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Lecture 1 : Crash course about the brain




Presentations
* What is your name?
* What are you currently studying (what program are you in)?

* What would you like to learn about the brain?



Your Brain vs a MacBook Pro (chip M1)

* Number of neurons: e Number of tansistors:

e Number of operations per second: * Number of operations per second:
* Average consumption: * Average consumption:



Your Brain vs a MacBook Pro (chip M1)

* Number of neurons: 86B e Number of tansistors: 34B

 Number of operations per second:
3.2GHz

* Average consumption: 30-50W

* Number of operations per second: ?
* Average consumption: 20W



At the origins of
neuroscience:
Anatomical
description of the
brain

ETYMOLOGY OF THE BRAIN v e e
THALAMUS

Comes from the Greek word
thalamos, meaning “bedroom”
or “inner chamber.”

MENINGES
From Greek meninx,
meaning “membrane.”

DIENCEPHALON
From Ancient Greek
dia, “through,” and

CORPUS CALLOSUM
Corpus meant “body” and
callosum meant “tough” in Latin.
FORNIX

From a Latin word that
meant “arch” or “vault.”

SULCUS
Means “furrow made by a plow” in Latin.

PARIETAL LOBE
After the parietal bone, which is
named from Latin paries, “wall.”

CHOROID PLEXUS

From Greek khorion,
“membrane enclosing the
fetus,” and the past participle
of Latin plectere, “to braid.”

encephalon, “brain.” .

phalon, “brain : CUNEUS . .
HYPOTHALAMUS RS - Means “wedge” in Latin.
Literally means “under : Related to the words

the thalamus” in Greek.

TEMPORAL LOBE
Named because of its
proximity to the temples.

PITUITARY GLAND

; \ coinand cuneiform.

OCCIPITAL LOBE
Occipitalmeans “back of the
head” in Latin, from 0b-,
“against,” and caput, “head.”

From Latin pituita, ARBOR VITAE

meaning “mucus,” because Means “tree of life” in Latin.
the gland was thought to ) : CEREBELLUM

bring mucus to the nose. in Latin. Diminutive of the Latin word for
AMYGDALA HIPPOCAMPUS “brain,” so literally “small brain.”

MEDULLA OBLONGATA
Medullameant “marrow” in Latin, and
oblongata translates to “elongated.”

From the Latin word for Named after a kind
“almond” because they were of seahorse in Greek mythology
thought to have a similar shape. due to a perceived resemblance.



Species and brain size

Brain neurons (billions)

Elephant
Marmoset
Rhesus monkey
Gorilla

Chimpanzee

T!Til
ﬂa;hoé

Human

Sources: Suzana Herculano-Houzel, Marino, L. Brain Behav Evol 1998,51;230-238

source: Wikipedia



Species and cortex size

Brain Cortex

. . Cerebral cortex neurons (billions)
Brain neurons (billions)

Elephant 251 m Elephant 56 m
Marmoset )m \) Marmoset Im \)
Rhesus monkey In ‘- Rhesus monkey -n ‘-
Gorilla -m ﬂ Gorilla a1 ”
Chimpanzee .n ﬂ Chimpanzee ﬁ
1 - I )
Sources: Suzana Herculano-Houzel; Marino, L. Brain Behav Evol 1998:51;:230-238 Sources: Suzana Herculano-Houzel; Marino, L. Brain Behav Evol 1998,51;230-238

What is a cortex?



Cortex

MOUSC HU man Fig. 1-3 Comparison of neocortex between mouse and monkey.

Neocortex is shown by blue. The white matter, which consists of nerve fibers that travels
from and to the cortex is shown by red. (The Nissl photos are from Comparative
Mammalian Brain Collections)

Fig. 1-2 Comparison of neocortex among mouse, monkey and human.

The neocortical surfaces are colored blue. (Adapted from Comparative Mammalian Brain
Collections)

Cortex is a thin layered structure surrounding mammalian brains. Itis
the hallmark of mammalian brains and not present in birds or in reptiles.




