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T4 - Hopfield networks

Structure of a Hopfield network (Hopfield, 1982).
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T5 - Attractor networks

Sketch of the SLAM problem.
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T5 - Attractor networks

176 William Skaggs, James J. Knierim, Hemant S. Kudrimoti, Bruce L McNaughton 

model that accounts for these facts. It is a refinement of a model proposed earlier 
by McNaughton et al. (1991), the main addition being a more specific account of 
neural connections and dynamics. The aim of this effort is to develop the simplest 
possible architecture consistent with the available data. The reality is sure to be 
more complicated than this model. 

Figure 3 schematically illustrates the architecture of the model. There are four 
groups of cells in the model: head direction cells, rotation cells (left and right), 
vestibular cells (left and right), and visual feature detectors. For expository pur-
poses it is helpful to think of the network as a set of circular layers; this does not 
reflect the anatomical organization of the corresponding cells in the brain. 
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Figure 3: Architecture of the head direction cell model. 

The head direction cell group has intrinsic connections that are stronger than any 
other connections in the model, and dominate their dynamics, so that other inputs 
only provide relatively small perturbations. The connections between them are 
set up so that the only possible stable state of the system is a single localized 
cluster of active cells, with all other cells virtually silent. This will occur if there 
are strong excitatory connections between neighboring cells, and strong inhibitory 
connections between distant cells. It is assumed that the network of interconnections 
has rotation and reflection symmetry. Small deviations from symmetry will not 
impair the model too much; large deviations may cause it to have strong attractors 
at a few points on the circle, which would cause problems. 

The crucial property of this network is the following . Suppose it is in a stable state, 
with a single cluster of activated cells at one point on the circle, and suppose an 
external input is applied that excites the cells selectively on one side (left or right) 

Hypothesised... (Skaggs et al., 1994)

...and observed (Jayaraman et al., 2017).

Activation bump along the ring acting
as a compass (Jayaraman et al., 2017).
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T6 - Control loops in the brain

McCulloch and Pitts model (McCulloch and Pitts, 1943).

Leaky Integrate and Fire (LIF) model (Rall et al., 1967).
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T6 - Control loops in the brain

Adaptation in the neural response (Harris et al, 2000).
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T6 - Control loops in the brain

Neurons as adaptive controllers, Chklovskii et al., 2024.
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T6 - Control loops in the brain

Neural spike train response of an LGN neuron to a same stimulus across
trials (Anderson et al., 2006).
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T6 - Control loops in the brain

Dynamics estimation by collective neural
behaviour (Deneve et al., 2013).

rate ri(t), only a correspondingly larger error will be able to exceed
the threshold and lead to a spike.

To connect this firing rule with the desired network dynamics,
Eqn. (1), we take the derivative of each neuron’s membrane
potential, Eqn. (6), and consider the limit of large networks (see
Material and Methods) to obtain the differential equation

_VVi~{lV Viz
XN

k~1

Wik ! ok(t)zCT
i c(t)zsV g(t): ð8Þ

where {lV Vi is a leak term, Wik(t) is a weight matrix of
connectivity filters, explained below, and g(t) corresponds to a
white ‘‘background noise’’ with unit-variance. The leak-term does
not strictly follow from the derivation, but has been included for
biological realism. A similar rationale holds for the noise term
which we add to capture unavoidable sources of stochasticity in
biological neurons due to channel noise, background synaptic
input, etc. The differential equation then corresponds to a
standard LIF neuron with leak term {lV Vi, external, feedfor-

ward synaptic inputs CT
i c(t), recurrent synaptic inputs mediated

through the weight matrix Wik(t), and a firing threshold Ti, as
specified in Eqn. (7).

The weight matrix of connectivity filters is defined as

Wik(u)~Vs
ikhd (u){Vf

ikd(u) ð9Þ

and contains both ‘‘fast’’ and ‘‘slow’’ lateral connections, given by
the matrices

Vf ~CT Czmld
2 I ð10Þ

Vs~CT (Azld I)C ð11Þ

where I corresponds to the identity matrix. Accordingly, the
connectivity of the network is entirely derived from the output
weight matrix C, the desired dynamics A, and the penalty parameter

m. Note that the diagonal elements of Vf implement a reset in

membrane potential after each spike by ECiE2zmld
2. With this self-

reset, individual neurons become formally equivalent to LIF
neurons. Whereas the linear penalty, n, influences only the thresholds
of the LIF neurons, the quadratic penalty, m, influences both the
thresholds, resets, and dynamics of the individual neurons, through
its impact on the diagonal elements of the connectivity matrix.

