SCHEDULE

	Date		Торіс
1.	Wed	28.02.	Lec-1: Introduction
2.	Mon	04.03.	Lec-2: Crystal Chemistry & Tolerance parameter
3.	Mon	04.03.	EXERCISE 1
4.	Wed	06.03.	Lec-3: Crystal Chemistry & BVS
5.	Fri	08.03.	Lec-4: Symmetry & Point Groups
6.	Mon	11.03.	EXERCISE 2
7.	Wed	20.03.	Lec-5: Crystallography & Space Groups (Linda)
8.	Fri	22.03.	Lec-6: XRD & Reciprocal lattice (Linda)
9.	Mon	25.03.	EXERCISE 3 (Linda) Ke4
10.	Thu	04.04.	Lec-7: Rietveld (Linda)
11.	Fri	05.04.	EXERCISE 4: Rietveld (Linda)
	Mon	08.04.	EXERCISE 4: Rietveld (Linda)
12.	Thu	11.04.	Lec-8: ND & GI-XRD 12:15-14, Ke3
13.	Fri	12.04.	Lec-9: XRR & Ellipsometry (Topias) 12:15-14, Ke4
14.	Mon	15.04.	EXERCISE 5: XRR (Topias) 14:15-16 Ke3
	Wed	17.04.	EXERCISE 5: XRR (Topias) 14:15-16 Ke3
15.	Mon	22.04.	Lec-10: Synchrotron radiation & XAS & EXAFS
16.	Thu	25.04.	Mössbauer 12:15-14, Ke3
17.	Fri	26.04.	EXERCISE 6
18.	Mon	29.04.	Seminars: IR, Raman, XPS, SEM, EELS (14:00 \rightarrow 16:30)
19.	Mon	06.05.	ADDITIONAL DISCUSSION/QUESTION POSSIBILITY
20.	Mon	13.05.	EXAM (13-17; to be confirmed ?)

INSTRUCTIONS for SEMINAR PRESENTATIONS

- Topics: IR, Raman, XPS, SEM, EELS
- Seminar presentation is mandatory
- Presentation slides will be put up in MyCourses afterwards
- Seminars are part of the course content and it is likely that there will be questions in the exam related to these seminars
- Given in a group of two students
- Evaluated in the scale: 10 ~ 20 points
- Presentation: 20+5 minutes
- Rough content of the presentation:
 - principle of the technique
 - type of information gained
 - interpretation of the measured data
 - pros & cons

- two to four research examples

(you will be given some relevant research papers for an example)

LECTURE 11: Mössbauer Spectroscopy

- Gamma rays
- Recoil energy & Resonance absorption
- Doppler effect
- Chemical (valence), structural (coordination) & magnetic properties
- Suggested reading:

https://www.rsc.org/Membership/Networking/InterestGroups/MossbauerSpect/Intropart1.asp

Our Mössbauer spectrometer

GAMMA RAYS (γ-rays)

- Highest energy part of electromagnetic radiation; Henri Becquerel in 1896
- Energy in the order of transitions in atomic nucleus
- Atom nucleus has different energy levels: (lowest energy) ground state and (higher energy) excited states (life times <1 μs)
- When the nucleus returns from an excited state (E_e) to the ground state (E_g) , the **energy difference** is emitted as gamma rays $(E_0 = E_e E_q)$
- Gamma rays can be profuced only with discrete energies
- Gamma rays penetrate extremely long distances through materials; to stop them, few centimeters of lead or a meter of concrete required

RECOIL ENERGY

Momentum Conservation Law:

When gamma rays are emitted from the nucleus, the nucleus itself gets **Recoil Impulse** (p_{Rec}) of the opposite direction, with **Recoil Energy** (E_{Rec}) (think what happens to the boat when the passanger jumps from it to the dock)

$$E_{Rec} = mv_{Rec}^{2} / 2 = p_{Rec}^{2} / 2m = E_{0}^{2} / 2mc^{2}$$

• Recoil energies for gamma rays of the order of $E_{Rec} \approx 10^{-2} \text{ eV}$

e.g. free ⁵⁷Fe atom: $E_0 = 14.4 \text{ keV}, E_r = 2.0 \text{ meV}$)

- Note: for less-energetic radiation, recoils exist in principle, but v_r and E_{Rec} are negligble
- Due to the recoil energy (i.e. energy loss) gamma rays lose their capability to be absorbed by similar atom nuclii:
- \rightarrow so-called **RESONANCE ABSORPTION** is **NOT** possible
- \rightarrow radiation emitted by a nucleus can not be anymore absorbed by a similar atom
- \rightarrow gamma-ray spectroscopy not possible

RECOIL-FREE EMISSION

Recoil may be avoided if the emitting nucleus is part of crystal lattice:

 \rightarrow Entire crystal lattice receives the recoil energy, and the recoil becomes meaningless (the boat is tightly anchored!)

