Practical Quartum Compusting

Lecture 04 Superdense Coding and Bell's Inequalities

with slides from Dave Bacon https://homes.cs.washington.edu/~dabacon/teaching/siena/
based on Quantum Computing:Lecture Notes by Ronald de Wolf https://homepages.cwi.nl/~rdewolf/qcnotesv2.pdf

Week	Tuesday (3h)			Wednesday (3h)			Deadlines	
1. The Basics	Introduction	Gates	Circuit Identities	Qiskit	Cirq/Qual tran	Q\&A		
	Programming Assignment 1: The basics of a quantum circuit simulator			Programming Assignment 1: The building blocks of a quantum circuit simulator				
2. Entanglement and its Applications	Teleportation	Superdense Coding	Quantum Key Distribution	Qualtran/ Assignme nt2	Terminol ogy of Projects	Q\&A		
	Programming Assignment 2: The basics of a quantum circuit optimizer			Programming Assignment 2: The building blocks of a quantum circuit optimizer				
3. Computing	Phase Kickback and Toffoli	Distinguishin g quantum states and The First Algorithms	Grover's Algorithm	Invited TBA	PennyLa ne	Q\&A		11 May 2024
4. Advanced Topics*	Arithmetic Circuits*	Fault-Toleran ce*	QML*	Invited TBA	Crumble	Q\&A	$\begin{aligned} & 18 \text { May } \\ & 2024 \end{aligned}$	

[^0]
Learning goals - 05 Superdense Coding (Entanglement)

1. What you have learned by now
a. Quantum circuits: mathematics, diagrams and circuit identities
b. Teleportation: derivation from circuit identities, using entangled Bell states
2. Sending two bits of information using entanglement
a. What is superdense coding (sdc)?
b. What is the difference between sdc and teleportation?
3. Entanglement is more powerful than classical correlations
a. Proof of power - using Bell States to show Bell's inequalities
b. (Appendix*) Winning games using entanglement - quantum games

In the exercise session and programming assignment of this week

- basics of quantum circuit optimization
- build our own quantum circuit optimizer
- benchmark your optimizer

Teleportation

Teleportation and Superdense Coding

$$
1 \text { qubit = } 1 \text { ebit }+2 \text { bits }
$$

Teleportation says we can replace transmitting a qubit with a shared entangled pair of qubits plus two bits of classical communication.

```
Superdense Coding
```

Next we will see that

$$
2 \text { bits }=1 \text { qubit }+1 \text { ebit }
$$

Superdense Coding

Suppose Alice and Bob each have one qubit and the joint two qubit wave function is the entangled state

$$
\left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Alice wants to send two bits to Bob. Call these bits b_{1} and b_{2}.
Alice applies the following operator to her qubit:
Bob then measures in the Bell basis to determine the two bits.

2 bits $=1$ qubit +1 ebit

Bell States

B0 $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$

B_{0} very often called a Bell pair state
B2 $\frac{|00\rangle-|11\rangle}{\sqrt{2}}$ B_{1} flip the second state $\mid 0>$ to |1>
B_{2} flip the phase from + to -
B_{3} the spin singlet state from the previous slide

B1 $\frac{|01\rangle+|10\rangle}{\sqrt{2}}$

- B_{0}, B_{1}, B_{2} are also invariant if transformed according to their relation to B_{3}
- For example, for B_{0} considering the observables Z and X :
- Alice measures in Z and sees |0>
- the state on Bob's side is |0>
- measures X (rotated basis)
- sees with equal probability |+> or |->

Bell Basis

The four Bell states

- can be turned into each other
- using operations on only one of the qubits:

$$
\begin{gathered}
\left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
(X \otimes I)\left|\Phi_{+}\right\rangle=(X \otimes I) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(|10\rangle+|01\rangle)=\left|\Psi_{+}\right\rangle \\
(Z \otimes I)\left|\Phi_{+}\right\rangle=(Z \otimes I) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\left|\Phi_{-}\right\rangle \\
(Z X \otimes I)\left|\Phi_{+}\right\rangle=(Z X \otimes I) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(-|10\rangle+|01\rangle)=\left|\Psi_{-}\right\rangle
\end{gathered}
$$