Figure 1. Spike-based implementation of linear dynamical systems. (A) Structure of the network: the neurons receive an input c(t), scaled by
feedforward weights CT , which is internally processed through fast and slow recurrent connections, Vf and Vs, to yield firing rates that can be read
out by a linear decoder with weights C to yield estimates of the dynamical variables, x̂x(t). Connections: red, excitatory; blue, inhibitory; filled circle
endpoints, fast; empty diamond endpoints, slow. (B) Exemplary, effective postsynaptic potentials between neurons from two different networks. (C)
Sensory integrator network for ls~0 (perfect integrator). Top panel: Sensory stimulus s (blue line). Before t~1:2s, the neurons integrate a slightly
noisy version of the stimulus, c(t)~s(t)zssg(t), where g(t) is unit-variance Gaussian noise. At t~1:2s (downward pointing arrow) all inputs to the
network cease (i.e. s~0, ss~0). Middle panel: Raster plot of 140 model units for a given trial. Top 70 neurons have negative kernels (Ci~{0:1), and
bottom 70 neurons have positive kernels (Ci~0:1). Each dot represents a spike. Thin blue line: state x. Thick red line: Network estimate x̂x. Bottom
panel: Mean firing rate (over 500 presentations of identical stimuli s, but with different instantiations of the sensory noise ssg(t)) for the population of
neurons with positive kernels (magenta) or negative kernels (green). (D) Same as C but for ls~100Hz. Parameters in A–D: N~400, Ci~0:1 for
i~1 . . . 200, Ci~{0:1 for i~201 . . . 400, sV ~10{3, lV ~20Hz, ld~10Hz, m~10{6, n~10{5 , ss~0:01 (in C) and ss~0:03 (in D). Simulation time
step (Euler method) dt~0:1msec. The noise parameters, sV and ss, represent the standard deviation of the noise injected in each dt~0:1ms time step.
doi:10.1371/journal.pcbi.1003258.g001

Predictive Coding in Balanced Spiking Networks

PLOS Computational Biology | www.ploscompbiol.org 3 November 2013 | Volume 9 | Issue 11 | e1003258

Model sketch, with excitatory
and inhibitory connections

(Deneve et al., 2013).
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T7 - Chaos
ENGELKEN, WOLF, AND ABBOTT PHYSICAL REVIEW RESEARCH 5, 043044 (2023)

(a) (b)

(d)(c)

FIG. 1. Transition to chaos for sufficiently strong coupling g in
rate networks. (a) Linear stability of rate dynamics near the zero
fixed point. Real vs imaginary part of eigenvalues λ̂i of the stability
matrix for g = 0.99. (b) For subcritical couplings (g = 0.99) the
trivial fixed point of the system hi = 0 is the only stable solution.
(c) In large networks the trivial fixed point loses stability at gcrit = 1
and chaos emerges from the nonlinear interaction of rate units where
the spectral radius crosses unity (gray dotted line). (d) Rate chaos for
g = 1.2 (other parameters: network size N = 1000, integration step
"t = 10−3τ ).

through a single sharp transition from an inactive state to
a chaotic state [1] (Fig. 1). In this class of models, each
rate unit maps its synaptic input hi smoothly into a fir-
ing rate through a hyperbolic tangent input-output transfer
function φ. Coupling strengths are drawn independently from
a Gaussian distribution with zero mean and standard deviation
g/

√
N , where N is the size of the network. Dynamic mean-

field theory is applicable in the large network limit N → ∞.
In this approach, the recurrent input into a typical unit is
modeled by a Gaussian process whose statistics is determined
self-consistently. For small coupling g < 1, the trivial fixed
point hi = 0 for all i is the only stable solution to the mean-
field theory [Figs. 1(a) and 1(b)]. For increasing coupling
strength, this trivial fixed point loses stability and chaos
emerges from the nonlinear interaction of unstable activity
modes [Figs. 1(c) and 1(d)]. Sompolinsky, Crisanti, and Som-
mers showed that in the large network limit N → ∞ above
a critical strength gcrit = 1, the only stable self-consistent so-
lution is chaotic dynamics [1]. The transition to chaos occurs
when the spectral radius λ̂max of the stability matrix obtained
from linearizing the rate dynamics around the fixed point
hi = 0 crosses unity [Figs. 1(a) and 1(c)].