- Accordingly the resonance absorption becomes possible
- The recoil-less emission is nowadays known for around 100 nuclii
- Note: different isotopes of the same element behave differently (c.f. ND)
- Probability of recoil emission (f) increases:
 - with decreasing E_0 (lightest elements have too high E_0)
 - with decreasing temperature

MÖSSBAUER PHENOMENON

- Gamma rays emitted in recoil-less manner can be absorbed by similar atoms (nuclii)
 - \rightarrow **RESONANCE ABSORPTION**
- 1957 Rudolf Mössbauer: recoil-less resonance absorption for ¹⁹¹Ir (Nobel 1961)
 → MÖSSBAUER SPECTROSCOPY or NGR (Nuclear Gamma Resonance)
- Mössbauer spectroscopy possible only for transitions between the ground state and the lowest excited state
 → gamma energies less than ~100 keV
- By far most commonly utilized Mössbauer nucleus is ⁵⁷Fe (14.4 keV): $f \approx 1$ at room temperature

⁵⁷Fe is the most commonly utilized Mössbauer nucleus; here we concentrate on it only.

⁵⁷Co - ⁵⁷Fe

 Radioactive ⁵⁷Co precursor decays to excited ⁵⁷Fe* nucleus

(⁵⁷Co can be prepared from iron relatively easily in a syclotron)

- Part (9%) of excited ⁵⁷Fe* decays back to ground state, but a larger part (91%) decays via a lower-energy excited state (life time 99 ns)
- Further, part (10%) of this lowerenergy ⁵⁷Fe* decays to ground state emitting 14.4 keV gamma rays
- ⁵⁷Fe is one of the stable isotopes of iron; its portion in natural iron is 2% (isotope enrichment possible but expensive)

RECORDING of MÖSSBAUER SPECTRUM

- E_0 slightly depends on the environment of the Mössbauer nucleus (e.g. E_0 of ⁵⁷Fe is different in Fe metal and in FeSO₄)
 - $\rightarrow \Delta E_0$ is a parameter that reflects the difference of the two environments
- In Mössbauer measurement it is possible to experimentally observe the resonance absorption (i.e. absorption when $\Delta E_0 = 0$) $\rightarrow \Delta E_0$ needs to be made zero by slightly changing the E_0 value of either the emitting or absorbing nucleus
- Control of *E*₀ is possible only through **Doppler effect**, i.e. by moving either the source (emitting nucleus) or the sample (absorbing nucleus)
 - $\rightarrow\,$ in Mössbauer spectroscopy the energy axis is given in the unit of mm/s
 - \rightarrow the required velocities vary between 1 ~ 1000 mm/s
- Measurement geometry: transmission (most common) or reflection
 - Gamma rays get weaker quite fast → relatively thin sample in transmission measurement → amount of Mössbauer isotope typically 0.1~10 mg
 - In reflection measurement information from surface (0.2~20 μ m) \rightarrow thin films

⁵⁷Fe Mössbauer Spectroscopy

- Source of gamma rays: contains radioactive ⁵⁷Co
- Sample (absorbing gamma rays): contains ⁵⁷Fe
- **REQUIREMENT:** Resonance absorption → **source is vibrated**
- Detector: measures the intensity of the gamma-ray beam that is transmitted (typical configuration) through the sample

MÖSSBAUER SPECTROSCOPY

- E_0 depends (weakly) on the environment of the Mössbauer nucleus
 - → local environment of the Mössbauer-active nucleus
 - → called HYPERFINE INTERCATIONS
 - (*i*) **chemical** (oxidation state, spin state): **Isomer shift**
 - (ii) electric (coordination sphere): Quadrupole splitting
 - (*iii*) magnetic (magnetic ordering): Magnetic splitting
- All information ($i \sim iii$) with one measurement
- Perfectly specific for the investigated nucleus
- If the Mössbauer-active nucleus exists in the sample in different environments the overall spectrum consists of the sub-spectra with the relative abundancies of the corresponding different species of the Mössbauer-active nucleus (sum of sub-spectra)

ISOMER SHIFT

Isomer shift (IS, δ or ΔE_0) depends:

electron densities about the nucleus

- \rightarrow directly on s-orbital electron configuration \rightarrow indirectly on p/d/f-orbital electron configuration
- In case of iron (3d transition metal) the different oxidation states/spin states differ in terms of the d-orbital electron configuration (which then slightly affects the s-orbital density)
- Isomer shift is given against a standard
- Typically used standards:

 $^{57}\mbox{Fe}$: Fe metal (officially $\mbox{Na}_2\mbox{[Fe}(\mbox{CN})_5\mbox{NO}\mbox{]})$ $^{119}\mbox{Sn}$: \mbox{SnO}_2

