
Practical Quantum Computing

Lecture 12
Surface Code, Lattice Surgery,
Decoding, Compiling Circuits

using slides from Austin Fowler and James Wootton
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Week Tuesday (3h) Wednesday (3h) Deadlines

1. The Basics Introduction Gates Circuit 
Identities

Qiskit Cirq/Qual
tran

Q&A

Programming Assignment 1: The basics 
of a quantum circuit simulator

Programming Assignment 1: 
The building blocks of a 
quantum circuit simulator

2. Entanglement 
and its 
Applications

Teleportation Superdense 
Coding

Quantum Key 
Distribution

Qualtran/
Assignme
nt2

Terminol
ogy of 
Projects

Q&A

Programming Assignment 2: The basics 
of a quantum circuit optimizer

Programming Assignment 2: 
The building blocks of a 
quantum circuit optimizer

3. Computing Phase 
Kickback and 
Toffoli

Distinguishi
ng quantum 
states

The First 
Algorithms

Invited 
TBA

Q&A 11 May 
2024

4. Advanced 
Topics*

Arithmetic 
Circuits*

Fault-Tolera
nce*

Surface QEC* 
Grover’s Alg*

Invited 
TBA

Invited 
TBA

Q&A 18 May 
2024

* not evaluated



Learning goals - 12 Surface QECC and Grover’s 
(Advanced)
1. What you have learned by now

a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, quantum games, QKD
c. Superpositions, Phase Kickback and finding hidden strings
d. Quantum algorithms and quantum arithmetic
e. Fault-Tolerance and Quantum Error Correction

2. The surface QECC
a. What it is
b. How it is built in hardware
c. High-level description of its functionality

3. Lattice Surgery
a. Implementing error corrected gates
b. Instruction set for universal gate set

4. Decoding
a. Finding the most probable error
b. Applying the correction
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● Deadline for programming 
Assignment 2

● 18 May 2024 



The Surface Code
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● Quantum error correcting codes are 
defined by the measurements we make

● Let’s move beyond the simple 𝑍_𝑗 𝑍_(𝑗+1) 
of the repetition code

● In the surface code we use a 2D lattice of 
code qubits, and define observables for 
plaquettes and vertices



Plaquette Syndrome
● First let’s focus on the plaquette syndrome
● These are similar to the two qubit measurements in the repetition code
● Instead we measure the parity around plaquettes in the lattice
● Can again be done with CX gates and an extra qubit
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Plaquette Syndrome
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We can define a classical code (storing only a 
bit) based on the plaquette syndrome alone

Valid states are those with trivial outcome for all 
plaquette syndrome measurements:

● Even parity on all plaquettes
● How to store a 0 in this?
● How about the state where every code 

qubit is |0⟩?



Plaquette Syndrome
● There are ‘nearby’ states that also have even parity on all plaquettes
● These can’t be a different encoded state: they are only a few bit flips away 

from our encoded 0 state
● We’ll treat them as alternative ways to store a 0
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Plaquette Syndrome
● Given any state for an encoded 0

○ Pick a vertex
○ Apply bit flips around that vertex

● Now you have another valid state for 0
● This generates an exponentially large family
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Plaquette Syndrome
● The states in this family can be very different
● But they all share a common feature

○ Any line from top to bottom (passing along edges) has even parity
● This is how we can identify an encoded 0
● And it gives us a clue about how to encode a 1
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Plaquette Syndrome

● For our basic encoded 1, we use a bunch of 
0s with a line from left to right (passing 
through plaquettes)

● This also spawns an exponentially large 
family

● All have odd parity for a line from top to 
bottom

● Unlike the repetition code, distinguishing 
encoded 0 and 1 requires some effort (which 
is good!)
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Logical X and Z
○ Distinguishing 0 and 1 corresponds to measuring Z on the physical qubit

○ The following observables detect what we need

○ Or the same on any line from top to bottom

○ Uses the edges has a nice advantage: we can think of them as large (unenforced) plaquettes
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Logical X and Z
○ To flip between 0 and 1, we can flip a line of qubits

○ Such lines of flips act as an X on the logical qubit
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Effects of Errors
○ Applying an X to any code qubit changes 

the parity of its two plaquettes

○ An isolated X creates a pair of defects

○ Further Xs can be move a defect, or 
annihilate pairs of them

○ A logical X requires many errors to stretch 
across the lattice

○ With the plaquette operators, we can 
encode and protect a bit
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Vertex Syndrome
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● Now forget the plaquettes and focus on vertices
● These observables can also be measured using CX gates an an ancilla
● In this case they look at the |+⟩ and |-⟩ states, and count the parity of the 

number of |-⟩s



Vertex Syndrome
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● These operators also allow us to encode 
and protect a bit value

● In this case, let’s use + and - to label the 
two states

● They are encoded using suitable patterns 
of |+⟩ and |−⟩ states for the code qubits

● As with the plaquettes, these also 
correspond to exponentially large families 
of states



Logical X and Z
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● What is the X operator (distinguish between |+⟩ and |−⟩ )?
● What is the Z operator (flip between |+⟩ and |−⟩ )?
● Turns out they are exactly the same as before!



