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Intended learning outcomes. After the course, the student will be able to...

o explain the fundamental concepts of numerical analysis, like condition number, stability, and convergence rate;
o construct the floating point numbers;

o discuss and employ basic numerical algorithms like Newton’s method,;

o use the Monte-Carlo method in basic problems in analysis and geometry;

o apply different methods of interpolation polynomials and numerical quadrature rules;

¢ understand the Euler scheme and linear multi-step methods for solving ordinary differential equations.

Floating-point numbers

The set of real numbers R is infinite in two ways: it is unbounded and continuous. In most practical computing, the second

kind of infiniteness is more consequential than the first kind, so we turn our attention there first.

Instead of IR, we shall introduce the set of floating-point numbers (floats) IF. They come with different bases, precisions and
exponent ranges, and other features. The basic representation is

z = +(do.dids ... dp)k - k°.

k € N\ {1} is called base or radix, p € Ny := N U {0} is called the precision, d;, i € {0,...,p}, and the sequence of
numbers

p
(do-dyds ... dp)i := Y dik™
=0

is called mantissa or significand. The exponent e € Z is bounded m < e < M, where m, M € Z.
If K = 10, we can read the usual decimal commas from the mantissa:

(1.01);0=1-10°4+0-10"' +1-1072 = 1.01.

If K = 2, we have binary floats. In the binary case, we observe that we can always choose dy = 1, hence saving one bit, which
can be expressed by e. We refer to this as normalization. The mantissa is always contained in the interval [1, 2).

Example. (Toy floating point system). Binary floats of the type
(1.b1b2)2

with exponents e = —1,0, 1.

o _5 _ 3 7 . . -1
Hence (1.00)2 = 1, (1.01)2 = 3, (1.10)2 = 3,and >(1.11)2 = 7. By multiplying with the exponents 2™~ =
1,2 =2, we get the whole set:
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Important quantity: (1.01); — 1 = 1] the so-called machine epsilon.

Define the machine epsilon by € := 277 = (1.00...01); — 1.
Rounding

For the rounding function round : R — IF, we have 5 alternative definitions:

¢ Rounding to nearest (default)
e Rounding to +00

e Rounding to —o0

e Rounding to 0

e Rounding away from 0

It holds that round(z) = (1 + J), where |§| < 5, where € denotes the machine epsilon. Note that usually § depends on .

There is a way to define the standard arithmetic operations on IF such that

a® b =round(a+b) = (a+ b)(1 + 1),
a © b =round(a — b) = (a — b)(1 + d2),

a ® b = round(ab) = ab(1 + 43),

a @ b = round (%) = g(1—i—54), b#0.

Here, generally §; # 0;,1 # j.
IEEE 754 “Double precision”

k = 2, 64 bits, where:

e The sign: 1 bit;

o The exponent field 0 < ex < 2047: 11 bits, where e = ex — 1023, and —1022 < e < 1023, where ex = 0 and
ex = 2047 are special cases.

o The mantissa 52 bits, precision p = 52.

Exponent field Number Type of number
00...00=0 +(0.b1by . .. bya)y - 271022 0 or subnormal
00...01=1 +(1.b1by. .. bsa)y - 271022

00...10 =2 +(1.byby ... bsa)g - 271021



01...11 =1023 +(1.b1by...bs2)2 - 2°

11...10 = 2046  +(L.byby...bs2)y - 2107

11...11 =2047 =+ooifby = by = ... = bsa = 0, otherwise NaN  exception
Thus, there are two zeros, two infinities and NaN which denotes “not a number”. The smallest positive normalized number is:

(1.0)7 - 27192 x 2.2.1073%,

The largest positive number is:

(1.1...1)9- 219 ~ 1.8 .10%

The machine epsilon is:
272~ 2.22.10716,

Here's an easy-to-follow video explaining floating point numbers (and a specific version of Newton’s algorithm).

Condition number and stability

Conditioning of problems

Assume that f : R — R “solution map” of the problem, input numbers z, &, close in value, e.g. & = round(z). Sety :=

f(@). 9= f(&).
Definition. The absolute condition number C(z) is defined by the relation

ly— gl ~ C(a)|x — 2.

The relative condition number K(a:) is defined by the relation

~
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By the normalization, we guarantee that

(relative error in the output) ~ K (z) x (relative error in the input).

Now,

Thus, C(z) = |f'(z)].

Furthermore,


https://youtu.be/p8u_k2LIZyo?si=Gfi9TId6x6BAcmpo
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—f'(z) as 2—z

Example. f(z) = 2z, f'(z) = 2. Thus, C(z) = 2, K(z) = |§—;| = 1. This is a well-conditioned problem.