Brain regions and their function

* Different brain regions specialize in different functions

* The functions of brain regions have historically been observed by
studying the deficits of people with lesions to these regions

* Example: sensory areas, memory areas, motor areas, spatial
navigation areas, emotion areas, decision areas

* They are now a multitude of tools to study the brain regions and their
role:
* invasive: electrodes, optogenetic microscopy
* non-invasive: fMRI, MEG, ultrasound imaging



Exemple: ablation of the hippocampus and

amnesia

H. M.’s brain

Normal brain

80 mm
Temporal lobe”” N <

Cerebellum~”

Hippocampus

. Bilateral resection of the anterior temporal lobe in patient HM.
Biography [edit]
Henry Molaison was born on February 26, 1926, in Manchester, Connecticut, and experienced intractable epilepsy that has sometimes been attributed to a bicycle accident at the age
of seven.n°te 11 He had minor or partial seizures for many years, and then major or tonic-clonic seizures following his 16th birthday. He worked for a time on an assembly line but, by
the age of 27, he had become so incapacitated by his seizures, despite high doses of anticonvulsant medication, that he could not work nor lead a normal life.

In 1953, Molaison was referred to William Beecher Scoville, a neurosurgeon at Hartford Hospital.[®l Scoville localized his epilepsy to the left and right medial temporal lobes (MTLs)
and suggested their surgical resection. On September 1, 1953, Scoville removed Molaison's medial temporal lobes on both hemispheres including the hippocampi and most of the
amygdalae and entorhinal cortex, the major sensory input to the hippocampi.['4] His hippocampi appeared entirely nonfunctional because the remaining 2 cm of hippocampal tissue
appeared to have atrophied and some of his anterolateral temporal cortex was also destroyed.

After the surgery, which was partially successful in controlling his seizures, Molaison developed severe anterograde amnesia: although his working memory and procedural memory
were intact, he could not commit new events to his explicit memory. According to some scientists, he was impaired in his ability to form new semantic knowledge.!'5]

Researchers argue over the extent of this impairment. He also had moderate retrograde amnesia, and could not remember most events in the one- to two-year period before surgery,
nor some events up to 11 years before, meaning that his amnesia was temporally graded.

lobes /4

Frontal ///\ /
/ 2

Hippocampus

Most of Molaison's two hippocampi were removed &3
bilaterally.

His case was first reported by Scoville and Brenda Milner in 1957, who referred to him by "H.M."l'4] His full name was not revealed to the wider public until after his death.['!] While researchers had told him of the significance of his

condition and of his renown within the world of neurological research, he was unable to internalize such facts as memories.!1]

Near the end of his life, Molaison regularly filled in crossword puzzles.['8] He was able to fill in answers to clues that referred to pre-1953 knowledge. For post-1953 information he was able to modify old memories with new information.

For instance, he could add a memory about Jonas Salk by modifying his memory of polio.[2]



Example: The motor and somato-sensory homonculus
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Brain regions and their function

Functional Areas of
the Cerebral Cortex

Visual Area:
Sight
Image recognition
Image perception

Association Area
Short-term memory
Equilibrum
Emotion

Motor Function Area
Initiation of voluntary muscles

cingulate cortex

Broca's Area
Muscles of speech

Auditory Area
Hearing
Emotional Area
O Pain Temporal lobe

Hunger
“Fight or fight” response

o Sensory Assoclation Area

Olfactory Area
Smeling
Sensory Area
Sensation from muscles and skin

Somatosensory Association Area
Evaluation of weight, texture,
, etc. for object

Wernicke's Area
Written and spoken language comprehension

Motor Function Area
Eye movement and orientation

‘ Higher Mental Functions

Pituitary gland

Concentration
Planning

Jue

Emotional expression
Croativity

Inhibition

Functional Areas of
the Cerebellum

Motor Functions

Balance and equiibrium Superior View Inferior View



Brain tissue under the microscope

Cortex (mouse)

Microglia are
strategically situated
between neurons and
capillaries (Cap), and
function as the
resident immune cell
and phagocyte
required for
maintaining brain
health throughout
life.




Brain tissue reconstructed

source: https://brain.mpg.de/547207/silence-for-thought?c=83711



Neurons

Terminal Bulb

Axon




Action potential (“spike”)

Membrane
' potential

Time

https://oertx.highered.texas.gov/courseware/lesson/1790/student-old/?task=2
https://courses.lumenlearning.com/suny-ap1l/chapter/the-action-potential/



https://oertx.highered.texas.gov/courseware/lesson/1790/student-old/?task=2

Synapse
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Synapses can be inhibitory or excitatory



The leaky integrate-and-fire model of a neuron
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Synaptic plasticity

* Hebb’s rule (1949):

“Neurons than fire together wire together”

* Spike-timing-dependent plasticity (Markram, Tsodyks 2000):

causal acausal

Aw A




Neuron types

Ramon y Cajal (1852-1934)

