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LEAST-SQUARES METHOD

In a typical design, dataset of an experiment {...,(X, f;), (X1, fi11),.. .} IS considered as
sampling of the underlying continuous dependent quantity f (x) at values {..., X, X;_1,...} Of
the independent quantity x. In further processing of data, one may

O use the dataset to find a continuous approximation g(x) to f(x). Thereafter finding the
value at any point, calculation of derivatives, integration etc. with generic methods is
possible.

O use the dataset directly to find, e.g., derivatives at the sampling points, integrals, etc.
using dedicated methods like difference approximations and quadratures (numerical
Integration).

Although the details of the methods differ, the results at the sampling points may not differ
too much from the engineering viewpoint.
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LEAST-SQUARES APPROXIMATION

Finding an approximation g(x) to function f(x) is one the basic tasks in numerical
mathematics. In the Least-Squares-Method, approximation g(x):Z aiNi(x):NTa
follows from steps (N; (x) = X' is the usual choice)

. N LRSS SR 3 s S
Error measure: 1‘[(a)_2IO (g-f) dx_zjO (N a- f)“dx,
L L
Minimizer: Ka—-F=0 where K:jo NNTdx and F:jO Nfdx
Multipliers: a=K™F.

In practice, multipliers are often solved from linear equation system Ka = F. The method
works in the same manner irrespective of the series approximation.
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LEAST-SQUARES FIT

Finding a fit g(x) to f(x) known at discrete points f; = f(x;) only is another version of
finding an approximation. In the Least-Squares-Method, the fit g(x) = Z a;N J(x) N'a
follows from steps (N} (x) = xJ is the usual choice)

Error measure l'I(a):%zi (f. —Nj a)?

Minimizer: Ka—-F=0 where K=Y NN/ and F=) N;f,

Multipliers: a= K'F.

In practice, multipliers are often solved from linear equation system Ka = F. The method
works in the same manner irrespective of the series approximation.
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FOURIER TRANSFORM

The Fourier series (various forms exist) can be used to represent a function as the sum of
harmonic terms. For example, the sine-transformation pair for a function a(x) xe[0, L]

with vanishing values at the end points is given by
:—j sm(m—)a(x)dx jefl2..} & aW=3 4, @ sm(Jﬂ—)
The transformation pair is based on the orthogonality of the modes

D X L
Io sm(mt)sm(lyzt)dx:E% (Kronecker delta).

Transformation (with respect to time) can be used to analyze frequency contents of data,
filtering, to find the combination of the terms of the generic series solution for bar and string
models satisfying the initial conditions, etc.
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FREQUENCY CONTENTS OF DATA

Fourier transform (with respect to time) can be used, e.g., to analyze frequency contents of
data, filtering of data etc. As an example, transform (right) of the measured acceleration
(left), imply a(t) =10sin(10t) —5sin(15.6t) +5sin(35.6t) (in appropriate units)
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In filtering, one may just omit, e.g., components having frequencies over some value or
maybe components of amplitudes of small values depending on the application.
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VIBRATION EXPERIMENT
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Experimental data consists of the acceleration time-series measured by the accelerometer at
one point. In processing of data, the time-acceleration representation is transformed to
frequency-mode magnitude form by Discrete Fourier Transform (DFT).

1-6



FE-CODE OF MEC-E1050/ MEC-E8001

model properties geometry

BAR {{E}, {A}} Line[{1, 2}]
BAR [{E}, {22 A}] Line[{3, 2}]
FORCE {0, @, F} Point [ {2} ]
{X,Y,Z} {ux,uy,uz} {Ox,6v,6z7}
{0, 0, L} {0, 0, 0} {0, 0, 0}
{L, @, L} {uX[2], @, uzZ[2]} {0, 0, 0}
{0, 0, 0} {0, 0, 0} {0, 0, 0}
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STRUCTURE

“Structure is a collection of elements (earlier structural parts) connected by nodes (earlier
connection points). Displacement of the structure is defined by nodal translations and

rotations of which some are known and some unknown.”

prb ={ele, fun} where

le =PIt , Prlo, .. e elements
fun={val;,valy, ..}, nodes
Elements

prt ={typ, pro, geo} where
typ = BAR | TORSION | BEAM |RIGIDI...| .cooviiiciiieiiecee e, model

Lo oS T ¢ SR properties



geo = Point[{n, }]| Line[{n,no }]| Triangle[{r, no, ngH || v, geometry

Nodes
val ={crd,tra, rot} where

CPA =K, Y, Z e structural coordinates
tra ={Uy Uy sUZ oo translation components
FOU={O% , B 107} rotation components
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ELEMENTS

Elements represent the structural parts modelled as solids, plates, beams, or rigid bodies or

their simplified versions, external point and boundary forces and moments.

Constraint

{JOINT,{}|{{ux ,uy ,uz }}, Point[{m 3} ..o, displacement constraint
{JOINT, {3, LIine[{n, o} oo, displacement constraint
{RIGID,{}|{{uy ,uy ,uz }.{6x ,& .65 }}, Point[{n }]} ... displacement/rotation constraint
{RIGID,{}, LINE[{N, Mo} oo rigid constraint
{SLIDER,{ny ,ny ,nz },Point[{m H} ..o, slider constraint
Force

{FORCE {Fx ,F/,Fz },Point[{ 3} oo, point force
{FORCE{Fx,R/ ,Fz, My, My , Mz HPoint[{m}} ..o, point load

1-10



{FORCE,{fy, fy, f2 3, Line[{n, Mo} ]} oovoeii s distributed force

{FORCE {fy, fy, fz},Polygon[{n,ny,na}} oo, distributed force
Beam model

{BAR,{{E}.{A}{fx, fv, f2 L LINe[{n, Mo} oo, bar mode
{TORSION,{{G},{I}.{{my,my ,mz }}} Line[{mn, o} ]} torsion mode
{BEAM{{E,G}{A Iy, 1.3 {fx, fy, fz 3} Line[{m, no} 1} oo beam
{BEAM.{{E,G}{A lyy, 1z {ix, v, Iz 3 {Tx, fv, Tz} Line[{m, o3I} e beam
Plate model

{PLANE,{{E . v} {t} {fx, fy, fz}} Polygon[{n;,no,n3}}..cccveviininnnne, thin slab mode
{PLANE,{{E, v} {t}{fx, fy, fz }}, Polygon[{m,n,,n3,ns}}..cccorvrnrnve. thin slab mode
{PLATE,{{E,v}{t}.{fx. fy, -1}, Polygon[{n;, no,msH}. oo, plate
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Solid model

{SOLID,{{E,v}{fx, fy, fz }}, Tetrahedron[{n,no, N3, Ng}} ..coovevrrrrnnrnns

{SOLID{{E,v}{fx. fy, fz }}, Hexahedron[{n,n,,n3,n4,N5,Ng, N7, Ng }1}

{SOLID{{E,v}{fy, fy, f;,my ,my,m; }}, Tetrahedron[{r,n,,n3,n, 33} ..............
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OPERATIONS

Operations act on structure as defined by prb. The main operations are solving the

unknowns in displacement analysis and displaying the problem definition in a formatted

form.

pro=REFINE[PrD] ..o, refine structure representation
Out = FORMATTEDLPrD] ..ccooveeeieee e, display problem definition
Out =STANDARDFORM[ prb] ...ooveveieeiceiecie e display virtual work expression
SOl = SOLVE[PID] .ooceieiee e, solve the unknowns
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