Superdense Coding

Initially: $\quad\left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
Alice applies the following operator to her qubit: $Z^{b_{2}} X^{b_{1}}$

$$
\left(Z^{b_{2}} X^{b_{1}} \otimes I\right)\left|\Phi_{+}\right\rangle
$$

Bob can uniquely:

- determine which of the four states he has
- figure out Alice's two bits!

$$
\begin{array}{lrr}
b_{1}=0, b_{2}=0 & \left|\Phi_{+}\right\rangle \\
b_{1}=0, b_{2}=1 & (Z \otimes I)\left|\Phi_{+}\right\rangle=\left|\Phi_{-}\right\rangle \\
b_{1}=1, b_{2}=0 & (X \otimes I)\left|\Phi_{+}\right\rangle=\left|\Psi_{+}\right\rangle \\
b_{1}=1, b_{2}=1 & (Z X \otimes I)\left|\Phi_{+}\right\rangle=\left|\Psi_{-}\right\rangle
\end{array}
$$

Superdense Coding

Teleportation and Superdense Coding

$$
1 \text { qubit }=1 \text { ebit }+2 \text { bits }
$$

Teleportation says we can replace transmitting a qubit with a shared entangled pair of qubits plus two bits of classical communication.

$$
2 \text { bits }=1 \text { qubit }+1 \text { ebit }
$$

Superdense coding. We can send two bits of classical information if we share an entangled state and can communicate one qubit of quantum information.

Learning goals - 05 Superdense Coding (Entanglement)

1. What you have learned by now
a. Quantum circuits: mathematics, diagrams and circuit identities
b. Teleportation: derivation from circuit identities, using entangled Bell states
2. Sending two bits of information using entanglement
a. What is superdense coding (sdc)?
b. What is the difference between sdc and teleportation?
3. Entanglement is more powerful than classical correlations
a. Proof of power - using Bell States to show Bell's inequalities
b. (Appendix*) Winning games using entanglement - quantum games

In the exercise session and programming assignment of this week

- basics of quantum circuit optimization
- build our own quantum circuit optimizer
- benchmark your optimizer

Bell's Inequalities

Is there a set of instructions that tells the particles how to react when they are measured?
Bell Inequalities are a test for locality by considering the correlations between measurement outcomes obtained by two parties who share an entangled state

- classical correlations
- encoded in a set of instructions using hidden variables with known values
- there is a joint probability distribution that governs the possible outcomes of all measurements
- then the outcome of any measurement can be predicted with certainty
- quantum correlations

One possible approach:

- take three binary properties A, B and C
- model classic probabilistic behaviour by an inequality
- test on multiple quantum states by collecting statistics

Classical: Count the number of events satisfying a condition

- Assume that the binary properties are randomly measured
- $A=\{+1,-1\}, B=\{+1,-1\}, C=\{+1,-1\}$
- Formulate an inequality that is classically correct (see below)
- $\quad N\left(A B^{\prime}\right)=$ number of times A is +1 and B is -1
- $\quad N\left(B C^{\prime}\right)=$ number of times B is +1 and C is -1
- $\quad N\left(A C^{\prime}\right)=$ number of times A is +1 and C is -1

$$
\begin{aligned}
& \mathbf{N}\left(A B^{\prime}\right)+\mathbf{N}\left(B C^{\prime}\right)>=\mathbf{N}\left(A C^{\prime}\right) \\
& N\left(A B^{\prime}\right)=N\left(A B^{\prime} C\right)+N\left(A B^{\prime} C^{\prime}\right) \text {, because } C \text { can be either }+1 \text { or }-1 \\
& N\left(B C^{\prime}\right)=N\left(A B C^{\prime}\right)+N\left(A^{\prime} B C^{\prime}\right) \text {, because } A \text { can be either }+1 \text { or }-1 \\
& N\left(A C^{\prime}\right)=N\left(A B C^{\prime}\right)+N\left(A B^{\prime} C^{\prime}\right), \text { because } B \text { can be either }+1 \text { or }-1
\end{aligned}
$$

