powermax, expmax, powermiddle, expmiddle;
Digits := 100;
x := evalf(xx);
if (x=0) then sign, exponent, mantissa := 1, -126, 0
else

if (x < 0) then sign := -1
else sign := 1
fi:
x := abs(x);
if x >= 2ˆ(127)*(2-2ˆ(-24)) then mantissa := infinity; exponent := 127
else if x <= 2ˆ(-150) then mantissa := 0; exponent := -126

else
if x <= 2ˆ(-126) then exponent := -126
else

# x is between 2ˆ(-126) and 2ˆ(128)
powermin := 2ˆ(-126); expmin := -126;
powermax := 2ˆ128; expmax := 128;
while (expmax-expmin > 1) do

expmiddle := round((expmax+expmin)/2);
powermiddle := 2ˆexpmiddle;
if x >= powermiddle then

powermin := powermiddle;
expmin := expmiddle

else
powermax := powermiddle;
expmax := expmiddle

fi
od;

# now, expmax - expmin = 1
# and powermin <= x < powermax
# powermin = 2ˆexpmin
# and powermax = 2ˆexpmax
# so expmin is the exponent of x

exponent := expmin;
fi;
infmantissa := x*2ˆ(23-exponent);
if frac(infmantissa) <> 0.5 then mantissa := round(infmantissa)

else
mantissa := floor(infmantissa);
if type(mantissa,odd) then mantissa := mantissa+1 fi

12Coq can be downloaded at https://coq.inria.fr.

https://coq.inria.fr
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fi;
mantissa := mantissa*2ˆ(-23);

fi;
fi;

fi;
sign*mantissa*2ˆexponent;
end:

RN function, binary64 arithmetic

nearest_binary64 := proc(xx)
local x, sign, logabsx, exponent, mantissa, infmantissa,
powermin, expmin, powermax,expmax, powermiddle, expmiddle;
Digits := 100;
x := evalf(xx);
if (x=0) then sign, exponent, mantissa := 1, -1022, 0
else

if (x < 0) then sign := -1
else sign := 1
fi:
x := abs(x);
if x >= 2ˆ(1023)*(2-2ˆ(-53)) then mantissa := infinity; exponent := 1023
else if x <= 2ˆ(-1075) then mantissa := 0; exponent := -1022

else
if x <= 2ˆ(-1022) then exponent := -1022
else

# x is between 2ˆ(-1022) and 2ˆ(1024)
powermin := 2ˆ(-1022); expmin := -1022;
powermax := 2ˆ1024; expmax := 1024;
while (expmax-expmin > 1) do

expmiddle := round((expmax+expmin)/2);
powermiddle := 2ˆexpmiddle;
if x >= powermiddle then

powermin := powermiddle;
expmin := expmiddle

else
powermax := powermiddle;
expmax := expmiddle

fi
od;

# now, expmax - expmin = 1
# and powermin <= x < powermax
# powermin = 2ˆexpmin
# and powermax = 2ˆexpmax
# so expmin is the exponent of x

exponent := expmin;
fi;
infmantissa := x*2ˆ(52-exponent);
if frac(infmantissa) <> 0.5 then mantissa := round(infmantissa)

else
mantissa := floor(infmantissa);
if type(mantissa,odd) then mantissa := mantissa+1 fi

fi;
mantissa := mantissa*2ˆ(-52);

fi;
fi;

fi;
sign*mantissa*2ˆexponent;
end:
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The following programs evaluates ulp (t) for any real number t , in binary32 and binary64 floating-
point arithmetic.