A Newborn Motor Cortex, Camera Lucida Drawing

Left: The cerebellar Purkinje cell, shown in a drawing by Santiago Ramon y Cajal, presents an extreme
in neuronal specialization. The dense dendritic arborization is not bushlike in shape, but is flat, in the
plane of the paper, like a cedar frond. Through the holelike spaces in this arborization pass millions of
tiny axons, which run like telegraph wires perpendicular to the plane of the paper. The Purkinje cell’s
axon gives off a few initial branches close to the cell body and then descends to cell clusters deep in the
cerebellum some centimeters away, where it breaks up into numerous terminal branches. At life size,
the total height of the cell (cell body plus dendrites) is about 1 millimeter. Middle: Ramon y Cajal made
this drawing of a pyramidal cell in the cerebral cortex stained The cell body is the small black blob.
Right: This drawing by Jennifer Lund shows a cortical cell that would be classed as "stellate". The dark
blob in the center is the cell body. Both axons (fine) and dendrites (coarse) branch and extend up and
down for distance of 1 millimeter.



Neuron types

Principles of connectivity among morphologically
defined cell types in adult neocortex
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Receptive fields: ON and OFF cells in the retina
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Stephen Kuffler (1953)



Receptive fields: orientation selective cells in V1
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David Hubel and Torsten Wiesel, 1962



Development of the visual system depends on
environment

VERTICAL VERTICAL

~—— HURIZONTAL

VERTICAL VERTICAL

Fig. 2. These polar histograms show the distributions of optimal orientations for fifty-two
neurones from a horizontally experienced cat on the left, and seventy-two from a vertically
experienced cat on the right. The slight torsion of the eyes, caused by the relaxant drug.
was assessed by photographing the pupils before and after anaesthesia and paralysis. A
correction has been applied for torsion, so the polar plots are properly orientated for the

Fig. 1, The visual display consisted of an upright plastic tube, about 3 < 4 i . A
2 1 high, with an intornl diameter of 46 cim, © Tho kitten, wearng o cats’ visual flelds, Each line shows the optimal orientation for a single neurone. For each
Rﬁcﬁé ’,‘;ﬁﬁfﬁ;’:ﬁ}sﬁ‘hﬁ 1;{;%3““}&3 (:{fﬁ;eﬂst?&dt?g ] g}mv giztmlu'gli’ggg binocular cell the line is drawn at the mean of the estimates of optimal orientation in the
from above by a spotlight,  The luminance of tno dazk bars was thout two eyes, No units have been disregarded except for one with a concentric receptive
10 cd, m~ and of the bright stripes about 130 ¢d. m-%: they were of field and hence no orientational selectivity.

several different widths. For this diagram the top cover and the
gpotlight have been removed from the tube.

Blakemore and Cooper 1970



Place cells

Fig. 1: In 2005 distinct firing patterns, associated with location and navigation, were
traced to the entorhinal cortex (shown here in pink), a lobe which inputs into the
hippocampus (blue)

HIPPOCAMPUS

(Place cell location)

John O'Keefe 1971



Grid cells

Fig. 1: In 2005 distinct firing patterns, associated with location and navigation, were
traced to the entorhinal cortex (shown here in pink), a lobe which inputs into the
hippocampus (blue)

ENTORHINAL CORTEX

(Grid cell location)

Edvard & May-Britt Moser, 2005



What is a computational theory of the brain?




What is a computational theory of the brain?

The brain performs some functions:

examples: seeing, acting, deciding, navigating, memorizing, producing

speech

Computational theories of the brain aim at understanding how the brain

performs these functions:

>
>
>

algorithm used?

implementation on neural substrate?

with given constraints (e.g., number of neurons, energy
consumptions)

also: what really are the functions that the brain is
performing??



After the break

* Ray and Andrea wiill
present the topics that will
be covered in class.