$N\left(A B^{\prime} C\right)+\underline{N\left(A B^{\prime} C^{\prime}\right)+N\left(A B C^{\prime}\right)+N\left(A^{\prime} B C^{\prime}\right)>=\underline{N}\left(A B C^{\prime}\right)+N\left(A B^{\prime} C^{\prime}\right)}$
$N\left(A B^{\prime} C\right)+N\left(A^{\prime} B C^{\prime}\right)>=0 \rightarrow$ it is correct, sum of two positive values >0

Quantum: Validate experimentally by measuring repeatedly

Given an ensemble of entangled states, for example, B_{0}

- Three axis: Z and two others rotated by angle theta and 2theta
- Alice and Bob randomly choose along which axis A, B, or C to measure

$$
\cos \left(\text { angle/2)|A+> ; } \operatorname { s i n } \left(\text { angle/2)|A }-\gg \quad\left[\begin{array}{c}
\cos (\text { angle/2) } \\
\sin (\text { angle/2) })
\end{array}\right.\right.\right.
$$

$$
N\left(A B^{\prime}\right)+N\left(B C^{\prime}\right)>=N\left(A C^{\prime}\right)
$$

$$
P(A+, B-)+P(B+, C-)>=P(A+, C-)
$$

$$
\sin ^{2}(\text { theta } / 2)+\sin ^{2}(\text { theta } / 2)>=\sin ^{2} \text { (theta) }
$$

For small angles $\boldsymbol{\operatorname { s i n }}(\mathbf{x})=\mathbf{x}$

$$
2 \text { * }\left(\text { theta}^{2} / 4\right)>=\text { theta }^{2}
$$

Discussion for the break...

Entanglement has some non-obvious properties, and it can be used for communication purposes. Entanglement is a communication resource. Is entanglement a computational resource, too?

Appendix

Instructions: Hidden Variables -> Counting is the value of N

Before:

1. each experiment
2. the Bell pair is constructed
3. sent to Alice and Bob

The particles decide how to react locally to the measurements
\rightarrow instructions

\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{+}$	$\mathbf{+}$	$\mathbf{+}$
$\mathbf{+}$	$\mathbf{+}$	$\mathbf{-}$
$\mathbf{+}$	-	$\mathbf{+}$
$\mathbf{+}$	-	$\mathbf{-}$
-	$\mathbf{+}$	$\mathbf{+}$
-	-	$\mathbf{+}$
-	-	$\mathbf{+}$
-		

Entangled State

$$
\text { 1/sqrt(2) * }|01>-| 10>) \quad \text { often called the spin singlet state }
$$

whenever the measurement is performed along the Z axis
It is always possible for Alice to predict what Bob's result was
Alice measures |0>, Bob measures |1>
Alice measures |1>, Bob measures |0>
They share a state that remains invariant if each apply the same unitary transformation
$\left.U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)|0>=a| a>+b \right\rvert\, b>$ and $|1>=c| a>+d|b\rangle$
Replace |0> and |1>: 1/sqrt(2) (|01> - |10>) = (ad -bc)/sqrt(2)(|ab> - |ba>)
U is unitary, (ad-bc) is a global phase factor of the form $e^{i(t h e t a)}$
Measurement results in a rotated basis on both qubits will be correlated too

Entanglement and Games

Entangled states

- cannot be written as a tensor product of separate states
- the most famous one is the Bell pair

Non-local games (remember teleportation)

- explore some of the consequences of entanglement
- involves a referee and two non-communicating parties
- Alice and Bob are cooperatively trying to win the game

The game

- one round of interaction between referee and Alice and Bob:
- the referee sends

