Practical Quantum Computing

Lecture 07 Phase kickback, Toffoli, Fredkin

* not evaluated

Learning goals - 07 Superposition and Phase Kickback (Computing)

1. What you have learned by now

- a. Quantum circuits: mathematics, diagrams and circuit identities
- b. Entanglement: teleportation, superdense coding, more powerful correlations and winning games by using entanglement
- c. Quantum Key Distribution Networks

2. Quantum Parallelism and State Superposition

- a. What it is, and how to built it with single qubit (Hadamard) gates
- b. The phase: encoding information into state superpositions

3. Phase Kickback

- a. What it is and how it works
- b. How to use it for signaling properties of Boolean functions
- c. Deriving the phase kickback using circuit identities
- **4. Phase Polynomials for** *complicated* **quantum gates**
	- a. Construction of phase polynomials
	- b. Deriving a quantum circuit from a phase polynomial
	- c. The Toffoli gate and its phase polynomial
- Deadline for programming Assignment 1
- 11 May 2024

Quantum Parallelism

$$
|x\rangle \ \textcolor{blue}{\overline{\qquad \qquad H \mid \qquad \frac{1}{\sqrt{2}}} (|0\rangle + (-1)^x |1\rangle)}
$$

Quantum parallelism

- classical algorithm that computes some function f: $\{0,1\}^n \rightarrow \{0,1\}^m$
- build a quantum circuit U
	- consisting only of Toffoli gates
	- \circ maps $|z\rangle|0\rangle \rightarrow |z\rangle|f(z)\rangle$ for every $z \in \{0,1\}^n$

$$
U\left(\frac{1}{\sqrt{2^n}}\sum_{z\in\{0,1\}^n}|z\rangle|0\rangle\right)=\frac{1}{\sqrt{2^n}}\sum_{z\in\{0,1\}^n}|z\rangle|f(z)\rangle.
$$

- applied U just once, and the final superposition contains $f(z)$ for all 2^n input values $z!$
- *● not very useful and does not give more than classical randomization*
	- \circ observing the final superposition will give just one uniformly random $|z\rangle|f(z)\rangle$
	- all other information will be lost

https://quantumcomputing.stackexchange.com/questions/16897/do-global-phases-matterwhen-a-gate-is-converted-into-a-controlled-gate

Phase Kickback

Phase Kickback

Solution: Store the output of the function in the phase of the qubit

$$
|x\rangle \longrightarrow |H \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x}|1\rangle)
$$

\n
$$
|x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \longrightarrow |x\rangle \otimes \frac{1}{\sqrt{2}}(|f(x)\rangle - |\overline{f}(x)\rangle)
$$

\n
$$
f(x) = 0 |x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)
$$

\n
$$
f(x) = 1 - |x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)
$$

\n
$$
|x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \longrightarrow (-1)^{f(x)}|x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)
$$

Phase Kickback

Solution: Store the output of the function in the phase of the qubit

$$
|x\rangle \longrightarrow_{\mathcal{I}} \mathcal{I}(|0\rangle + (-1)^{x}|1\rangle)
$$
\n
$$
|x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \longrightarrow |x\rangle \otimes \frac{1}{\sqrt{2}}(|f(x)\rangle - |\overline{f}(x)\rangle)
$$
\n
$$
f(x) = 0 \quad |x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)
$$
\n
$$
f(x) = 1 - |x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)
$$
\n
$$
|x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \longrightarrow (-1)^{f(x)}|x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)
$$

Eigenvalues, Eigenvectors, Measurement

function f is U=X/Y/Z

Assume the function f is	$X: 0\rangle + 1\rangle$	$-X: 0\rangle - 1\rangle$	Useful also for (some) circuit simulations
$U = X/Y/Z$	$0 \rangle + i 1\rangle$	$-Y: 0\rangle - i 1\rangle$	Useful also for (some) circuit simulations

 $\overline{1}$

Qiskit qubit order: first qubit is on the right and having CNOT for C-X

$$
\begin{aligned}\n\text{CNOT} |-0\rangle &= |-\rangle \otimes |0\rangle \\
&= |-0\rangle \\
\text{CNOT} |-1\rangle &= X |-\rangle \otimes |1\rangle \\
&= -|-\rangle \otimes |1\rangle \\
&= -| -1\rangle\n\end{aligned}
$$

$$
CNOT \left| -+ \right\rangle = \frac{1}{\sqrt{2}} (CNOT \left| -0 \right\rangle + CNOT \left| -1 \right\rangle)
$$
\n
$$
= \frac{1}{\sqrt{2}} (\left| -0 \right\rangle + X \left| -1 \right\rangle)
$$
\n
$$
= \frac{1}{\sqrt{2}} (\left| -0 \right\rangle - \left| -1 \right\rangle)
$$
\n
$$
= \frac{|-|}{\sqrt{2}} (\left| -1 \right\rangle)
$$

the phase from input |-> is kicked back to output

Eigenvalues, Eigenvectors, Measurement

$$
X : |0\rangle + |1\rangle \qquad -X : |0\rangle - |1\rangle
$$
\n
$$
Y : |0\rangle + i |1\rangle \qquad -Y : |0\rangle - i |1\rangle
$$
\n
$$
Z : |0\rangle \qquad -Z : |1\rangle
$$
\nUseful also for (some) circuit simulations