* For this Friday end of day,
you will need to choose 1-3
topics, and fill in you
preferences on MyCourse
(“Preferred Topics”).

b

L

* & T1_PSYCHOPHYSICS

b

ADDITIONAL_MATERIAL

b

ST1_JIM_BINDING_MODEL

b

ST2_FIT_FEATURE_INTEGRATION_THEORY

b

ST3_ART_ADAPTIVE_RESONANCE_THEORY

* & T2 EFFICIENT_CODING

b

- = ST1_RETINAL_CELL_MODEL

b

ST2_VISUAL_CORTEX_MODEL

" ¥ T3_DEEP_LEARNING_MODELS

* & ST1 VISUAL_SYSTEM
* @ ST2_MOTOR_AND_NAVIGATION

T4_MEMORY_HOPFIELD

H

T5_ATTRACTOR_NETWORKS

T6_CONTROL_THEORY

[

T7_CHAOS



Homework

* Choose 1 to 3 topics/subtopics (see slides and “Reading Material” on MyCourse)

* Fill your preference on MYCourse (“Preferred Topics”), no later than this Friday end
of day. Check that you will be available on the week where the project will be
presented to the class.

* If there is only 1 topic you like, you may choose this 1 only topic on MyCourse. We
will try to accommodate you. However, if we cannot, you may be assigned to a topic
you did not choose at all.

* If you would like to drop out, drop out now. Choosing a topic = committing to
present






Cortex

2.5 mm thick

1 cortical sheet

2 million macrocolumns 1 macrocolumn
200 million minicolumns 100 minicolumns
20 billion neurons 10.000 neurons



Syn d pt | C p | a St | C |ty Spike-timing-dependent plasticity

2000

LETTER o . msmeeswas Communicated by Laurence Abbott

An Algorithm for Modifying Neurotransmitter Release
Frobability Based on Pre- and Postsynaptic Spike Timing

A causal acausal

Hebb’s rule (1949).

kel _ K k
W, =w,; +Awy, (1)

where

k _ ok vk
Aw;; =Ca; X )

* Hebb’s original learning rule (2) referred exclusively
to excitatory synapses, and has the unfortunate
property that it can only increase synaptic weights,
thus washing out the distinctive performance of
different neurons in a network, as the connections
drive into saturation..




Basic facts about brain: cells types

Ramon y Cajal




ntroduction to the visual system

retina

primary
visual
cortex



Group formation mechanism — 8 groups

* For next week, each student will have selected 1 to 3 topics/subtopic, on
MyCourse.

* We will assign each student to a topic/subtopic based on theses
preferences

* In case of conflict (too many students interested by the same topic), we will
try to find an arangement or toss a coin.

* The groups are formed around the topics chosen. Most groups will have 2
students. No group can have more than 3 students.



Dates and rooms

Thu 25.04.2024 14:15 - 16:00, R0O01/M205

Thu 02.05.2024 14:15 - 16:00, R0O01/M205

(9.5. Ascension Day - no teaching)

Thu 16.05.2024 14:15 - 16:00, R0O01/M205

Thu 23.05.2024 14:15 - 16:00, R0O01/M205

Thu 30.05.2024 14:15 - 16:00, R0O01/M?205

Thu 06.06.2024 14:15 - 16:00, RO01/M205 (on exam week)



SUPPL SLIDES



Basic facts about brain: synaptic plasticity

LETTER o

weeeenan Communicated by Laurence Abbott

An Algorithm for Modifying Neurotransmitter Release
Frobability Based on Pre- and Postsynaptic Spike Timing
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Visual system: ventral and dorsal stream

Parietal
lobe

Dorsal visual stream;
this portion determines
“Where is it?”

— Occipital
. lobe

Ventral visual stream;
this portion determines
“What is it?”

Dorsal and ventral streams

Figure by MIT OpenCourseWare.

“where”

“what”



DOI: 10.1093/brain/awg248 Advanced Access publication September 23, 2003

Brain (2003), 126, 2463-2475

Ventral occipital lesions impair object recognition
but not object-directed grasping: an fMRI study

Thomas W. James,! Jody Culham,? G. Keith Humphrey,? A. David Milner® and Melvyn A. Goodale?

Correspondence to: Thomas W. James, Psychology
Department, 111 21st Street S., Nashville, TN 37203, USA
Email: tom.james @vanderbilt.edu

'Wanderbilt Vision Research Center, Vanderbilt University,
Nashville, USA, 2CIHR Group on Action and Perception,
University of Western Ontario, London, Canada and
3Wolfson Research Institute, University of Durham,
Durham, UK