This classical work has been extended, and the transition
has been studied for networks with different subpopulations
[2–4], various input-output transfer functions [2,4], bistable
units [5], adaptation [6], sparse balanced network architec-
tures [2,4,7], and external stimuli [8–11]. For networks of
spiking model neurons, quantitative agreement with a corre-
sponding chaotic rate network in the limit of slow synaptic
dynamics was found [4,7] (see also [12]).

The chaotic, heterogeneous state of rate networks
possesses high computational capabilities. These arise
from its rich internal dynamics that can provide a substrate
for complex nonlinear computations, e.g., implementing
input/output maps [13–15] and learning temporal sequences
[16]; however, it is a challenge to extend this to spiking neural

networks [17–21]. Some studies proposed that computational
features are favorable near to or even slightly beyond the
so-called edge of chaos in the chaotic regime [11,15,22–27].
It was claimed and questioned much earlier in dynamical
systems research that the edge of chaos is computationally
advantageous [28–30].

Recent developments in machine learning, including the
renaissance of deep networks, have sparked additional inter-
est in principles of stability and information processing in
recurrent rate networks [31,32]. One reason for this is that
recurrent networks can be unrolled in time into infinitely
deep feed-forward networks with tied weights [33]. To avoid
vanishing or exploding gradients during learning, this analogy
suggests that learning in deep nonlinear networks is facilitated
if the weights are initialized such that the corresponding recur-
rent networks are close to the edge of chaos (gcrit = 1) [31,34–
37]. Intriguingly, transient rate chaos yields exponential ex-
pressivity in deep networks [32,38,39].

Here we calculate the full set of Lyapunov exponents of
classical continuous-time firing-rate networks. Previous ana-
lytical studies only considered the largest Lyapunov exponent,
but the full Lyapunov spectrum provides valuable additional
insights into the collective dynamics of firing-rate networks.

We use concepts from the ergodic theory of dynamical sys-
tems to further characterize the complex collective dynamics
of rate networks. Often large-scale dissipative systems evolve
towards a low-dimensional attractor, but it is a challenge to
identify and characterize this lower-dimensional manifold.
Ergodic theory provides an estimate of the attractor dimen-
sionality by characterizing the diversity of collective network
activity states [40]. It also provides access to the dynamical
entropy rate, which measures the amplification of uncertainty
due to sensitivity to initial conditions. The dynamical en-
tropy rate constrains the capability of information processing.
Given that the initial state is known only with finite precision,
the sensitive dependence on initial conditions makes predic-
tions of future states impossible in chaotic systems [41,42].
This corresponds to a dynamical entropy rate because nearby
states, which cannot be distinguished by a finite precision
readout initially, are pulled apart by the chaotic dynamics and
become distinguishable later on. Therefore, the dynamical en-
tropy rate quantifies the speed at which microscopic perturba-
tions affect macroscopic rate fluctuations [41]. Sensitivity to
initial conditions in cortical circuits might serve as a dynami-
cal mechanism to pull nearby trajectories apart [43–45]. If the
microscopic initial state contains a relevant signal, the dynam-
ical entropy rate measures the rate by which this information
becomes accessible. From a neural coding perspective, the
dynamical entropy rate can contribute to the so-called noise
entropy [46] because the dynamic amplification of micro-
scopic noise by chaotic dynamics can impair coding capacity.

