
Practical Quantum Computing

Lecture 12
Surface Code, Lattice Surgery,
Decoding, Compiling Circuits

using slides from Austin Fowler and James Wootton

2

Week Tuesday (3h) Wednesday (3h) Deadlines

1. The Basics Introduction Gates Circuit
Identities

Qiskit Cirq/Qual
tran

Q&A

Programming Assignment 1: The basics
of a quantum circuit simulator

Programming Assignment 1:
The building blocks of a
quantum circuit simulator

2. Entanglement
and its
Applications

Teleportation Superdense
Coding

Quantum Key
Distribution

Qualtran/
Assignme
nt2

Terminol
ogy of
Projects

Q&A

Programming Assignment 2: The basics
of a quantum circuit optimizer

Programming Assignment 2:
The building blocks of a
quantum circuit optimizer

3. Computing Phase
Kickback and
Toffoli

Distinguishi
ng quantum
states

The First
Algorithms

Invited
TBA

Q&A 11 May
2024

4. Advanced
Topics*

Arithmetic
Circuits*

Fault-Tolera
nce*

Surface QEC*
Grover’s Alg*

Invited
TBA

Invited
TBA

Q&A 18 May
2024

* not evaluated

Learning goals - 12 Surface QECC and Grover’s
(Advanced)
1. What you have learned by now

a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, quantum games, QKD
c. Superpositions, Phase Kickback and finding hidden strings
d. Quantum algorithms and quantum arithmetic
e. Fault-Tolerance and Quantum Error Correction

2. The surface QECC
a. What it is
b. How it is built in hardware
c. High-level description of its functionality

3. Lattice Surgery
a. Implementing error corrected gates
b. Instruction set for universal gate set

4. Decoding
a. Finding the most probable error
b. Applying the correction

3

● Deadline for programming
Assignment 2

● 18 May 2024

The Surface Code

4

● Quantum error correcting codes are
defined by the measurements we make

● Let’s move beyond the simple 𝑍_𝑗 𝑍_(𝑗+1)
of the repetition code

● In the surface code we use a 2D lattice of
code qubits, and define observables for
plaquettes and vertices

Plaquette Syndrome
● First let’s focus on the plaquette syndrome
● These are similar to the two qubit measurements in the repetition code
● Instead we measure the parity around plaquettes in the lattice
● Can again be done with CX gates and an extra qubit

5

Plaquette Syndrome

6

We can define a classical code (storing only a
bit) based on the plaquette syndrome alone

Valid states are those with trivial outcome for all
plaquette syndrome measurements:

● Even parity on all plaquettes
● How to store a 0 in this?
● How about the state where every code

qubit is |0⟩?

Plaquette Syndrome
● There are ‘nearby’ states that also have even parity on all plaquettes
● These can’t be a different encoded state: they are only a few bit flips away

from our encoded 0 state
● We’ll treat them as alternative ways to store a 0

7

Plaquette Syndrome
● Given any state for an encoded 0

○ Pick a vertex
○ Apply bit flips around that vertex

● Now you have another valid state for 0
● This generates an exponentially large family

8

Plaquette Syndrome
● The states in this family can be very different
● But they all share a common feature

○ Any line from top to bottom (passing along edges) has even parity
● This is how we can identify an encoded 0
● And it gives us a clue about how to encode a 1

9

Plaquette Syndrome

● For our basic encoded 1, we use a bunch of
0s with a line from left to right (passing
through plaquettes)

● This also spawns an exponentially large
family

● All have odd parity for a line from top to
bottom

● Unlike the repetition code, distinguishing
encoded 0 and 1 requires some effort (which
is good!)

10

Logical X and Z
○ Distinguishing 0 and 1 corresponds to measuring Z on the physical qubit

○ The following observables detect what we need

○ Or the same on any line from top to bottom

○ Uses the edges has a nice advantage: we can think of them as large (unenforced) plaquettes

11

Logical X and Z
○ To flip between 0 and 1, we can flip a line of qubits

○ Such lines of flips act as an X on the logical qubit

12

Effects of Errors
○ Applying an X to any code qubit changes

the parity of its two plaquettes

○ An isolated X creates a pair of defects

○ Further Xs can be move a defect, or
annihilate pairs of them

○ A logical X requires many errors to stretch
across the lattice

○ With the plaquette operators, we can
encode and protect a bit

13

Vertex Syndrome

14

● Now forget the plaquettes and focus on vertices
● These observables can also be measured using CX gates an an ancilla
● In this case they look at the |+⟩ and |-⟩ states, and count the parity of the

number of |-⟩s

Vertex Syndrome

15

● These operators also allow us to encode
and protect a bit value

● In this case, let’s use + and - to label the
two states

● They are encoded using suitable patterns
of |+⟩ and |−⟩ states for the code qubits

● As with the plaquettes, these also
correspond to exponentially large families
of states

Logical X and Z

16

● What is the X operator (distinguish between |+⟩ and |−⟩)?
● What is the Z operator (flip between |+⟩ and |−⟩)?
● Turns out they are exactly the same as before!