ULP function, binary32 arithmetic

ulp_in_binary_32 := proc(t)
local x, res, expmin, expmax, expmiddle;
x := abs(t);
if x < 2ˆ(-125) then res := 2ˆ(-149)

else if x > (1-2ˆ(-24))*2ˆ(128) then res := 2ˆ104
else

expmin := -125; expmax := 128;
# x is between 2ˆexpmin and 2ˆexpmax

while (expmax-expmin > 1) do
expmiddle := round((expmax+expmin)/2);
if x >= 2ˆexpmiddle then

expmin := expmiddle
else expmax := expmiddle
fi;

od;
# now, expmax - expmin = 1
# and 2ˆexpmin <= x < 2ˆexpmax

res := 2ˆ(expmin-23)
fi;
fi; res;
end:

ULP function, binary64 arithmetic

ulp_in_binary_64 := proc(t)
local x, res, expmin, expmax, expmiddle;
x := abs(t);
if x < 2ˆ(-1021) then res := 2ˆ(-1074)

else if x > (1-2ˆ(-53))*2ˆ(1024) then res := 2ˆ971
else

expmin := -1021; expmax := 1024;
# x is between 2ˆexpmin and 2ˆexpmax

while (expmax-expmin > 1) do
expmiddle := round((expmax+expmin)/2);
if x >= 2ˆexpmiddle then

expmin := expmiddle
else expmax := expmiddle
fi;

od;
# now, expmax - expmin = 1
# and 2ˆexpmin <= x < 2ˆexpmax

res := 2ˆ(expmin-52)
fi;
fi:
res;
end:

2.2.6 The Future of Floating-Point Arithmetic

Floating-point arithmetic, as it is known nowadays, results from a compromise between several require-
ments, in terms of range, accuracy, ease of use, ease of implementation, ease of verification/certification,
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speed, memory consumption…. As technology evolves, many parameters involved in that compromise
change with time. A simple example is the ratio between the delay of a memory access and the delay
of an arithmetic operation. This ratio has considerably increased during the last years. Ultimately, this
evolution will almost certainly lead to changes in the way we represent and manipulate real numbers
on computers. However, it is difficult to forecast the magnitude of these changes: will we use slightly
modified versions of our current floating-point systems, or will we use very different number systems?
Over the years, various alternatives to conventional floating-point arithmetic have been suggested: ta-
pered floating-point arithmetic [13, 350], level index arithmetic [91, 369], logarithmic number systems
[272, 441], slash number systems [344], etc. Recently, Gustafson [211] suggested an interesting variant
of tapered floating-point arithmetic, called the Unum number system, with an “exact” bit added to the
representation of the numbers, and a subtle interval interpretation of the nonexact representations.

2.3 Redundant Number Systems

In general, when we represent numbers in radix r , we use the digits 0, 1, 2, … r − 1. And yet,
sometimes, number systems using a different set of digits naturally arise. In 1840, Cauchy suggested
the use of digits−5 to+5 in radix 10 to simplify multiplications [73]. Booth recoding [47] (a technique
sometimes used by multiplier designers) generates numbers represented in radix 2, with digits −1, 0,
and +1. Digit-recurrence algorithms for division and square root [179, 399] also generate results in a
“signed-digit” representation.

Some of these exotic number systems allow carry-free addition. This is what we are going to
investigate in this section.

First, assume that we want to compute the sum s = snsn−1sn−2 . . . s0 of two integers x =
xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0 represented in the conventional binary number system.
By examining the well-known equation that describes the addition process (“∨” is the boolean “or”
and “⊕” is the “exclusive or”):

c0 = 0

si = xi ⊕ yi ⊕ ci
ci+1 = xi yi ∨ xi ci ∨ yi ci

(2.9)

we see that there is a dependency relation between ci , the incoming carry at position i , and ci+1. This
does not mean that the addition process is intrinsically sequential, and that the sum of two numbers
is computed in a time that grows linearly with the size of the operands: the addition algorithms
and architectures proposed in the literature [180, 191, 277, 370, 378] and implemented in current
microprocessors are much faster than a straightforward, purely sequential, implementation of (2.9).
Nevertheless, the dependency relation between the carries makes a fully parallel addition impossible
in the conventional number systems.