Both the dynamical entropy rate and attractor dimension-
ality are invariants of dynamical systems, i.e., they do not
change under diffeomorphisms of the phase space [47–50]
and can be obtained from the set of Lyapunov exponents [51].
This is the only known general way of calculating the entropy
of a high-dimensional differentiable dynamical system [40].
Sampling-based methods, such as the Grassberger-Procaccia
algorithm [52–54], which estimates the correlation dimension
D2, are intractable for high-dimensional systems, because the

043044-2

Fixed point vs. chaotic RNN behaviour (Engelken et al, 2023).

14 / 15



T7 - ChaosENGELKEN, WOLF, AND ABBOTT PHYSICAL REVIEW RESEARCH 5, 043044 (2023)

(a)

(c)
(d)

(b)

FIG. 15. Reorganization of rate network phase space during learning. (a) Local Lyapunov exponent [λlocal
i (t )], output z(t ) = wᵀφ(x(t )),

and activity of example rate units φi(t ) before learning in the chaotic state. (b) Chaotic network activity φ(t ) before learning projected on the
first two principal components. (c) Same as (a) after learning a periodic task using FORCE [15]. (d) Same as (b) after training. (Parameters:
N = 200, g = 1.5, #t = 10−1τ , tONS = 10−1τ , τ = 10−2s.)

We obtained Lyapunov exponents before, within, and after
training by evolving an orthonormal basis along the trajectory
using the analytical Jacobians as described before and in more
detail in the Supplemental Material [61].

We find that the full-rank method full-FORCE results
in a more negative largest Lyapunov exponent and thus a
microscopically more stable dynamics (Fig. 16). Moreover,
subsequent Lyapunov exponents drop quicker towards the
negative inverse of the characteristic timescale −1/τ . The
external periodic input pulses makes the dynamics nonau-
tonomous; therefore, no neutral Lyapunov exponent occurs.
Note that convergence of infinitesimally different initial con-
ditions does not necessarily imply stability with respect to
finite-size perturbations. For example, in spiking networks
there exists multistability [122], and also trained firing-rate
networks often exhibit multistability (not shown).

X. LYAPUNOV SPECTRUM OF RECURRENT
LSTM NETWORK

Training recurrent neural networks on tasks that involve
long time lags with gradient-based methods is hampered by
the loss of gradient information. Long short-term memory
(LSTM) units were introduced to ameliorate this problem
of vanishing or exploding gradients by adding a latent—
potentially slow—additional degree of freedom for each rate
unit with dedicated input, output, and forget gates that con-
spire to retain information over extended time lags [123]. The

dynamics of each of the N LSTM units follow the map [123]:

ft = σg(Uf ht−1 + Wf xt + b f ), (37)

ot = σg(Uoht−1 + Woxt + bo), (38)

it = σg(Uiht−1 + Wixt + bi ), (39)

c̃t = σh(Ucht−1 + Wcxt + bc), (40)

ct = ft ⊙ ct−1 + it ⊙ c̃t , (41)

ht = ot ⊙ φ(ct ), (42)

where ⊙ denotes the Hadamard product, σg(x) = 1
1+exp(−x)

is the sigmoid function, σh(x) = tanh(x), and entries of the
matrices Ux are drawn from Ux ∼ N (0, g2

x/N ). The bias terms
bx are scalars for simplicity. Subscripts f , o, and i denote
respectively the forget gate, the output gate, the input gate and
c is the cell state. Note that each LSTM unit has two dynamic
variables c and h and three gates f , o, and i that govern signals
going in and out of the cell c. The full Lyapunov spectrum is
again obtained by a reorthonormalization procedure of the Ja-
cobians along a numerical solution of the map [60]; for details,
see the Supplemental Material [61]. As a proof-of-concept,
we calculate Lyapunov spectra of recurrent LSTM networks
both in the autonomous case and for Gaussian white noise
input that is fixed across initial conditions (Fig. 17). In the
case of external input, the entries of the input coupling matri-
ces Wx are drawn from Wx ∼ N (0, g̃2

x/N ) and ξi independent
Gaussian white noise processes with autocorrelation function
⟨ξi(t )ξi(t + t ′)⟩ = τσ 2δ(t ′) that are fixed across initial condi-
tions. We find that saturating the forget gates by increasing

043044-14

Activation trajectories for untrained and trained RNNs (Engelken et al, 2023).
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