Effects of Errors
○ Applying a Z to any code qubit changes the X

parity of its two vertices

○ An isolated Z creates a pair of defects

○ Further Zs can be move a defect, or annihilate
pairs of them

○ A logical Z requires many errors to stretch across
the lattice

○ With the vertex operators, we can encode and
protect a bit

17

Putting it all Together
○ The plaquette and vertex operators commute

○ This allows us to detect both X and Z errors

○ Since Y~XZ, we can detect Y errors too

18

Putting it all Together
○ The Z and X operators on the encoded qubit are exactly the same as before

○ These, and the Hadamard, can be performed fault-tolerantly

19

Putting it all Together
○ The states we need are highly entangled quantum states

○ They are examples of topologically ordered states

○ Though such things can be hard to make, we create and protect them with the syndrome measurements

20

Putting it all Together

21

● We are not just protected against X and Z, but all local errors
● As mentioned earlier, Y~XZ
● Everything else can be expressed

𝐸=𝑎 𝐼+𝑏 𝑋+𝑐 𝑌+𝑑 𝑍
● This creates a superposition of different types of error on the surface code
● Measuring the stabilizers collapses this to a simple X, Y or Z
● Though such things can be hard to make, we create and protect them simply by making the

stabilizer measurements

Learning goals - 12 Surface QECC and Grover’s
(Advanced)
1. What you have learned by now

a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, quantum games, QKD
c. Superpositions, Phase Kickback and finding hidden strings
d. Quantum algorithms and quantum arithmetic
e. Fault-Tolerance and Quantum Error Correction

2. The surface QECC
a. What it is
b. How it is built in hardware
c. High-level description of its functionality

3. Lattice Surgery
a. Implementing error corrected gates
b. Instruction set for universal gate set

4. Decoding
a. Finding the most probable error
b. Applying the correction

22

● Deadline for programming
Assignment 2

● 18 May 2024

Lattice Surgery

arXiv:1808.06709, arXiv:1808.02892

Logical XX measurement

Logical CNOT

Multi-body logical X measurement

More Logical Gates

● We’ve seen how to do logical X and Z
● A logical CX can be done without much

trouble
● A logical H requires the lattice to be rotated,

but that can be done
● Other logical Clifford gates can be done with

some crazy tricks
● But that’s all! No other logical operations can

be done fault-tolerantly.
● A solution is magic state distillation, using

the logical gates we have to clean up the
one we don’t

28

Learning goals - 12 Surface QECC and Grover’s
(Advanced)
1. What you have learned by now

a. Quantum circuits: mathematics, diagrams and circuit identities
b. Entanglement: teleportation, quantum games, QKD
c. Superpositions, Phase Kickback and finding hidden strings
d. Quantum algorithms and quantum arithmetic
e. Fault-Tolerance and Quantum Error Correction

2. The surface QECC
a. What it is
b. How it is built in hardware
c. High-level description of its functionality

3. Lattice Surgery
a. Implementing error corrected gates
b. Instruction set for universal gate set

4. Decoding
a. Finding the most probable error
b. Applying the correction

29

● Deadline for programming
Assignment 2

● 18 May 2024

Final Readout
○ The logical operators are many-body observables

○ So how do we read them out fault-tolerantly

○ When you decide on a basis for final measurement,
you stop caring about some errors

○ You can then measurement in a product basis

○ Final readout and final stabilizer measurement can
be constructed from the result

○ Measurement errors are effectively the same as
errors before measurement

30

Decoding
○ Given the measurement results, we need to work out what errors happened

○ More specifically, the ‘equivalence class’ of errors

○ This is the job of the decoding algorithm

31

Decoding with MWPM
○ A good option is Minimum Weight Perfect Matching

○ We start with the simple and unrealistic case: errors only between
measurement

○ Each round can be decoded separately, corresponding to MWPM on
a 2D graph

○ Decoding for X and Z errors can also be done independently

32

Manhattan distance
between vertices

Decoding
○ We need to be careful to account for the effects of the edges

○ This is done by introducing extra ‘virtual nodes’