Summary

D.F., a patient with severe visual form agnosia, has
been the subject of extensive research during the past
decade. The fact that she could process visual input
accurately for the purposes of guiding action despite
being unable to perform visual discriminations on the
same visual input inspired a novel interpretation of the
functions of the two main cortical visual pathways or
‘streams’. Within this theoretical context, the authors
proposed that D.F. had suffered severe bilateral damage
to her occipitotemporal visual system (the ‘ventral
stream’), while retaining the use of her occipitoparietal
visual system (the ‘dorsal stream’). The present paper
reports a direct test of this idea, which was initially
derived from purely behavioural data, before the
advent of modern functional neuroimaging. We used
functional MRI to examine activation in her ventral
and dorsal streams during object recognition and
object-directed grasping tasks. We found that D.F.
showed no difference in activation when presented with
line drawings of objects ed with scram-
bled line drawings in the lateral occipital cortex (LO) of
the ventral stream, an area that responded differentially
to these stimuli in healthy individuals. Moreover, high-

resolution anatomical MRI showed that her lesion cor-
responded bilaterally with the location of LO in healthy
participants. The lack of activation with line drawings
in D.F. mirrors her poor performance in identifying the
objects depicted in the drawings. With coloured and
greyscale pictures, stimuli that she can identify more
often, D.F. did show some ventral-stream activation.
These activations were, however, more widely distrib-
uted than those seen in control participants and did not
include LO. In contrast to the absent or abnormal acti-
vation observed during these perceptual tasks, D.F.
showed robust activation in the expected dorsal stream
regions during object grasping, despite considerable
atrophy in some regions of the parietal lobes. In par-
ticular, an area in the anterior intraparietal sulcus was
activated more for grasping an object than for just
reaching to that object, for both D.F. and controls. In
conclusion, we have been able to confirm directly that
D.F.’s visual form agnosia is associated with extensive
damage to the ventral stream, and that her spared
visuomotor skills are associated with visual processing
in the dorsal stream.

A. Lesions in Subject DF

B. Location of LOC in Neurologically-Intact Subjects

= _— :

sEEERRENN
p<10% p<10%

Fig. 4 Ventral stream lesions in D.F. shown in comparison with the expected location of the lateral occipital complex in healthy
participants. (A) D.F.’s brain has been rendered at the pial surface (outer grey matter boundary). Lesions were traced on slices that
indicated tissue damage and rendered on the pial surface in pale blue. Lateral views of the left and right hemispheres are shown, s is a
ventral view of the underside of the brain. The rightmost image shows a slice through the lesions (z = -8). (B) The expected location of
LOC based on group data from seven neurologically intact participants (Culham, 2003) is shown on one individual’s pial surface and on a
slice through the z = —8 plane. The activation in the slice is outlined in orange in panel A for comparison with the lesions in D.F.’s brain.

Fig. 1 Examples of intact and scrambled images of common
objects in colour, greyscale and line drawing formats.

fellows studying visual neuroscience at the University of

JMRI study of visual form agnosia 2465

Reaching

Fig. 2 Experimental setup for reaching and grasping experiment.
(A) The participant lay supine in the magnet with the torso and
head tilted to view illuminated shapes directly on an adjustable
rotating drum, the ‘grasparatus’. The participant’s right arm was
restrained to allow movement of the wrist and limited movement
of the elbow, but no movement at the shoulder, which could be
translated into head motion. (B) During reaching trials,
participants extended their arm to touch the target object, an
rectangle, with the knuckles. (C) During

‘Western Ontario. The age of the healthy ici ranged
between 25 and 32 years. The ethical review boards of both
the University of Western Ontario and the Robarts Research
Institute approved protocols for the procedures, and the

grasping trials, the participant used a precision grip with the index
finger and thumb positioned along the long axis of the object.



Can a motion-blind patient reach for moving objects?

Thomas Schenk," Norbert Mai," Jochen Ditterich! and Josef Zihl?
"Neurologische Kilinik, Klinikum Grosshadern, Ludwig-Maximilians-Universitat Miinchen, Marchioninistr. 23, 81366 Germany
2Psychologisches Institut, Ludwig-Maximilians-Universitat Minchen, Germany

Keywords: akinetopsia, dorsal stream, human, interceptive action, V5/MT

Abstract

It has been claimed that the visual brain is organized in two separate processing streams for spatial vision: one for perception and
one for action. To determine whether motion vision is also divided into vision for action and for perception we examined the
interceptive behaviour of the motion-blind patient LM. The task for LM and three age-matched control subjects was to reach-and-
grasp for an object that moved away. Three experiments were conducted to examine the effects on perfomance of target speed (Expt
1), observation time (Expt 2) and visual feedback (Expt 3). As LM is only able to reach for objects which move at 0.5 m/s or less, her
performance is inferior to that of controls who can reach for objects moving at 1.0 m/s, but it is better than would be expected from her
performance in psychophysical experiments on her motion vision. Kinematic analysis of LM’s reaching movements showed that she
adapted the speed of her moving hand to the speed of the target but only when full vision was available. In contrast to normal
subjects, LM required long observation times and vision of her moving hand to produce successful reaching responses. Thus, the
impairment of both perception and action in LM suggests that the motion area MT/V5 is located at an early stage of the extrastriate
hierarchy and provides input to both the perception and the action processing streams.