ELECTRIC QUADRUPOLE INTERACTION

Surrounding ions create electric field gradient about the nucleus:

- Symmetric → no splitting
- Asymmetric → splitting

$\begin{array}{l} \textbf{Magnetic Dipole Interaction} \\ \textbf{Magnetic Splitting} \ \Delta E_{M} \end{array}$

Summary of HYPERFINE INTERACTIONS affecting Mössbauer spectra

Isomer shift (IS or δ), Quadrupole splitting (Δ) & Magnetic splitting (H_{hf})

Different iron species in the sample

- $\rightarrow\,$ Spectrum consists of sub-spectra of each different Fe species
- \rightarrow Intensity ratio of sub-spectra = concentration ratio of corresp. Fe species

EXAMPLE: overall spectrum consists of two sub-spectra

- Intensity/concentration ratio: b-Fe / a-Fe = 2 : 1
- Same isomer shift \rightarrow same valence (+III)
- Slightly larger quadrupole splitting for $a-Fe \rightarrow more$ asymmetric coordination

Another EXAMPLE

- Overall spectrum consists of two sub-spectra
- Both di- and trivalent iron
- Much more Fe(III) than Fe(II) (presice concentrations from spectral areas)
- Both Fe(III) than Fe(II) in asymmetric coordination, but Fe(II) more asymmetric

Temperature-dependent measurements

 \rightarrow employed e.g. to investigate magnetic transitions

EXAMPLE:

- completely ferro/ferri/antiferro-magnetic at 10 K
- completely paramagnetic at 295 K

NOTE: Can not straightforwardly distinguish the type or magnetic ordering, i.e. ferro, ferri or antiferro

Routine Mössbauer analysis of finely dispersed corrosion particles formed in the cooling system of a power plant

NASA Mars Exploration Rovers: Spirit & Opportunity (launched in 2003):

Mössbauer spectrometer is one of the instruments on the robotic arm

Mössbauer examples for DOUBLE PEROVSKITES

RECALL from the first lecture:

- Two different cations (B' and B") occupy the B-site with 50%/50% ratio and in an ordered manner → B-site ordered double perovskite
- Two different cations (A' and A'') occupy the A-site with the 50%/50% ratio and in an ordered manner \rightarrow A-site ordered double perovskite
- Example: B-site ordered halfmetallic Sr₂FeMoO₆: simultaneously ferrimagnetic and electrically conducting → magnetic-field control of conductivity → spintronics
- We also discussed about so-called antisite defects if the ordering is not perfect; for example some Fe atoms occupying the Mo site in Sr₂FeMoO₆ (this kind of disorder distroyes rapidly the ferrimagnetic/halfmetallic properties)

A-site ordered DP with oxygen vacancies Ba^{II}Sm^{III}Fe₂O_{5.0}

- Question: 2 Fe^{2.5} or Fe^{II} + Fe^{III}
- Mössbauer spectra tell us: there is a transition of 2 Fe^{2.5} → Fe^{II} + Fe^{III} at a certain temperature (Verwey temperature T_v)
- Above TV: only one sextet → only one type iron → magnetic Fe^{2.5}
- Below TV: two different sextets → Fe^{III} + Fe^{III} → both magnetic but Fe^{III} with larger magnetic field (wider splitting of sectet)

Many physical properties change at T_V

- Ferrimagnetic conductor (T_C = 420 K)
- Halfmetallic: spin polarization of conduction electrons
 →Tunneling-type magnetoresistance below T_C
 K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, *Nature* 395, 677 (1998).
- First assumption: $Fe^{III} d^5 (hs) \& Mo^V d^1$
- Mössbauer: Fe^{2.5} & Mo^{5.5}

Mixed-valent iron: $Sr_2Fe^{II/III}Mo^{V/VI}O_6$

"Evidence for Valence Fluctuation of Fe in Sr₂FeMoO_{6-w} Double Perovskite", J. Lindén, T. Yamamoto, M. Karppinen, H. Yamauchi and T. Pietari, *Appl. Phys. Lett.* 76, 2925 (2000).

We can see for Sr₂FeMoO₆ sample by ⁵⁷Fe Mössbauer Spectroscopy:

- Iron is magnetically ordered (sextets)
- There are many sextets → different types of iron atoms (ideally only one type)
- For the main (M1) sextet isomer shift (IS) corresponds to mixed-valent Fe^{2.5}
- There is also sextet with trivalent Fe³⁺: it is due to antisite (AS) iron atoms
- Iron atoms next to AS-Fe atoms (M2) have valence between 2.5 and 3
- We can also see iron atoms with very low "frustrated" magnetic field; these are trivalent iron atoms at so-called antiphase boundaries (APB)