Effects of Errors
○ Applying a Z to any code qubit changes the X 

parity of its two vertices

○ An isolated Z creates a pair of defects

○ Further Zs can be move a defect, or annihilate 
pairs of them

○ A logical Z requires many errors to stretch across 
the lattice

○ With the vertex operators, we can encode and 
protect a bit
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Putting it all Together
○ The plaquette and vertex operators commute

○ This allows us to detect both X and Z errors

○ Since Y~XZ, we can detect Y errors too
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Putting it all Together
○ The Z and X operators on the encoded qubit are exactly the same as before

○ These, and the Hadamard, can be performed fault-tolerantly
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Putting it all Together
○ The states we need are highly entangled quantum states

○ They are examples of topologically ordered states

○ Though such things can be hard to make, we create and protect them with the syndrome measurements

 

20



Putting it all Together
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● We are not just protected against X and Z, but all local errors
● As mentioned earlier, Y~XZ
● Everything else can be expressed

𝐸=𝑎 𝐼+𝑏 𝑋+𝑐 𝑌+𝑑 𝑍
● This creates a superposition of different types of error on the surface code
● Measuring the stabilizers collapses this to a simple X, Y or Z
● Though such things can be hard to make, we create and protect them simply by making the 

stabilizer measurements



Learning goals - 12 Surface QECC and Grover’s 
(Advanced)
1. What you have learned by now

a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, quantum games, QKD
c. Superpositions, Phase Kickback and finding hidden strings
d. Quantum algorithms and quantum arithmetic
e. Fault-Tolerance and Quantum Error Correction

2. The surface QECC
a. What it is
b. How it is built in hardware
c. High-level description of its functionality

3. Lattice Surgery
a. Implementing error corrected gates
b. Instruction set for universal gate set

4. Decoding
a. Finding the most probable error
b. Applying the correction
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● Deadline for programming 
Assignment 2

● 18 May 2024 



Lattice Surgery



arXiv:1808.06709, arXiv:1808.02892 



Logical XX measurement



Logical CNOT



Multi-body logical X measurement

 

 

 



More Logical Gates

● We’ve seen how to do logical X and Z
● A logical CX can be done without much 

trouble
● A logical H requires the lattice to be rotated, 

but that can be done
● Other logical Clifford gates can be done with 

some crazy tricks
● But that’s all! No other logical operations can 

be done fault-tolerantly.
● A solution is magic state distillation, using 

the logical gates we have to clean up the 
one we don’t
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Learning goals - 12 Surface QECC and Grover’s 
(Advanced)
1. What you have learned by now

a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, quantum games, QKD
c. Superpositions, Phase Kickback and finding hidden strings
d. Quantum algorithms and quantum arithmetic
e. Fault-Tolerance and Quantum Error Correction

2. The surface QECC
a. What it is
b. How it is built in hardware
c. High-level description of its functionality

3. Lattice Surgery
a. Implementing error corrected gates
b. Instruction set for universal gate set

4. Decoding
a. Finding the most probable error
b. Applying the correction
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● Deadline for programming 
Assignment 2

● 18 May 2024 



Final Readout
○ The logical operators are many-body observables

○ So how do we read them out fault-tolerantly

○ When you decide on a basis for final measurement, 
you stop caring about some errors

○ You can then measurement in a product basis

○ Final readout and final stabilizer measurement can 
be constructed from the result

○ Measurement errors are effectively the same as 
errors before measurement
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Decoding
○ Given the measurement results, we need to work out what errors happened

○ More specifically, the ‘equivalence class’ of errors

○ This is the job of the decoding algorithm
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Decoding with MWPM
○ A good option is Minimum Weight Perfect Matching

○ We start with the simple and unrealistic case: errors only between 
measurement

○ Each round can be decoded separately, corresponding to MWPM on 
a 2D graph

○ Decoding for X and Z errors can also be done independently
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Manhattan distance 
between vertices