- a (classical) question x to Alice
- a (classical) question y to Bob
- questions are sampled from some known probability distribution
- Alice and Bob respectively respond with a (classical) answer

CHSH Game

CHSH game where two players Alice and Bob

- receive an input bit x and y respectively
- produce an output a and b based on the input bit
- Alice's output bit depends solely on her input bit x, and similarly for Bob

The goal is to maximize the probability to satisfy the condition:

a XOR b = x AND y

Consider the case of classical deterministic strategies

- without any randomness
- the highest probability achievable is 75\%
- four bits completely characterize any deterministic strategy
- Let $\mathrm{a} 0, \mathrm{a} 1$ be the outputs that Alice outputs outputs if $\mathrm{x}=0$ and $\mathrm{x}=1$
- Let b0, b1 be the outputs Bob gives on inputs $\mathrm{y}=0$ and $\mathrm{y}=1$

$$
\begin{aligned}
a_{0} \oplus b_{0} & =0, \\
a_{0} \oplus b_{1} & =0, \\
a_{1} \oplus b_{0} & =0, \\
a_{1} \oplus b_{1} & =1 .
\end{aligned}
$$

CHSH Game

With quantum correlations

- it can achieve higher success probability
- two players start with a shared Bell-pair entangled state
- the random input \mathbf{x} and \mathbf{y} is provided by referee for Alice and Bob

The success probability of satisfying the above condition will be cos(theta/2)^2 if Alice and Bob measure their entangled qubit in measurement basis V and W where angle between V and W is theta.

Maximum success probability is

- $\cos (p i / 8)^{\wedge} 2 \sim 85.3 \%$ when theta $=$ pi/4.
- In the usual implementation, Alice and Bob share the Bell state with the same value and opposite phase. If the input $x(y)$ is 0 , Alice (Bob) rotates in Y-basis by angle -pi/16 and if the input is 1, Alice (Bob) rotates by angle 3pi/16

CHSH Game

What Alice does:

- if $x=0$ then Alice applies $R(-\pi / 16)$ to her qubit
- if $x=1$ she applies $R(3 \pi / 16)$
- then Alice measures her qubit in the computational basis
- outputs the resulting bit a

Bob's procedure is the same, depending on his input bit y
After the measurements

- the probability that $\mathrm{a} \oplus \mathrm{b}=0$ is $\cos \left(\theta_{1}+\theta_{2}\right)^{2}$
- the first condition is satisfied with probability $\cos (\pi / 8)^{2}$ for all four input possibilities

CHSH Game

Start with

$$
\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) .
$$

Consider the rotation matrix

$$
R(\theta)=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Product-to-sum ${ }^{[32]}$
$2 \cos \theta \cos \varphi=\cos (\theta-\varphi)+\cos (\theta+\varphi)$
$2 \sin \theta \sin \varphi=\cos (\theta-\varphi)-\cos (\theta+\varphi)$
$2 \sin \theta \cos \varphi=\sin (\theta+\varphi)+\sin (\theta-\varphi)$
$2 \cos \theta \sin \varphi=\sin (\theta+\varphi)-\sin (\theta-\varphi)$
$\tan \theta \tan \varphi=\frac{\cos (\theta-\varphi)-\cos (\theta+\varphi)}{\cos (\theta-\varphi)+\cos (\theta+\varphi)}$
$\prod_{k=1}^{n} \cos \theta_{k}=\frac{1}{2^{n}} \sum_{e \in S} \cos \left(e_{1} \theta_{1}+\cdots+e_{n} \theta_{n}\right)$
where $S=\{1,-1\}^{n}$

After Alice uses theta1 and Bob uses theta2

$$
\frac{1}{\sqrt{2}}\left(\cos \left(\theta_{1}+\theta_{2}\right)(|00\rangle-|11\rangle)+\sin \left(\theta_{1}+\theta_{2}\right)(|01\rangle+|10\rangle)\right)
$$

[^0]: * not evaluated

