Aalto University School of Science

Session 4:

Constrained spherical deconvolution (CSD)

NBE-E453001 - Special Course in Human Neuroscience V D: Imaging Brain Microstructure and Connectivity with Diffusion MRI Dr. Timo ROINE - timo.roine@aalto.fi

Session 3 outline

Basics of CSD Group discussion in Flinga Quiz (10 min) Break (5 min) Practical demonstration of CSD **Discussion and feedback** Assignments before session 5

Intended learning outcomes

By completing the course, the student can

- understand diffusion MRI acquisition and analysis methods
- describe applications of these methods
- explain the principles of investigating brain microstructure and structural brain connectivity with diffusion MRI
- recognize issues in applying these methods in research and clinic
- apply diffusion MRI methods to investigate brain microstructure and structural brain connectivity (e.g., analyze a dataset or design a project)

Course outline

Session 3: Diffusion tensor imaging (14.5.) Self-study, lecture, practical demonstrations, group discussion, individual reflection, quiz

Homework: Learning log (DL 18.5.) self-study, return first draft of project work report (DL 20.5.)

Session 4: Constrained spherical deconvolution and tractography (21.5.)

Self-study, lecture, practical demonstrations, group discussion, individual reflection, quiz

Homework: Learning log (DL 25.5.). self-study, give peer feedback on the project work report (DL 29.5.)

Course outline

Session 5: Connectivity networks and microstructural analyses (30.5.)

Self-study, lecture, practical demonstrations, group discussion, individual reflection, quiz

Homework: Learning log + self-study, return project work report (5.6.)

Session 6: Summary of the course, presentations of project works (6.6.) Seminar presentations, lecture, group discussion, feedback, individual reflection

Can this be changed to Friday 7.6. 12:15-14:00?

Main shortcoming of DTI: no fiber crossings

Prevalence of crossing fibers

XXXX 11/11 XXXXXXXXX/111 ************ *+***×××××××++1 ++~++× XXIII. ++++**XXX* ++++XXXXXXXXXX XXXXXXX XXXXXXXX 11++

TABLE I. Percentages of single and multifiber voxels throughout the WM for CSD and bedpostx and for different subjects

No. of orientations		1	2	≥3	≥ 2
CSD	Subject 1 Subject 2	9.5% 8.4%	47.1% 45.0%	43.3% 46.6%	90.5% 91.6%
bedpostx	Subject 1 Subject 2	36.1%	62.9%	0.9%	64.0%
Behrens et al.	[2007]	$\sim 67.7\%$	$\sim 33.3\%$	0%	$\sim 33\%$

For reference, we also included the estimates previously reported in Behrens et al. [2007].

Diffusion-weighted q-space schemes

Constrained spherical deconvolution (CSD)

- Assumption: the DW signal $S(\theta, \phi)$ is the convolution of:
 - the fiber orientation distribution $f(\theta, \phi)$ and
 - the signal of a single coherently oriented fiber population, response function $r(\theta)$

$$S(\theta, \phi) = f(\theta, \phi) * r(\theta)$$

Inverting the problem

Comparison of DTI and CSD

Tournier et al. 2013

Tournier et al. 2013

Tractography algorithms

- Single-fiber vs. multi-fiber
- Deterministic vs. probabilistic
- Local vs. global
- An example: Euler integration

$$\boldsymbol{r}_{i+1} = \boldsymbol{r}_i + \boldsymbol{v}(\boldsymbol{r}_i)\Delta$$

seed point r_0 corresponding fiber orientation $v(r_i)$ step size Δ

(j) RK4, step size: 0.1

24 Apr 2024

(i) RK4, step size: 1

(k) RK4, step size: 0.01

Jeurissen, PhD thesis 2012

DTI-vs. CSD based tractography

Anatomical priors for tractography

Multi-tissue approaches

Multi-tissue approaches

Peer-feedback on the project plan

- Reply to the thread of submission. Everyone comments individually – at least two bullet points per person per project plan/draft report.
- Constructive comments! For instance, answer these questions:
 - What is good in the proposed approach/project?
 - What possible challenges do you see and how would you address them?
 - Is the literature review sufficient/relevant to the topic? How could it be improved?