path 1 — — path 2

start position

FiG. 1. Experimental setup as seen from above. The target moves either along
path 1 or path 2 away from the subject. At the beginning of the trial the
subject’s hand rests on the hand button (starting position). The coordinate
system used for the calculations described in the Appendix has the start
position of the target object as its origin.



Ventral stream




V2
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A functional and perceptual signature of the second
visual area in primates

Original V1-like filters matched: Correlations matched: 0 100 200
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V4

Gratings in Macaque Visual Cortex

Selectivity for Polar, Hyperbolic, and Cartesian
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A Cortical Area Selective for
Visual Processing of
the Human Body

Paul E. Downing,’* Yuhong Jiang,? Miles Shuman,?
Nancy Kanwisher??

Despite extensive evidence for regions of human visual cortex that respond
selectively to faces, few studies have considered the cortical representation of
the appearance of the rest of the human body. We present a series of functional
magnetic resonance imaging (fMRI) studies revealing substantial evidence for
a distinct cortical region in humans that responds selectively to images of the
human body, as compared with a wide range of control stimuli. This region was
found in the lateral occipitotemporal cortex in all subjects tested and appar-
ently reflects a specialized neural system for the visual perception of the human
body.

Fig. 2. Stimulus exam-
ples. The EBA response
was high to human
body parts (A) and
whole human bodies
(B) whether presented
as photographs, line
drawings (C), stick fig-
ures (D), or silhou-
ettes (E), and was not
attenuated to images
that depict little im-
plied motion (F). The
low response to whole
faces (G) was the sin-
gle exception found to
the preference for hu-
man bodies. In con-
trast, the EBA re-
sponse was signifi-
cantly lower to object
parts (H) and whole
articulated objects (),
whether represented
as photographs or line
drawings (), as well as
to scrambled control
versions of stick fig-
ures (K) and silhou-
ettes (L). The respons-
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es to face parts (M) and to mammals (N) were intermediate.



Functional specificity in the human brain: A window
into the functional architecture of the mind

Nancy Kanwisher®
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2005.

Contributed by Nancy Kanwisher, April 16, 2010 (sent for review February 22, 2010)

Other people’s thoughts

Visual Words Bodies

Fig. 1. This schematic diagram indicates the approximate size and location
of regions in the human brain that are engaged specifically during percep-
tion of faces (blue), places (pink), bodies (green), and visually presented
words (orange), as well as a region that is selectively engaged when thinking
about another person’s thoughts (yellow). Each of these regions can be
found in a short functional scan in essentially all normal subjects.



A Animacy
Animals Objects
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Animals vs Objects
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The first deep convolutional network: Neocognitron

Neocognitron: A Self-organizing Neural Network Model 1980
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima

NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan
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The first deep convolutional network: Neocognitron
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Fig. 6. Some examples of distorted stimulus patterns which the
Fig. 5. An example of the interconnections between cells and the . . .
response of the cells after completion of self-organization neocognitron has correctly recognized, and the response of the final
layer of the network



Backpropagation

Handwritten Digit Recognition with a
Back-Propagation Network

1990

Backpropagation of weights

O

——= Qutput

Inputs

Qutput Layer

Hidden Layer

Input Layer

The network output is given by:
y = net(x)

where net() is composed of layers defined by:

aé — ReLU Zwijag_l

J

We define the loss function:

L=y -yl
and the backpropagation update rule:

t+1 1 dL

w




Success of a ConvNet on MNIST

Handwritten Digit Recognition with a

Back-Propagation Network
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Figure 2: Examples of normalized digits from the testing set.



Success of a ConvNet on ImageNet
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ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—
4096-4096-1000.



The success of deep learning for image
recognition

28% AlexNet, 8 layers
26% 4

ZF, 8 layers
| VGG, 19 layers
" GooglLeNet, 22 layers
16%
ResNet, 152 layers

(Ensemble)
| SENet

--—-----—1--———-1 ..............................