2.3.1 Signed-Digit Number Systems

In 1961, Avizienis [12] studied different number systems called signed-digit number systems. Let us
assume that we use radix r . In a signed-digit number system, the numbers are no longer represented
using digits between 0 and r − 1, but with digits between −a and a, where a ≤ r − 1. Every number
is representable in such a system, if 2a ≥ r − 1. For instance, in radix 10 with digits between −5 and
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Figure 2.3 Computation
of 153120 + 112616 using
Avizienis’ algorithm in
radix r = 10 with a = 6.

xi 1 5 3 1 2 0

yi 1 1 2 6 1 6

xi + yi 2 −6 1 7 −1 −6

ti+1 0 −1 0 1 0 −1

wi 2 4 1 −3 −1 4

si 1 4 2 3 2 4

+5, every number is representable. The number 15725 can be represented by the digit chain 24325
(we use 4 to represent the digit −4); i.e., 15725 = 2× 104 + (−4)× 103 + (−3)× 102 + 2× 101 + 5.

The same number can also be represented by the digit chain 24335. If 2a ≥ r , then some numbers
have several possible representations, which means that the number system is redundant. As shown
later, this is an important property.

Avizienis also proposed addition algorithms for these number systems. Algorithm 11 performs the
addition of two n-digit numbers x = xn−1xn−2 · · · x0 and y = yn−1yn−2 · · · y0 represented in radix r
with digits between −a and a, where a ≤ r − 1 and13 2a ≥ r + 1.

Algorithm 11 Avizienis’ algorithm
Input : x = xn−1xn−2 · · · x0 and y = yn−1yn−2 · · · y0
Output : s = snsn−1sn−2 · · · s0 = x + y

1. in parallel, for i = 0, . . . , n − 1, compute ti+1 (carry) and wi (intermediate sum) satisfying:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ti+1 =

⎧
⎪⎨
⎪⎩

+1 if xi + yi ≥ a

0 if −a + 1 ≤ xi + yi ≤ a − 1

−1 if xi + yi ≤ −a

wi = xi + yi − r × ti+1.

(2.10)

2. in parallel, for i = 0, . . . , n, compute si = wi + ti , with wn = t0 = 0.

By examining the algorithm, we can see that the carry ti+1 does not depend on ti . There is no
longer any carry propagation: all digits of the result can be generated simultaneously. The conditions
“2a ≥ r +1” and “a ≤ r −1” cannot be simultaneously satisfied in radix 2. Nevertheless, it is possible
to perform parallel, carry-free additions in radix 2 with digits equal to −1, 0, or 1, by using another
algorithm, also due to Avizienis (or by using the borrow-save adder presented in the following).

Figure2.3 presents an example of the execution of Avizienis’ algorithm in the case r = 10, a = 6.
Redundant number systems are used inmany instances: recoding ofmultipliers, quotients in division

and division-like operations, online arithmetic [182], etc. Redundant additions are commonly used
within arithmetic operators such as multipliers and dividers (the input and output data of such operators
are represented in a nonredundant number system, but the internal calculations are performed in
a redundant number system). For instance, most multipliers use (at least implicitly) the carry-save
number system, whereas digit-recurrence dividers actually use two different number systems: the
partial remainders are represented, in general, in carry-save, and the quotient digits are represented in

13This condition is stronger than the condition 2a ≥ r − 1 that is required to represent every number.
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a signed-digit number system of radix 2k , where k is a small integer [179]. The reader interested in
redundant number systems can find useful information in [12, 180, 375, 376, 377, 382].

2.3.2 The Carry-Save and Borrow-Save Number Systems

Now let us focus on the particular case of radix 2. In this radix, the two common redundant number
systems are the carry-save (CS) number system, and the signed-digit number system. In the carry-save
number system, numbers are represented with digits 0, 1, and 2, and each digit d is represented by two
bits d(1) and d(2) whose sum equals d. In the signed-digit number system, numbers are representedwith
digits−1, 0, and 1. In that system, we can represent the digits with the borrow-save (BS) encoding, also
called (p, n) encoding [375]: each digit d is represented by two bits d+ and d− such that d+ −d− = d
(different encodings of the digits also lead to fast and simple arithmetic operators [88, 443]). Those two
number systems allow very fast additions and subtractions. The carry-save adder (see, for instance,
[277]) is a very well-known structure used for adding a number represented in the carry-save system
and a number represented in the conventional binary system. It consists of a row of full-adder cells,
where a full-adder cell computes two bits t and u, from three bits x , y, and z, such that 2t + u equals
x + y + z (see Figure2.4). A carry-save adder is presented in Figure2.5.

t = xy + xz + yz

u = x ⊕ y ⊕ z

ut

zyx

FA

Figure 2.4 A full-adder (FA) cell. From three bits x , y, and z, it computes two bits t and u such that x + y+ z = 2t +u.