Decoding
○ We need to be careful to account for the effects of the edges

○ This is done by introducing extra ‘virtual nodes’
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Imperfect Measurements

○ We have the problem of imperfect measurements

■ The measurements might lie

■ Errors on the additional qubit

■ Errors in the CX gates

○ We base the decoding using syndrome changes

○ This leads to a 3D MWPM problem (2D space + time)
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Gate sequence:
Find X 
errors

Find Z 
errors

X
L

Z
L



Gate sequence:
Find X errors

Find Z errors

X
L

Z
L



1

0

1

1

1

1
X

How to do memory:

Measurement value change = detection event



How to do memory:

Build graph of all possible detection events

X

X

X

X

X

X

X

X

X

X X X

X X X

X X X



Classical processing

● 10 data qubits
● One detection event



● 10 data qubits
● One detection event
● Explore uniformly, 

boundary found

Classical processing



● 10 data qubits
● One detection event
● Explore uniformly, 

boundary found
● Match detection event to 

boundary, record belief that 
X error present

X

Classical processing



● Two more detection events

X

Classical processing



● Two more detection events
● Pick one, explore, current 

time boundary 
encountered

X

Classical processing



● Two more detection events
● Pick one, explore, current 

time boundary 
encountered

● Explore around other, 
exploratory regions touch

X

Classical processing



● Two more detection events
● Pick one, explore, current 

time boundary 
encountered

● Explore around other, 
exploratory regions touch

● Match, record belief that 
two more X errors present

X

X

X

Classical processing



X

X

X

● One more detection event

Classical processing



● One more detection event
● Explore, current time 

boundary encountered, 
must wait for more data

X

X

X

Classical processing



X

X

X

• One more detection event

• Explore, current time 
boundary encountered, 
must wait for more data

• Explore further, boundary 
encountered

Classical processing



X

X

X

• One more detection event

• Explore, current time 
boundary encountered, 
must wait for more data

• Explore further, boundary 
encountered

• Match, record belief that 
two more X errors present

X

X

Classical processing



X

X

• One more detection event

• Explore, current time 
boundary encountered, 
must wait for more data

• Explore further, boundary 
encountered

• Match, record belief that 
two more X errors present

• Cancel double error

• Don’t apply physical 
corrections

X

Classical processing
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Correlated errors



Threshold
○ Correcting according to the right class removes the effects of errors

○ Correcting according to the wrong class causes an operation on the encoded qubit (without our knowing)

○ What is the probability of such an error, P, given the probability on the qubits of the code, p?

○ We find a phase transition as L is increased (for an LxL grid)
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Simulated performance

● pL = 0.1(100p)(d+1)/2

● O(1) parallel algorithm
● Low latency

p

p
L



Appendix: Logical Gates and Experiments



Logical identity
X

L

Z
L

d
d

d

 



Logical move



Logical move

Can move anywhere, even back in time, up to Pauli operators.

Cliffor
d



Logical Hadamard

d
d

d

 



Device and experiment

• Show d=5 better than d=3
• Continuous running
• Real-time decoding
• d=34 extreme exponential suppression 

(d=11 arXiv:2102.06132)



Challenges

• Yield < 100%
• Coherence ~20us
• Readout and reset ~1us 

(arXiv:2102.06131)
• Calibration 0.5% (arXiv:1907.02510)
• Cosmic rays (arXiv:2104.05219)
• Decoding (arXiv:1202.5602)
• Target 1.5 to 10x suppression



Scalable?



10k scalable qubits



1M qubits



Appendix: Compiling



Graph states

• Every stabilizer state can be converted to a graph state using 
only
local Clifford operations 

• Graph state with nodes i and edge 
neighbourhood 



Teleportation based QC



Traditional circuit compilation

● Shortcomings of 
traditional approach

● Performs Clifford operations on a 
stabilizer state which can be simulated 
efficiently on a classical device

● No room for optimisation other than at 
the circuit level.



Example of Algorithm specific compilation

Input circuit Teleportation widget



Algorithm specific graph compiler

Jabalizer – A Julia based graph compiler https://github.com/QSI-BAQS/Jabalizer.jl

https://github.com/QSI-BAQS/Jabalizer.jl


State distillation
 

 

 

 

 



State distillation

Measure multi-body X operator!



State distillation

 

 

 

 



State distillation

 

 

 

 



State distillation

 

 

 

 



State distillation

 

 

 

 



State distillation

State 
injection

T/Tdag 
gate

Sdag gate (50% of the 
time)