100% accuracy and reliability not realistic

N Traditional computer vision
N Deep learning computer vision

2010 2011 2012 2013 2014 2015 2016 2017




Comparison between the representations
learned by a deep network and the brain

IT Site 56 IT Site 42

neural responses in higher visual cortex

Daniel L. K. Yamins®', Ha Hong®®", Charles F. Cadieu?®, Ethan A. Solomon?, Darren Seibert?, and James J. DiCarlo®?
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Correspondance between receptive fields in early layers

CNNs learn representations similar
to those in cortex

== Yamins & DiCarlo, 2016

@,
= >A>E> 0

=l Throshold Pool Normalize

But they skip past the retinal
center-surround stage



Correspondance between receptive fields in early layers

visual
/ cortex

Kuffler, 1953 Hubel & Wiesel, 1960

Receptive fields are concentric in the retina and oriented in cortex



Towards a unified model from retina to cortex

Mismatch with the retina

retina-net

VVS-net
(ventral visual A
stream)

Lindsey*, Ocko*, Ganguli, Deny, ICLR 2019



Anatomical constraints on the visual system

~140 million V1 neurons

—— Optic Nerve

~1 million output neurons
(retinal ganglion cells)

Lindsey*, Ocko*, Ganguli, Deny, ICLR 2019



An anatomically constrained deep convolutional model

retina-net

VVS-net
(ventral visual =
stream)

of the visual system

A

el el &

¥

\/

¥
V1
v

9

CIFAR-10

Conv 1 (32 channels)

Conv 2 (1, 2,4, 8,... channels)

Conv 3 (32 channels)

Conv 4 (32 channels)

Dense 1 (1024 neurons)

“Horse”

Dense 2 (10 neurons)

Lindsey*, Ocko*, Ganguli, Deny, ICLR 2019



An anatomically constrained deep convolutional model
of the visual system

retina-net

VVS-net
(ventral visual -
stream)

Lindsey*, Ocko*, Ganguli, Deny, ICLR 2019



Role of Recurrent connections in the brain

Which
object?

Primate ventral stream

Feedforward DCNNs

+— Approximation of retina, LGN, V1, V2, V4 ’ Approximation

4

Decoder

Report
object

Decoder

Report
object

Kar et al 2019



Role of recurrent connections in the brain

nature ARTICLES
neurOSCIence https://doi.org/10.1038/541593-019-0392-5

Evidence that recurrent circuits are critical to
the ventral stream'’s execution of core object
recognition behavior

Kohitij Kar ®'?*, Jonas Kubilius'3, Kailyn Schmidt', Elias B. Issa'* and James J. DiCarlo ®'?2

Non-recurrent deep lutional neural ks (CNNs) are currently the best at modeling core object recognition, a behavior
that s supported by the densely recurrent primate ventral stream, culminating in the inferior temporal (IT) cortex. If recurrence
is critical to this behavior, then primates should outperform feedforward-only deep CNNs for images that require additional
recurrent processmg beyond the feedforward IT response. Here we first used behavioral methods to discover hundreds of these
llenge' i d, using large-scale electrophysmlogy, we observed that behaviorally sufficient object identity solu-
tions emerged ~30 ms later in the IT cortex for challenge images pared with primate performance-matched ‘control’ images.
Third, these behaviorally critical late-phase IT response patterns were poorly predicted by feedforward deep CNN activations.
Notably, very-deep CNNs and shallower recurrent CNNs better predlcted these late IT responses, suggestlng that there is a
bety additional lii ions and recurrence. Beyond arguing that recurrent circuits
are critical for rapid object identification, our results provide strong constraints for future recurrent model development.
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Interplay between memory and vision

When the ventral visual stream is not enough:
A deep learning account of medial temporal lobe

involvement in perception

Tyler Bonnen,'-** Daniel L.K. Yamins,'-> and Anthony D. Wagner'-®
1Department of Psychology, Stanford University, Stanford, CA, USA
2Department of Computer Science, Stanford University, Stanford, CA, USA
3Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
“4Lead contact

*Correspondence: bonnen@stanford.edu
https://doi.org/10.1016/j.neuron.2021.06.018

Example stimuli used to evaluate PRC involvement

in visual object perception
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Interplay between memory and vision

B
@ — Representational requirements,
é —> < - not cognitive process, determine
recruitment of PRC

— pog <E - ~

— vs. (K

W >< " < \\:ilofcompufoblebyll
D

N

requires PRC

(| Computable by IT,
\____ does not require PRC J

Inferotemporal
(IT) cortex

Perirhinal

Early visual
cortex (PRC)

<] <
cortex

Figure 1. Representational-hierarchical account of cognition

(A) Throughout the VVS and extending into the PRC, the features of an object are represented with
increasing complexity. The PRC is at the apex, containing complex representations of objects.

