
Practical Quantum Computing

Lecture 04
Superdense Coding and Bell’s Inequalities

with slides from Dave Bacon https://homes.cs.washington.edu/~dabacon/teaching/siena/ 
based on Quantum Computing:Lecture Notes by Ronald de Wolf https://homepages.cwi.nl/~rdewolf/qcnotesv2.pdf 

https://homes.cs.washington.edu/~dabacon/teaching/siena/
https://homepages.cwi.nl/~rdewolf/qcnotesv2.pdf
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Week Tuesday (3h) Wednesday (3h) Deadlines

1. The Basics Introduction Gates Circuit 
Identities

Qiskit Cirq/Qual
tran

Q&A

Programming Assignment 1: The basics 
of a quantum circuit simulator

Programming Assignment 1: 
The building blocks of a 
quantum circuit simulator

2. Entanglement 
and its 
Applications

Teleportation Superdense 
Coding

Quantum 
Key 
Distribution

Qualtran/
Assignme
nt2

Terminol
ogy of 
Projects

Q&A

Programming Assignment 2: The basics 
of a quantum circuit optimizer

Programming Assignment 2: 
The building blocks of a 
quantum circuit optimizer

3. Computing Phase 
Kickback and 
Toffoli

Distinguishin
g quantum 
states and 
The First 
Algorithms

Grover’s 
Algorithm

Invited 
TBA

PennyLa
ne

Q&A 11 May 
2024

4. Advanced 
Topics*

Arithmetic 
Circuits*

Fault-Toleran
ce*

QML* Invited 
TBA

Crumble Q&A 18 May 
2024

* not evaluated



Learning goals - 05 Superdense Coding 
(Entanglement)
1. What you have learned by now

a. Quantum circuits: mathematics, diagrams and circuit identities
b. Teleportation: derivation from circuit identities, using entangled Bell 

states
2. Sending two bits of information using entanglement

a. What is superdense coding (sdc)?
b. What is the difference between sdc and teleportation?

3. Entanglement is more powerful than classical correlations
a. Proof of power – using Bell States to show Bell’s inequalities
b. (Appendix*) Winning games using entanglement – quantum games
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In the exercise session and 
programming assignment of this 
week

● basics of quantum circuit 
optimization

● build our own quantum 
circuit optimizer

● benchmark your optimizer



Alice Bob

Teleportation

https://pennylane.ai/qml/demos/tutorial_zx_calculus/ 

https://pennylane.ai/qml/demos/tutorial_zx_calculus/


1 qubit = 1 ebit + 2 bits

2 bits = 1 qubit + 1 ebit
Next we will see that

Superdense Coding

Teleportation and Superdense Coding

Teleportation says we can replace transmitting a qubit
with a shared entangled pair of qubits plus two bits of 
classical communication.



2 bits = 1 qubit + 1 ebit

Superdense Coding

Suppose Alice and Bob each have one qubit and the joint two qubit wave function 
is the entangled state

Alice wants to send two bits to Bob.  Call these bits      and      .

Alice applies the following operator to her qubit:

Bob then measures in the Bell basis to determine the two bits.



Bell States

B0 very often called a Bell pair state

B1 flip the second state |0> to |1>

B2 flip the phase from + to -

B3 the spin singlet state from the previous slide

● B0, B1, B2 are also invariant if transformed according to their relation to B3
● For example, for B0 considering the observables Z and X:

○ Alice measures in Z and sees |0>
○ the state on Bob’s side is |0>

■ measures X (rotated basis) 
■ sees with equal probability |+> or |->
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Bell Basis

The four Bell states

● can be turned into each other 
● using operations on only one of the qubits:



Alice applies the following operator to her qubit:

Initially:

Bob can uniquely:
● determine which of the four states he has
● figure out Alice’s two bits!

Superdense Coding



Bell basis
measurement

Superdense Coding



1 qubit = 1 ebit + 2 bits

Teleportation says we can replace transmitting a qubit
with a shared entangled pair of qubits plus two bits of 
classical communication.

2 bits = 1 qubit + 1 ebit

Superdense coding. We can send two bits of classical 
information if we share an entangled state and can 
communicate one qubit of quantum information.

Teleportation and Superdense Coding



Learning goals - 05 Superdense Coding 
(Entanglement)
1. What you have learned by now

a. Quantum circuits: mathematics, diagrams and circuit identities
b. Teleportation: derivation from circuit identities, using entangled Bell 

states
2. Sending two bits of information using entanglement

a. What is superdense coding (sdc)?
b. What is the difference between sdc and teleportation?

3. Entanglement is more powerful than classical correlations
a. Proof of power – using Bell States to show Bell’s inequalities
b. (Appendix*) Winning games using entanglement – quantum games
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In the exercise session and 
programming assignment of this 
week

● basics of quantum circuit 
optimization

● build our own quantum 
circuit optimizer

● benchmark your optimizer



Bell’s Inequalities

Is there a set of instructions that tells the particles how to react when they are measured?