AF AF AF AF

AF AFFAFA

0

s(1)4 s(2)0s(1)0s(2)1s(1)1s(2)2s(1)2s(2)3s(1)3s(2)4

a(1)0a(1)1a(1)2a(1)3 a(2)0a(2)1a(2)2a(2)3 b0b3

a3 b3 a2 b2 a1 b1 a0 b0 0

s0s1s2s3s4

b2 b1

0

Figure 2.5 A carry-save adder (bottom), compared to a carry-propagate adder (top).
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t = xy+ xz̄+ yz̄
+
+−

−
−++

+

x y z x y z

t uut

−
−

u = x ⊕ y ⊕ z

Figure 2.6 A PPM cell. From three bits x , y, and z, it computes two bits t and u such that x + y − z = 2t − u.

An adder structure for the borrow-save number system can easily be built using elementary cells
slightly different from the FA cell. Algorithm 12 adds two BS numbers.

Algorithm 12 Borrow-Save addition
• input: two BS numbers a = an−1an−2 · · · a0 and b = bn−1bn−2 · · · b0, where the digits ai and bi belong to {−1, 0, 1},

each digit d being represented by two bits d+ and d− such that d+ − d− = d.
• output: a BS number s = snsn−1 · · · s0 satisfying s = a + b.

For each i = 0, . . . , n − 1, compute two bits c+
i+1 and c−

i such that 2c+
i+1 − c−

i = a+
i + b+

i − a−
i ;

For each i = 0, . . . , n − 1, compute s−
i+1 and s+

i such that 2s−
i+1 − s+

i = c−
i + b−

i − c+
i (with c+

0 = c−
n = 0, and

s+
n = c+

n ).

Both steps of this algorithm require the same elementary computation: from three bits x , y, and
z we must find two bits t and u such that 2t − u = x + y − z. This can be done using a PPM cell
(“PPM” stands for “Plus Plus Minus”), depicted in Figure2.6, which is very similar to the FA cell
previously described. Using PPM cells, one can easily derive the borrow-save adder of Figure2.7 from
the algorithm. It is possible to add a number represented in the borrow-save system and a number
represented in the conventional, nonredundant, binary system by using only one row of PPM cells.14

This is described in Figure2.8. More details on borrow-save based arithmetic operators can be found
in [24].

2.3.3 Canonical Recoding

Multiplying a given number a by a binary number b = bn−1bn−2 · · · b0 = ∑n−1
i=0 bi2i reduces to

computing
n−1∑
i=0

bi · (a2i ),

i.e., we need to add as many shifted copies of a as there are nonzero values bi . Very soon (first for
accelerating multiplications when they were performed in software, using additions and shifts, and
later on for accelerating hardwired multiplication and reducing the area of multipliers), authors tried
to recode the operand b in order to reduce its number of nonzero digits. With the conventional binary
representation (for which the only values allowed for bi are 0 and 1), we have only one possible

14The carry-save and borrow-save systems are roughly equivalent: everything that is computable using one of these
systems is computable at approximately the same cost as with the other one.
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0

0
− +

− − +
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− +

− − +
− +

− − +
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+ + −
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+ + −

+ −
+ + −

a+3 a+2 a+1 a+0b+3 b+2 b+1 b+0a−
3 a−

2 a−
1 a−

0b−
3 b−

2 b−
1 b−

0

s+4 s+3 s+2 s+1 s+0s−4 s−3 s−2 s−1 s−0

Figure 2.7 A borrow-save adder.