\n
$$
|1\rangle + |1\rangle
$$
\nQiskit qubit order

\n
$$
|\gamma|
$$
\n
$$
|1\rangle + |1\rangle
$$
\n
$$
|1\rangle - |0\rangle = |-\rangle \otimes |0\rangle
$$
\n
$$
|1\rangle - |0\rangle = |-0\rangle
$$
\n
$$
|1\rangle - |1\rangle = |-\rangle \otimes |1\rangle
$$
\n
$$
|1\rangle - |1\rangle = |-\rangle \otimes |1\rangle
$$
\n
$$
|1\rangle - |1\rangle = -|-\rangle \otimes |1\rangle
$$
\n
$$
= -|-\rangle \otimes |1\rangle
$$
\n
$$
= -|-\rangle \otimes |1\rangle
$$
\n2 | + | - |

Eigenvalues, Eigenvectors, Measurement

$$
\begin{array}{ccc}\nX: & |0\rangle + |1\rangle & -X: & |0\rangle - |1\rangle \\
Y: & |0\rangle + i |1\rangle & -Y: & |0\rangle - i |1\rangle \\
Z: & |0\rangle & -Z: & |1\rangle\n\end{array}\n\qquad \qquad \text{Useful also for (some) circuit simulations}
$$

Z

 H

H

 H

Qiskit qubit order

Learning goals - 07 Superposition and Phase Kickback (Computing)

1. What you have learned by now

- a. Quantum circuits: mathematics, diagrams and circuit identities
- b. Entanglement: teleportation, superdense coding, more powerful correlations and winning games by using entanglement
- c. Quantum Key Distribution Networks

2. Quantum Parallelism and State Superposition

- a. What it is, and how to built it with single qubit (Hadamard) gates
- b. The phase: encoding information into state superpositions

3. Phase Kickback

- a. What it is and how it works
- b. How to use it for signaling properties of Boolean functions
- c. Deriving the phase kickback using circuit identities

4. Phase Polynomials for *complicated* **quantum gates**

- a. Construction of phase polynomials
- b. Deriving a quantum circuit from a phase polynomial
- c. The Toffoli gate and its phase polynomial
- Deadline for programming Assignment 1
- 11 May 2024

Classical computations, More phases and Toffoli gates

Toffoli Gate

The NAND gate is universal for classical circuits.

We can perform the same operation using a Toffoli gate. a a b b

C

 $Q = A NAND B$

Truth Table

Convert any classical algorithm into a quantum algorithm, replacing the NAND gates with Toffolis, and keeping the extra qubits.

 $c=1$ -> NAND

 $c \oplus ab$

Reversible Computation and Circuits

A gate is **reversible** if the (Boolean) function it computes is **bijective**.

A k-CNOT is a (k+1)×(k+1) gate. It leaves the first k inputs unchanged, and inverts the last iff all others are 1. The unchanged lines are referred to as control lines.

Equivalences between reversible circuits -> Can be used for circuit optimisation

Toffoli Gate Decomposition

Some of the intuition behind the construction when the first two input bits are x1 and x2, the sequence of operations performed on the third bit is:

- V iff $x1 = 1$,
- V iff $x^2 = 1$,
- \bullet V[†] iff x1⊕x2= 1

$$
x_1+x_2-(x_1\oplus x_2)=2\cdot(x_1\wedge x_2)
$$

The above sequence of operations is equivalent to performing $\sqrt{2}$ on the third bit iff x1 \wedge x2 = 1, which is the gate.

Proof: Let V be such that $V^2 = U$. If the first bit or the second bit are 0 then the transformation applied to the third bit is either I or $V \cdot V^{\dagger} = I$. If the first two bits are both 1 then the transformation applied to the third is $V \cdot V = U \square$

Toffoli and Clifford+T

https://arxiv.org/pdf/1210.0974.pdf

Toffoli and Clifford + T

$$
4xyz = x+y+z-(x\oplus y)-(y\oplus z)-(x\oplus z)+(x\oplus y\oplus z).
$$

$$
x\oplus y = x+y-2xy.
$$

$$
\omega = (-1)^{1/4} = e^{i\pi/4} \cdot \sqrt{\text{root of unity}}
$$

$$
-\sqrt{\text{root of y}} \oplus \sqrt{\text{root of y}}.
$$

https://arxiv.org/pdf/1210.0974.pdf

Toffoli and Clifford + T

Toffoli and Clifford + T

Fredkin Gate - Conservative Logic

NOT and AND gates can be built from Fredkin gates with appropriate patterns of inputs

 $\sim 10^{-1}$