Bell Inequalities are a test for locality by considering the correlations between measurement 
outcomes obtained by two parties who share an entangled state

● classical correlations
○ encoded in a set of instructions using hidden variables with known values
○ there is a joint probability distribution that governs the possible outcomes of all measurements
○ then the outcome of any measurement can be predicted with certainty

● quantum correlations

One possible approach:

● take three binary properties A, B and C
● model classic probabilistic behaviour by an inequality
● test on multiple quantum states by collecting statistics
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Classical: Count the number of events satisfying a condition

● Assume that the binary properties are randomly measured 
● A = {+1, -1}, B = {+1, -1}, C = {+1,-1}
● Formulate an inequality that is classically  correct (see below)

○ N(AB’) = number of times A is +1 and B is -1
○ N(BC’) = number of times B is +1 and C is -1
○ N(AC’) = number of times A is +1 and C is -1

N(AB’) + N(BC’) >= N(AC’)

N(AB’) = N(AB’C) + N(AB’C’), because C can be either +1 or -1

N(BC’)= N(ABC’) + N(A’BC’), because A can be either +1 or -1

N(AC’)=N(ABC’) + N(AB’C’), because B can be either +1 or -1

N(AB’C) + N(AB’C’) + N(ABC’) + N(A’BC’) >= N(ABC’) + N(AB’C’)

N(AB’C) + N(A’BC’) >= 0 → it is correct, sum of two positive values > 0
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Quantum: Validate experimentally by measuring repeatedly

Given an ensemble of entangled states, for example, B0

● Three axis: Z and two others rotated by angle theta and 2theta
● Alice and Bob randomly choose along which axis A, B, or C to measure

cos(angle/2)|A+>  ;  sin(angle/2)|A->  >  
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cos(angle/2)
sin(angle/2)

|A+>
theta

|A->
|B+>

|B->

|C+>

|C->
theta

N(AB’) + N(BC’) >= N(AC’)

P(A+, B-) + P(B+, C-) >= P(A+, C-)

sin2(theta/2) + sin2(theta/2) >= sin2(theta)

For small angles sin(x) = x

2 * (theta2/4) >= theta2 Violates Inequality



Discussion for the break…

Entanglement has some non-obvious properties, and it can be used for 
communication purposes. Entanglement is a communication resource. Is 
entanglement a computational resource, too?



Appendix



Instructions: Hidden Variables -> Counting is the value 
of N
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A B C

+ + +

+ + -

+ - +

+ - -

- + +

- + -

- - +

- - -

Before:
1. each experiment
2. the Bell pair is 

constructed 
3. sent to Alice and Bob

The particles decide how 
to react locally to the 
measurements

→ instructions

On next slide: Instead of three properties(e.g. A,B,C) use three devices and a single property



Entangled State

1/sqrt(2) * (|01> - |10>)           often called the spin singlet state

whenever the measurement is performed along the Z axis

It is always possible for Alice to predict what Bob’s result was 

Alice measures |0>, Bob measures |1>

Alice measures |1>, Bob measures |0>

They share a state that remains invariant if each apply the same unitary transformation

U =               |0> = a|a> + b|b>  and |1> = c|a> + d|b>

Replace |0> and |1>: 1/sqrt(2) (|01> - |10>) =  (ad - bc)/sqrt(2)(|ab> - |ba>)

U is unitary, (ad-bc) is a global phase factor of the form ei(theta)

Measurement results in a rotated basis on both qubits will be correlated too
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a b
c d



Entanglement and Games

Entangled states

● cannot be written as a tensor product of separate states
● the most famous one is the Bell pair

Non-local games (remember teleportation)

● explore some of the consequences of entanglement
● involves a referee and two non-communicating parties
● Alice and Bob are cooperatively trying to win the game

The game

● one round of interaction between referee and Alice and Bob:
● the referee sends

○ a (classical) question x to Alice 
○ a (classical) question y to Bob 
○ questions are sampled from some known probability distribution

● Alice and Bob respectively respond with a (classical) answer



CHSH Game

CHSH game where two players Alice and Bob 

● receive an input bit x and y respectively 
● produce an output a and b based on the input bit
● Alice’s output bit depends solely on her input bit x, and similarly for Bob

The goal is to maximize the probability to satisfy the condition:

a XOR b = x AND y

Consider the case of classical deterministic strategies

● without any randomness
● the highest probability achievable is 75%
● four bits completely characterize any deterministic strategy

● Let a0, a1 be the outputs that Alice outputs outputs if x=0 and x=1
● Let b0, b1 be the outputs Bob gives on inputs y=0 and y=1

Not possible to satisfy 
all four equations  
simultaneously, since 
summing them modulo 
2 yields 0 = 1



CHSH Game

With quantum correlations

● it can achieve higher success probability
● two players start with a shared Bell-pair entangled state
● the random input x and y is provided by referee for Alice and Bob

The success probability of satisfying the above condition will be cos(theta/2)^2 if Alice 
and Bob measure their entangled qubit in measurement basis V and W where angle 
between V and W is theta.

Maximum success probability is

● cos(pi/8)^2 ~ 85.3% when theta = pi/4.
● In the usual implementation, Alice and Bob share the Bell state with the same value 

and opposite phase. If the input x (y) is 0, Alice (Bob) rotates in Y-basis by angle 
-pi/16 and if the input is 1, Alice (Bob) rotates by angle 3pi/16



CHSH Game

What Alice does:

● if x=0 then Alice applies R(−π/16) to her qubit
● if x=1 she applies R(3π/16)
● then Alice measures her qubit in the computational basis
● outputs the resulting bit a

Bob’s procedure is the same, depending on his input bit y

After the measurements

● the probability that a⊕b= 0 is cos(θ1+θ2)
2

● the first condition is satisfied with probability cos(π/8)2 for all four input 
possibilities



Start with

Consider the rotation matrix

After Alice uses theta1 and Bob uses theta2

CHSH Game

https://github.com/qiskit-community/qiskit-community-tutorials/blob/master/awards/teach_me_qiskit_2018/chsh_game/CHSH%20game-tutorial.ipynb