0

s−4 s+0s−0s+1s−1s+2s−2s+3s−3s+4

a−0a−1a−2a−3 a+0a+1a+2a+3 b0b3

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

a3 b3 a2 b2 a1 b1 a0 b0 0

s0s1s2s3s4

b2 b1

0

Figure 2.8 A structure for adding a borrow-save number and a nonredundant number (bottom), compared to a carry-
propagate subtractor (top).

representation for each integer b, so attempting to reduce the number of nonzero digits makes no
sense, but as we have seen before, if we allow digits from the larger digit set {−1, 0, 1}, we obtain a
redundant number system: numbers have several possible representations, so that it makes sense to try
to minimize the number of nonzero digits. In our initial multiplication problem, when bi = −1, the
number a2i is subtracted, which can be done with approximately the same delay and/or silicon area as
an addition. For instance (still using the symbol 1 for representing the digit “−1”), the binary number

11101001111

can be “recoded”
100101010001,
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and it can be shown (it is a consequence of Theorem 6, below) that the number of nonzero digits of this
last representation is minimal. Booth [47] first suggested to recode the initial binary chain by replacing
all sub-strings of the form

0 1 · · · 111︸ ︷︷ ︸
k ones

by
1 0 · · · 00︸ ︷︷ ︸
k−1 zeros

1.

More formally, assuming that the initial n-bit binary chain is dn−1dn−2 · · · d0, the Booth-recoded,
n + 1-digit chain, fn fn−1 fn−2 · · · f0 is obtained using the set of rules given in Table2.4.

Unfortunately, that set of rules does not always generate a digit string with a minimal number of
nonzero digits. Indeed, the “recoded” digit chain may even have more nonzero digits than the initial
one. Just consider the input chain

10101010101,

whose Booth recoding is
111111111111.

Several authors suggested different recodings that are guaranteed to have less than �n/2� nonzero digits
(where n is the length of the original binary chain). In his seminal paper [393], Reitwiesner suggested
a recoding algorithm that generates digit chains that are “minimal,” i.e., they have the smallest possible
number of nonzero digits. Such digit chains are called Canonical recodings. Reitwiesner’s algorithm
consists in performing the transformation presented in Table2.5. Looking at the table, one easily checks
that we always have

2ci+1 + fi = ci + di ,

from which we immediately deduce that

n∑
i=0

fi2
i =

n−1∑
i=0

di2
i ,

i.e., the algorithm effectively generates a digit string that represents the input number.
Looking at the table, we can immediately find the following basic property of the digit strings

generated by Reitwiesner’s algorithm (which explains why the generated digit string is sometimes
called nonadjacent form [208]).

Table 2.4 The set of rules that generate the Booth recoding fn fn−1 fn−2 · · · f0 of a binary number dn−1dn−2 · · · d0
(with di ∈ {0, 1} and fi ∈ {−1, 0, 1}). By convention dn = d−1 = 0.

dn dn−1 fn

0 0 0

0 1 1

1 0 1

1 1 0
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Table 2.5 Reitwiesner’s algorithm: the set of rules that generate the canonical recoding fn fn−1 fn−2 · · · f0 of a binary
number dn−1dn−2 · · · d0 (with di ∈ {0, 1} and fi ∈ {−1, 0, 1}). The process is initialized by setting c0 = 0, and by
convention dn = 0.

ci di+1 di fi ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 1

1 0 0 1 0

1 0 1 0 1

1 1 0 1 1

1 1 1 0 1

Property 4 (The nonzero digits of a digit string generated by Reitwiesner’s algorithm are nonadja-
cent.) If fn fn−1 · · · f0 is the recoding of the binary string dn−1 · · · d0 deduced from the set of rules
presented in Table2.5 then for any i , fi · fi+1 = 0.

A first consequence of this is that the canonical recoding of an n-bit binary string has at most �n/2�
nonzero digits. A second consequence, due to Theorem 6 below, is that the digit strings generated by
Reitwiesner’s algorithm are minimal: they have the smallest possible number of nonzero digits.

Theorem 6 (Reitwiesner’s theorem [393]: minimality of nonadjacent digit chains) Assume an integer
x is represented by a nonadjacent binary digit chain, i.e.,

x = fn fn−1 fn−2 · · · f0

with

∀i,
{

fi ∈ {−1, 0, 1},
fi · fi+1 = 0

Any binary representation of x with digits in {−1, 0, 1} will contain as least as many nonzero digits as
the digit chain fn fn−1 fn−2 · · · f0.
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