Practical Quantum Computing

Lecture 09
Quantum Arithmetic: Binary and Fourier

Week	Tuesday (3h)			Wednesday (3h)			Deadlines	
1. The Basics	Introduction	Gates	Circuit Identities	Qiskit	Cirq/Qual tran	Q\&A		
	Programming Assignment 1: The basics of a quantum circuit simulator			Programming Assignment 1: The building blocks of a quantum circuit simulator				
2. Entanglement and its Applications	Teleportation	Superdense Coding	Quantum Key Distribution	Qualtran/ Assignme nt2	Terminol ogy of Projects	Q\&A		
	Programming Assignment 2: The basics of a quantum circuit optimizer			Programming Assignment 2: The building blocks of a quantum circuit optimizer				
3. Computing	Phase Kickback and Toffoli	Distinguishi ng quantum states	The First Algorithms	Invited TBA		Q\&A		11 May 2024
4. Advanced Topics*	Arithmetic Circuits*	Fault-Tolera nce*	Surface QEC* Grover's Alg*	Invited TBA	Invited TBA	Q\&A	$18 \text { May }$ 2024	

Programming Assignment 2 - Quantum Circuit Optimizer

Theory

- Changing the structure of quantum circuits by applying local transformations (circuit identities) leaves the computation unchanged
- The width and depth of a quantum circuit
- The parallel execution of quantum gates

Practice

- Writing Python code for applying circuit identities for reducing:
- depth of quantum circuit
- number of quantum gates
- Benchmarking the execution time of the quantum circuit simulator with the optimized circuit

Learning goals - 10 Arithmetic Circuits (Advanced)

1. What you have learned by now
a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, quantum games, QKD
c. Superpositions, Phase Kickback and finding hidden strings
2. Classical addition using Toffoli gates
3. Quantum addition with bits
a. Translating classical circuits into quantum circuits
b. Ripple-Carry Addition
4. Quantum addition with phases
a. Quantum Fourier Transformation - Encoding bits into phases
b. Adding phases by rotating qubit states
5. Modular arithmetic
a. Implementation using adders and subtractors
b. Building block for Shor's algorithm

- Deadline for programming Assignment 2
- 18 May 2024

Reversibility and the Bennett trick

Ancilla qubit - "Scratch work"

- used to support the computation
- usually initialised in |0>
- before end of circuit its state to be |0>

Uncomputation and Reversibility

By gar (x), we mean garbage depending on x : that is, "scratch work" that a reversible computation generates along the way to computing some desired function $f(x)$. Typically, the garbage later needs to be uncomputed. Uncomputing, a term introduced by Bennett [7], simply means running an entire computation in reverse, after the output $f(x)$ has been safely stored.
[7] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and Development, 17:525 532, 1973.

Fredkin and Toffoli

Fredkin gates preserve the number of 1 s
Toffoli gates do not preserve the number of 1

CNOT

Toffoli
(a)

One's complement

Obtained by inverting all the bits in the binary representation of the number

Negative numbers are represented by the inverse of the binary representations of their corresponding positive numbers

An N -bit ones' complement numeral system

- represent integers in the range $-\left(2^{\mathrm{N}-1}-1\right)$ to $2^{\mathrm{N}-1}-1$
- two's complement can express $-2^{\mathrm{N}-1}$ to $2^{\mathrm{N}-1}-1$

8-bit ones'-complement integers

Bits	Unsigned value	Ones' complement value
01111111	127	127
01111110	126	126
00000010	2	2
00000001	1	1
00000000	0	0
11111111	255	-0
11111110	254	-1
11111101	253	-2
10000001	129	-126
10000000	128	-127

Two's complement

Defined as its complement with respect to 2^{N}

- calculated by inverting the bits and adding one
- For example,
- the two's complement of 110 is 010
- because $010+110=8$

Take the ones' complement and add one:

- the sum of a number and its ones' complement is all '1' bits, or $2^{N}-1$;
- the sum of a number and its two's complement is 2^{N}

Subtraction: The advantage of using two's complement is the elimination of examining the signs of the operands to

Eight-bit signed integers

Decimal value	Two's-complement representation
0	00000000
1	00000001
2	00000010
126	01111110
127	01111111
-128	10000000
-127	10000001
-126	10000010
-2	11111110
-1	11111111

Half and Full Adder

The half adder

- adds two single binary digits A and B
- has two outputs, sum (S) and carry (C)

A one-bit full-adder

- adds three one-bit numbers
- A and B are the operands, and C in is a bit carried in from the previous less-significant stage
- has two outputs, sum (S) and carry (C)

Ripple-Carry Addition

Figure 4: A simple ripple-carry adder for $n=6$.