33

Imperfect Measurements

○ We have the problem of imperfect measurements

■ The measurements might lie

■ Errors on the additional qubit

■ Errors in the CX gates

○ We base the decoding using syndrome changes

○ This leads to a 3D MWPM problem (2D space + time)

34

Gate sequence:
Find X
errors

Find Z
errors

X
L

Z
L

Gate sequence:
Find X errors

Find Z errors

X
L

Z
L

1

0

1

1

1

1
X

How to do memory:

Measurement value change = detection event

How to do memory:

Build graph of all possible detection events

X

X

X

X

X

X

X

X

X

X X X

X X X

X X X

Classical processing

● 10 data qubits
● One detection event

● 10 data qubits
● One detection event
● Explore uniformly,

boundary found

Classical processing

● 10 data qubits
● One detection event
● Explore uniformly,

boundary found
● Match detection event to

boundary, record belief that
X error present

X

Classical processing

● Two more detection events

X

Classical processing

● Two more detection events
● Pick one, explore, current

time boundary
encountered

X

Classical processing

● Two more detection events
● Pick one, explore, current

time boundary
encountered

● Explore around other,
exploratory regions touch

X

Classical processing

● Two more detection events
● Pick one, explore, current

time boundary
encountered

● Explore around other,
exploratory regions touch

● Match, record belief that
two more X errors present

X

X

X

Classical processing

X

X

X

● One more detection event

Classical processing

● One more detection event
● Explore, current time

boundary encountered,
must wait for more data

X

X

X

Classical processing

X

X

X

• One more detection event

• Explore, current time
boundary encountered,
must wait for more data

• Explore further, boundary
encountered

Classical processing

X

X

X

• One more detection event

• Explore, current time
boundary encountered,
must wait for more data

• Explore further, boundary
encountered

• Match, record belief that
two more X errors present

X

X

Classical processing

X

X

• One more detection event

• Explore, current time
boundary encountered,
must wait for more data

• Explore further, boundary
encountered

• Match, record belief that
two more X errors present

• Cancel double error

• Don’t apply physical
corrections

X

Classical processing

X

X

X

Classical processing

X

X

X

Classical processing

X

X

X

X

X

 Classical processing

X

X

X

Classical processing

X

X

X

Classical processing

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

Classical processing

X

X

X

Classical processing

X

X

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X X

X

X

X

X

X

Classical processing

X

X

X

X

X

X

Classical processing

Correlated errors

Threshold
○ Correcting according to the right class removes the effects of errors

○ Correcting according to the wrong class causes an operation on the encoded qubit (without our knowing)

○ What is the probability of such an error, P, given the probability on the qubits of the code, p?

○ We find a phase transition as L is increased (for an LxL grid)

71

Simulated performance

● pL = 0.1(100p)(d+1)/2

● O(1) parallel algorithm
● Low latency

p

p
L

Appendix: Logical Gates and Experiments

Logical identity
X

L

Z
L

d
d

d

Logical move

Logical move

Can move anywhere, even back in time, up to Pauli operators.

Cliffor
d

Logical Hadamard

d
d

d

Device and experiment

• Show d=5 better than d=3
• Continuous running
• Real-time decoding
• d=34 extreme exponential suppression

(d=11 arXiv:2102.06132)

Challenges

• Yield < 100%
• Coherence ~20us
• Readout and reset ~1us

(arXiv:2102.06131)
• Calibration 0.5% (arXiv:1907.02510)
• Cosmic rays (arXiv:2104.05219)
• Decoding (arXiv:1202.5602)
• Target 1.5 to 10x suppression

Scalable?

10k scalable qubits

1M qubits

Appendix: Compiling

Graph states

• Every stabilizer state can be converted to a graph state using
only
local Clifford operations

• Graph state with nodes i and edge
neighbourhood

Teleportation based QC

Traditional circuit compilation

● Shortcomings of
traditional approach

● Performs Clifford operations on a
stabilizer state which can be simulated
efficiently on a classical device

● No room for optimisation other than at
the circuit level.

Example of Algorithm specific compilation

Input circuit Teleportation widget

Algorithm specific graph compiler

Jabalizer – A Julia based graph compiler https://github.com/QSI-BAQS/Jabalizer.jl

https://github.com/QSI-BAQS/Jabalizer.jl

State distillation

State distillation

Measure multi-body X operator!

State distillation

State distillation

State distillation

State distillation

State distillation

State
injection

T/Tdag
gate

Sdag gate (50% of the
time)

