
Practical Quantum Computing

Lecture 08
The early algorithms: Bernstein-Vazirani and Simon’s

with slides from Dave Bacon https://homes.cs.washington.edu/~dabacon/teaching/siena/ 

https://homes.cs.washington.edu/~dabacon/teaching/siena/
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Week Tuesday (3h) Wednesday (3h) Deadlines

1. The Basics Introduction Gates Circuit 
Identities

Qiskit Cirq/Qual
tran

Q&A

Programming Assignment 1: The basics 
of a quantum circuit simulator

Programming Assignment 1: 
The building blocks of a 
quantum circuit simulator

2. Entanglement 
and its 
Applications

Teleportation Superdense 
Coding

Quantum 
Key 
Distribution

Qualtran/
Assignme
nt2

Terminol
ogy of 
Projects

Q&A

Programming Assignment 2: The basics 
of a quantum circuit optimizer

Programming Assignment 2: 
The building blocks of a 
quantum circuit optimizer

3. Computing Phase 
Kickback and 
Toffoli

Distinguishin
g quantum 
states and 
The First 
Algorithms

Grover’s 
Algorithm

Invited 
TBA

PennyLa
ne

Q&A 11 May 
2024

4. Advanced 
Topics*

Arithmetic 
Circuits*

Fault-Toleran
ce*

QML* Invited 
TBA

Crumble Q&A 18 May 
2024

* not evaluated



Learning goals - 08 State Discrimination and The First Algorithms 
(Computing)

1. What you have learned by now
a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, superdense coding, quantum 

games, QKD
c. Phases, Superpositions and Phase Kickback

2. Distinguishing between two states
a. building a controlled-SWAP from three  Toffoli gates
b. the controlled-SWAP test: circuit and math behind it

3. Bernstein-Vazirani and Simon’s Algorithms
a. Problem Statement
b. Building a superposition to query a Boolean function in parallel
c. Phase kickback in action - using it for solving the problem
d. It is a probabilistic algorithm - What is the probability of success?
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● Deadline for programming 
Assignment 1

● 11 May 2024



Distinguishing quantum states



Controlled Swap

https://arxiv.org/pdf/2009.07613.pdf



Controlled Swap
The CtrlSwap simulates measurement of the 
SWAP operator as an observable (as opposed to 
a unitary transformation).

Swap is Hermitian 
because U2 = I 
eigenvalues are ±1

Measure eigenvalue using the relative phase

If states are orthogonal -> the probability that 0 is measured is 0.5

If states are equal -> the probability that 0 is measured is 1



Instead of an 
Introduction to Complexity Theory



Classical Promise Problem Query Complexity

Given: A black box which computes some function

Promise: the function belongs to a set  which is a subset of all possible 
functions.

Properties: the set can be divided into disjoint subsets

Problem: What is the minimal number of times we have to use (query) the black 
box in order to determine which subset     the function belongs to?

k bit input k bit output
black box



Functions

We can write the unitary

in outer product form as

so that

k bit input k bit output



Functions

Note that the transform is unitary

precisely when f(x) is one to one!



Quantum Algorithms

David
Deutsch

Richard
Jozsa

Umesh
Vazirani

Ethan
Bernstein

1992: Deutsch-Jozsa Algorithm

Exact classical query complexity:

Bounded error classical query complexity:

Exact quantum q. complexity:

1993: Bernstein-Vazirani Algorithm (non-recursive)

Exact classical query complexity:

Bounded error classical query complexity:

Exact quantum q. complexity:



Query Complexity

probability

Exact classical
query complexity

0 Bounded 
error 
algorithms 
are allowed 
to fail with 
a bounded 
probability 
of failure.

Bounded error 
classical
query complexity

1/3

Exact quantum
query complexity

0

Bounded error 
quantum
query complexity

1/3

oracle



BPP, BQP

Informally, a problem is in BPP (bounded-error 
probabilistic polynomial time) if there is an 
algorithm for it that has the following properties:

● is allowed to flip coins and make random 
decisions

● is guaranteed to run in polynomial time
● on any given run of the algorithm, it has a 

probability of at most 1/3 of giving the 
wrong answer, whether the answer is YES 
or NO.

Informally, a decision problem is a member of 
BQP (bounded-error quantum polynomial time) 
if there exists a quantum algorithm (an algorithm 
that runs on a quantum computer):

● that solves the decision problem with high 
probability 

● is guaranteed to run in polynomial time
● a run of the algorithm will correctly solve 

the decision problem with a probability of 
at least 2/3.

It is the quantum analogue to the complexity 
class BPP

In complexity theory, PP is 
the class of decision 
problems solvable by a 
probabilistic Turing machine 
in polynomial time, with an 
error probability of less than 
1/2 for all instances. The 
abbreviation PP refers to 
probabilistic polynomial time. 
A PP algorithm is permitted 
to have a probability that 
depends on the input size, 
whereas BPP does not.