Ripple-Carry Addition

Figure 1: The in-place majority gate MAJ

(a) 2-CNOT version

(b) 3-CNOT version

$$
\begin{aligned}
& c_{i}-\mathrm{M} \\
& b_{i}-c_{i} \oplus a_{i} \\
& a_{i}
\end{aligned}-\mathrm{A}-b_{i} \oplus a_{i}-c_{i}
$$

Learning goals - 10 Arithmetic Circuits (Advanced)

1. What you have learned by now
a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, quantum games, QKD
c. Superpositions, Phase Kickback and finding hidden strings
2. Classical addition using Toffoli gates
3. Quantum addition with bits
a. Translating classical circuits into quantum circuits
b. Ripple-Carry Addition
4. Quantum addition with phases
a. Quantum Fourier Transformation - Encoding bits into phases
b. Adding phases by rotating qubit states
5. Modular arithmetic
a. Implementation using adders and subtractors
b. Building block for Shor's algorithm

- Deadline for programming Assignment 2
- 18 May 2024

Quantum Fourier Transform

Binary representation of \mathbf{a} is $a_{n} a_{n-1} \cdots a_{2} a_{1}$

$$
a=a_{n} 2^{n-1}+a_{n-1} 2^{n-2}+\cdots+a_{2} 2^{1}+a_{1} 2^{0}
$$

The Fourier transformation of \mathbf{a} is generating an unentangled state
which using

$$
|a\rangle \xrightarrow{F_{2^{n}}} \frac{1}{2^{\frac{n}{2}}} \sum_{k=0}^{2^{n}-1} e\left(a k / 2^{n}\right)|k\rangle
$$

$$
\left|\phi_{k}(a)\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e\left(a / 2^{k}\right)|1\rangle\right) .
$$

can be expressed as

$$
\sum_{k=0}^{2^{n}-1} e\left(a k / 2^{n}\right)|k\rangle=\left|\phi_{n}(a)\right\rangle \otimes \cdots \otimes\left|\phi_{2}(a)\right\rangle \otimes\left|\phi_{1}(a)\right\rangle .
$$

Quantum Fourier Transformation

$$
\left|\phi_{k}(a)\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e\left(a / 2^{k}\right)|1\rangle\right)
$$

Quantum Fourier Addition

Transform Addition

$$
\begin{array}{rlc}
\left|\phi_{n}(a)\right\rangle & \longrightarrow \frac{1}{\sqrt{2}}\left(|0\rangle+e\left(0 . a_{n} a_{n-1} \ldots a_{1}+0 . b_{n}\right)|1\rangle\right) & R_{1} \text { rotation from } b_{n} \\
& \longrightarrow \frac{1}{\sqrt{2}}\left(|0\rangle+e\left(0 . a_{n} a_{n-1} \ldots a_{1}+0 . b_{n} b_{n-1}\right)|1\rangle\right) & R_{2} \text { rotation from } b_{n-1} \\
\vdots & \vdots \\
& \longrightarrow \frac{1}{\sqrt{2}}\left(|0\rangle+e\left(0 . a_{n} a_{n-1} \ldots a_{1}+0 . b_{n} b_{n-1} \ldots b_{1}\right)|1\rangle\right) & R_{n} \text { rotation from } b_{1} \\
& =\left|\phi_{n}(a+b)\right\rangle &
\end{array}
$$

Quantum Fourier Addition vs. Bennett trick

Learning goals - 10 Arithmetic Circuits (Advanced)

1. What you have learned by now
a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, quantum games, QKD
c. Superpositions, Phase Kickback and finding hidden strings
2. Classical addition using Toffoli gates
3. Quantum addition with bits
a. Translating classical circuits into quantum circuits
b. Ripple-Carry Addition
4. Quantum addition with phases
a. Quantum Fourier Transformation - Encoding bits into phases
b. Adding phases by rotating qubit states

5. Modular arithmetic

a. Implementation using adders and subtractors
b. Building block for Shor's algorithm

- Deadline for programming Assignment 2
- 18 May 2024

Modular Addition

FIG. 4. Adder modulo N. The first and the second network add a and b together and then subtract N. The overflow is recorded into the temporary qubit $|t\rangle$. The next network calculates $(a+b) \bmod N$. At this stage we have extra information about the value of the overflow stored in $|t\rangle$. The last two blocks restore $|t\rangle$ to $|0\rangle$. The arrow before the third plain adder means that the first register is set to $|0\rangle$ if the value of the temporary qubit $|t\rangle$ is 1 and is otherwise left unchanged (this can be easily done with Control-NOT gates, as we know that the first register is in the state $|N\rangle$). The arrow after the third plain adder resets the first register to its original value (here $|N\rangle$). The significance of the thick black bars is explained in the caption of Fig. 2.

Modular Addition

FIG. 4. Adder modulo N. The first and the second network add a and b together and then subtract N. The overflow is recorded into the temporary qubit $|t\rangle$. The next network calculates $(a+b) \bmod N$. At this stage we have extra information about the value of the overflow stored in $|t\rangle$. The last two blocks restore $|t\rangle$ to $|0\rangle$. The arrow before the third plain adder means that the first register is set to $|0\rangle$ if the value of the temporary qubit $|t\rangle$ is 1 and is otherwise left unchanged (this can be easily done with Control-NOT gates, as we know that the first register is in the state $|N\rangle$). The arrow after the third plain adder resets the first register to its original value (here $|N\rangle$). The significance of the thick black bars is explained in the caption of Fig. 2.

Appendix

CNOT, Toffoli and Fredkin gates for addition

i)

ii)

The " g " garbage output bit is (p NOR q) if $r=0$, and (p NAND q) if $r=1$.

CNOT, Toffoli and Fredkin gates for addition

i)

ii)

The " g " garbage output bit is (p NOR q) if $r=0$, and (p NAND q) if $r=1$.

CNOT, Toffoli and Fredkin gates for addition

i)

ii)

The " g " garbage output bit is (p NOR q) if $r=0$, and (p NAND q) if $r=1$.

CNOT, Toffoli and Fredkin gates for addition

i)

ii)

The " g " garbage output bit is (p NOR q) if $r=0$, and (p NAND q) if $r=1$.

