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Week Tuesday (3h) Wednesday (3h) Deadlines

1. The Basics Introduction Gates Circuit 
Identities

Qiskit Cirq/Qual
tran

Q&A

Programming Assignment 1: The basics 
of a quantum circuit simulator

Programming Assignment 1: 
The building blocks of a 
quantum circuit simulator

2. Entanglement 
and its 
Applications

Teleportation Superdense 
Coding

Quantum 
Key 
Distribution

PennyLa
ne

Terminol
ogy of 
Projects

Q&A

Programming Assignment 2: The basics 
of a quantum circuit optimizer

Programming Assignment 2: 
The building blocks of a 
quantum circuit optimizer

3. Computing Phase 
Kickback and 
Toffoli

Distinguishin
g quantum 
states and 
The First 
Algorithms

Grover’s 
Algorithm

Invited 
TBA

Q&A 11 May 
2024

4. Advanced 
Topics*

Arithmetic 
Circuits*

Fault-Toleran
ce*

QML* Invited 
TBA

Crumble Q&A 18 May 
2024

* not evaluated



Learning goals - 03 Circuit Identities (The Basics)

1. What you have learned by now
a. Quantum software: what, why and how
b. Quantum circuits: diagrams and mathematics

2. Mathematical notation for easier calculations
a. The Dirac bra-ket vectors
b. Inner and outer products with the bra-ket notation
c. Matrices as sums of outer products

3. Computing with bra-kets
a. Unitary vectors and matrices
b. Matrix vector multiplications using bra-kets 

4. Our first quantum circuit identities
a. Moving (commuting) single qubit gates through a circuit
b. Expressing complicated (two-)qubit gates as products of 

elementary quantum gates
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In the exercise session and 
programming assignment of this 
week

● basics of quantum circuit 
simulator

● build our own quantum 
circuit simulator



Dirac Notation: Bras and Kets
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“ket” := column vector “bra” := row vector

Every ket has a unique bra obtained by complex conjugating and transposing:

Dirac Notation: Bras and Kets
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Given a “bra” and a “ket” we can calculate an “inner product”

This is a generalization of the dot product for real vectors

The result of taking an inner product is a complex number

The Inner Product
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Example:

The Inner Product in Comp. Basis
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 which is always a positive real number

Example:

it is the length of the complex vector

Norm of a Vector
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A different orthonormal basis:

An orthonormal basis is complete if the number of basis elements is equal to the dimension 
of the complex vector space.

A Different Basis

9



Express the qubit wave function                                      in the orthonormal complete basis

in other words find components of

So:

Some inner products:

Calculating these inner products allows us to express the ket in a new basis. 

Changing Your Basis
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This makes it easy to operate on kets and bras:

We can expand a matrix about all of the computational basis outer products

Matrices, Bras, and Kets
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The projector onto a state       (which is of unit norm) is given by 

Note that

and that

Projects onto the state:

Example:

Projectors
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A matrix     is unitary if 

N x N identity
matrix

Equivalently a matrix      is unitary if 

Unitary Matrices
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What happens to the norm            of the ket?

Unitary evolution does not change the length of the ket.

Normalized wave function Normalized wave function

unitary evolution

This implies that unitary evolution will maintain being a unit vector

Unitary Evolution and the Norm
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In the exercise session and 
programming assignment of this 
week

● basics of quantum circuit 
simulator

● build our own quantum 
circuit simulator



“bit flip” is just the classical not gate

Hadamard gate:

Circuit Identities
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Use this to compute

But 

So that

Circuit Identities
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Using

Circuit Identities

18



19

Appendix



Example:

Complex conjugate of inner product:

The Inner Product
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Kronecker delta

Inner product of computational basis elements:

The Inner Product in Comp. Basis
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Some special vectors:

Example: 

2 dimensional complex vectors (also known as: a qubit!)

Computational Basis
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Vectors can be “expanded” in the computational basis:

Example: 

Computational Basis
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Computational Basis, but now for bras:

Example:

Computational Basis
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Computational basis: is an orthonormal basis:

Kronecker delta

Computational basis is important because when we measure our quantum computer
(a qubit, two qubits, etc.) we get an outcome corresponding to these basis vectors.

But there are all sorts of other basis which we could use to, say, expand our vector about.

Computational Basis
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Complex vectors can be added

Addition and multiplication by a scalar:

Complex Vectors, Addition

26



Express                  in this basis: 

So:

Explicit Basis Change
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Express                                    in this basis: 

So:

Example Basis Change
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A N dimensional complex matrix M is an N by N array of complex numbers:

are complex numbers

Example:
Three dimensional complex matrix:

Matrices
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We can expand a matrix about all of the computational basis outer products

Example:

Matrices, Bras, and Kets
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Matrices can be added

Example:

Matrices, Added
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Given a matrix, we can form its complex conjugate by conjugating every element:

Example:

Matrices, Complex Conjugate
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Given a matrix, we can form it’s transpose by reflecting across the diagonal

Example:

Matrices, Transpose
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Given a matrix, we can form its conjugate transpose by reflecting across the diagonal 
and conjugating

Example:

Matrices, Conjugate Transpose
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Matrices can be multiplied by a complex number

Example:

Matrices, Multiplied by Scalar
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Matrices can be multiplied
Matrices, Multiplied
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Given a matrix, and a column vector:

These can be multiplied to obtain a new column vector:

Matrices and Kets, Multiplied
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Given a matrix, and a row vector:

These can be multiplied to obtain a new row vector:

Matrices and Bras, Multiplied
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