Learning goals - 08 State Discrimination and The First Algorithms 
(Computing)

1. What you have learned by now
a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, superdense coding, quantum 

games, QKD
c. Phases, Superpositions and Phase Kickback

2. Distinguishing between two states
a. building a controlled-SWAP from three  Toffoli gates
b. the controlled-SWAP test: circuit and math behind it

3. Bernstein-Vazirani and Simon’s Algorithms
a. Problem Statement
b. Building a superposition to query a Boolean function in parallel
c. Phase kickback in action - using it for solving the problem
d. It is a probabilistic algorithm - What is the probability of success?
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● Deadline for programming 
Assignment 1

● 11 May 2024



The Bernstein-Vazirani Algorithm



Bernstein-Vazirani Problem

Given: A function with n bit strings as input and one bit as output

Promise: The function is of the form

Problem: Find the n bit string a



Bernstein-Vazirani Problem

Given: A function with n bit strings as input and one bit as output

Promise: The function is of the form

Problem: Find the n bit string a

Notice that the querying f yields a single bit of information. But we need n 
bits of information to describe a.



Classical Bernstein-Vazirani

Notice that the querying f yields a single bit of information. But we need n bits of 
information to describe a.

Classically, the most efficient method to find the secret string is by evaluating the 
function n times with the input values



Implement the oracle



Quantum Bernstein-Vazirani

n qubits

for phase kickback



Quantum Bernstein-Vazirani

Show the phase kickback

|Register>|b>|->

if |b> == |0> ( when f(x) == 0)

+|Register>|b>|->

elif |b> == |1> ( when f(x) == 1)

-|Register>|b>|->



Hadamard it! (Interference)



Hadamard it! (Interference)



Hadamard it! (Interference)



Quantum Bernstein-Vazirani

We can determine a using only a single quantum query!

n 
qubits

a



Learning goals - 08 State Discrimination and The First Algorithms 
(Computing)

1. What you have learned by now
a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, superdense coding, quantum 

games, QKD
c. Phases, Superpositions and Phase Kickback

2. Distinguishing between two states
a. building a controlled-SWAP from three  Toffoli gates
b. the controlled-SWAP test: circuit and math behind it

3. Bernstein-Vazirani and Simon’s Algorithms
a. Problem Statement
b. Building a superposition to query a Boolean function in parallel
c. Phase kickback in action - using it for solving the problem
d. It is a probabilistic algorithm - What is the probability of success?
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● Deadline for programming 
Assignment 1

● 11 May 2024



Simon’s Algorithm



Context

The Deutsch-Jozsa problem showed an exponential quantum improvement over 
the best deterministic classical algorithms.

The Bernstein-Vazirani problem shows a polynomial improvement over 
the best randomized classical algorithms that have error probability ≤ 1/3. 

Combine these two features and see a problem where quantum computers are 
exponentially more efficient than bounded-error randomized algorithms.

https://arxiv.org/pdf/1907.09415.pdf



Simon’s Problem

Given: A function with n bit strings as input and one bit as output

Promise: The function is guaranteed to satisfy

Problem: Find the n bit string 



Classical Simon’s Problem

Promise: The function is guaranteed to satisfy

Suppose we start querying the function and build up a list of the pairs

If we find                such that                         then we solve the problem

But suppose we start querying the function m times

Probability of getting a matching pair:

Bounded error query complexity: 



Quantum Simon’s Problem

Unlike previous problems, we can’t use the phase kickback trick 
because there is no structure in the function.

 n qubits

 m qubits



Quantum Simon’s Problem

Measure the second register

Using the promise on the function

This implies that after we measure, we have the state

For random uniformly distributed

uniformly distributed = all strings equally probable. 

measuring this state at this time does us no good ...



Quantum Simon’s Problem

Measuring this state at this time in the computational basis does us no good….

For random uniformly distributed

Measurement yields either           or                                              

But we don’t know x, so we can’t use this to find s.

Add Hadamard gates to the end register
H

H

H



Quantum Simon’s Problem

 n qubits

 n qubits



Quantum Simon’s Problem

Measuring this state, we obtain uniformly distributed random values of      s.t.

If              we have eliminated the possible values of s by half



Quantum Simon’s Problem

On values of       which are 0, this doesn’t restrict 

On values of       which are 1, the corresponding       must XOR to 0. 

This restricts the set of possible     ‘s by half.



Quantum Simon’s Problem

Think about the bit strings s as vectors in 

● If we obtain n lin. indep. equations of this form, we win
● (Gaussian elimination)

Suppose we have k linearly independent      ‘s.  What is the probability 

that            is linearly independent of previous     ‘s? 

https://arxiv.org/pdf/1907.09415.pdf



Quantum Simon’s Problem

What is the probability that our n-1 equations are linearly independent?

With constant probability:

● we obtain linearly independence -> Gaussian elimination O(n^3)
● solve Simon’s problem