(B) According to this theory, the same cognitive process (in this example, perceiving whether two objects
are the same or different) is solved by different regions in the hierarchy. Thus, it is representational content,
rather than cognitive process, that determines the division of labor throughout the pathway. lllustrations by
Alexander Jacob.



Next to understand : Mental rotation in the brain!

Mean reaction time for “'same”’ pairs (seconds)

A (Piciqre-plane pairs)

4 -
3P -
2F -

1 1 1 I 1
0O 20 40 60 80 100 120 140 160 180

T B (Depth pairs)
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! ? 1 2 X 1 1 1 1 1 5]
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Angle of rotation (degrees)

Kids *learn* how to do it

Mental Rotation of Three-Dimensional Objects
Shepard & Metzler, Science, 1971



Mental rotation in the brain
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Supplementary slides



What about the dorsal stream?

(a) Y preet (b) (ventral) VISIm VISp VISpm
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Figure 3: Representational Similarity Analysis between all the
visual areas and the ANN trained with CPC. (a) The schematic of
the ANN architecture with two pathways (ResNet-2p) used as the
backbone of CPC. (b) Representational similarity between all the
layers of the ANN with two pathways (trained with CPC) and the
ventral (top: VISIm, VISp, VISpm) and the dorsal (bottom: VISal,
VISam) areas



Mental rotation in the brain
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Recurrent connections in the brain might play a
key role in mental rotation and other reasoning
tasks

a Decoder
Primate ventral stream layer
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Aleksandr Krylov

Deep learning model of mental rotation
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 each object features three right-angled
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Aleksandr Krylov

Deep learning model of mental rotation
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Aleksandr Krylov

Deep learning model of mental rotation
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Minh Dinh

Deep learning model of mental rotation

3D latent
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Minh Dinh

Deep learning model of mental rotation

2D image

—» [Encoder
DNN

2D image
rotated by 6

—» [Encoder
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* ||Y —Y'||: embedding of the same object should be very close
* ||Yi —Yj|: embedding of the same object should be very far

Y — Y||: embedding of the wrong rotation should be far

* ||Y — vy || : embedding of the wrong representation should be far

Bwn e




Minh Dinh

Deep learning model of mental rotation

2D 3D latent

image representation

—» [Encoder
DNN

2D image
rotated by 6
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hyp1: progressive rotation
with elementary steps until
the upright pose is found
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* ||Y —Y'||: embedding of the same object should be very close

* ||Yi —Yj|: embedding of the same object should be very far

« ||v = Y||: embedding of the wrong rotation should be far

* ||Y — vy || : embedding of the wrong representation should be far
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hyp2: trial-and-error rotation steps until
the upright pose is found



Riina Pollanen

Invariant representations in the brain
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Matias Koponen

Metzler exp. re-analysis in favor
of trial-and-error hypothesis

A {Picture-plane pairs)
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Experiements

* MEG to see how the invariance to rotated objects unfolds in time

* Does it unfold progressively with angle of rotation (hyp1)?

* Or does it suddenly jump to the correct invariant representation?



The visual system organization

e ventral vs dorsal stream
* what do they do?

* how were they historically discovered?



Crash-course about the brain: neurons

* They are cells containing dendrites and an axon

* They communicate via synapses

* synapses can be modified via experience: Hebb learning rule (STDP)
* They send precisely timed signals called ‘action potentials’ or spikes

* They can be approximated by a sum or their input and spike when a
thershold is reached (leaky-integrate and fire model)



The visual system: organization of the ventral
stream

* retina, thalamus, V1
* simple cells and complex cells in V1

* hypercolumns for orientation, occular dominance, color,

* different patches corresponding to different



The brain in numbers

» 86 Billion neurons (80% in the cerebellum, 18% in the cortex)
* 100 to 10,000 connections on average per neuron
» 20 Watts consumption (i.e., a light bulb)

This view of a human brain seen from the left and slightly behind shows the cerebral cortex and
cerebellum. A small part of the brainstem can be seen just in front of the cerebellum.