Example. g(z) = v/z, ¢'(z) = 2\15 Thus, C(z) is becomes unbounded for z > 0 close to zero, e.g.  ~ 107 yields

C(z) ~ 10*. On the other hand, K (z) = :

9

2v/x\/z
Stability of algorithms

Definition. An algorithm or numerical process is called stable if small changes in the input produce small changes in the output.
It is called unstable if large changes in the output are produced by small changes in the input.

An algorithm is stable, if every step is well-conditioned (i.e. has a uniformly bounded condition number). It is unstable if any
step is ill-conditioned (i.e. the condition number may become arbitrarily large).

Forward error analysis (FEA) is asking:
“How far are we from the true solution?”

Backward error analysis (BEA) is asking:
“Given the answer, what was the problem?”

Example.
Set:
fl(z 4+ y) := round(z) @ round(y) = ((x(1 + §1) + y(1 + d2))(1 + d3),
where |6;| < §,i=1,2,3.
FEA:

ﬂ(m -+ y) =z+4+y+ 33((51 + 63 + 51(53) + y(62 + 83 + 5253).
The absolute error is

e +) ~ @+ )| < (el + o) (s + 5 ).

The relative error is:

e +y) —(@+y)| _ =+ 1) (e + %)
| T +y | |z + y| '

BEA:

fi(z +y) = 2(1+61)(1 + d3) + y(1 + 8) (1 + &3).

2
Thus the relative error for each term is less or equal to € + %.

Hence the sum of two floating point numbers is backwards stable.



Well-conditioned problems may have unstable algorithms. For stability, each step has to be well conditioned. Some ill-
conditioned steps produce an unstable algorithm. lll-conditioned problems cannot be reliably solved with a stable algorithm.

Example. Consider evaluating f(z) = +/1 + 2 — 1 for z close to zero. The relative condition number is:

zf'(x)
f(z)

T

2V1+z(v1+ax—1)

K(z) =

z(vV1i+z+1) Witz +1

2V1+z(Vi+z—-1)(V1+z+1) 2v/1+z ’

and K(0) = 1.

Consider the following 3 steps;

1. t1 := 1 + «, well-conditioned, z close to 0.

2. tg := 4/11, relatively well-conditioned, also absolutely well conditioned, because ¢ is close to 1.
3. t3 := t9 — 1, ill-conditioned, relative condition number of this step: K3 (tg) = ‘\t;—fl ‘i which becomes unbounded

for ts close to 1!
On the other hand, the problem is well-conditioned. Solve it by writing:

\/H—m_lz(\/1+x+1)(\/1+:c—1) x

fz) =

Vitzr+1 Vitz+1’

which can be evaluated directly close to zero.
Numerical differentiation

Recall Taylor’s theorem, for a twice differentiable function f : R — R,

Fl&) = Fao) + (@)~ a0) + 5z — 20 1),

forany o,z € R, where £ € [z, z].

What is that £ (= “xi”)? Under certain assumptions elementary functions have their series expansions. If the series is
truncated, we have the Taylor polynomial. However, the residual has an explicit expression but due to application of an

intermediate value theorem, the exact location of the point £ is not known, i.e. “generic”.

By setting x := z + h, 2y := z, we obtain the useful equivalent formula

1
fz+h) = f(z) + f(2)h + §f”(£)h2,
forevery z,h € R, £ € [z,z + h].
Rate of convergence ((-convergence)

Let (a:k) be an infinite sequence of real numbers. Let si := sup;>, i, k € N, be the supremum (i.e., the lowest upper bound)
of the tail (that is, large indices [ > k) of (x1). Define the lim sup (limes superior) as

lim sup zx := lim s; € [—00, +00].
k—o0 k—oo



Other than a limit, it always exists, but can be +00. If (:ck) is bounded, the lim sup is the largest limit of a converging
subsequence. If limg o0 Z1 € (—00, 00) exists, then limg o0 2 = lim supy,_,, k. The opposite is not true.

Examples. (1) zj, := (—1)“', then s = 1, and limsup;,_, ., zr = 1.
(2) 21, = sin(k), then s = 1, and lim sup;,_,,, zx = 1.

Assume that limg_,00 x =  and that there exists some large index M € N such that ¢, # x forall k > M. Then we
define the following quantity for p > 0

. |37k+1 - a:l
C = limsup——.
(p) = e

We observe that C(p*) < oo for some p* > 0 implies C'(p) = 0 forevery 0 < p < p*.If C(p*) > 0 for some p* > 0
then C(p) = oo forany p > p*.
Proof. By the submultiplicative property of lim sup,

‘p* -p

\Jfk—l *1'\ Pﬂvkﬂ *$|
R — — Tk — T

C(p) = limsu = lim su .
(p) kﬁoop |fl?k - x|p kﬁocp "rlt —xP

1 — . 0 if p<p*,
< (Hmsup W) : <limsup |zk — [P p> = C(p*) - tp=p

k—o00 |$k — x| k—o00 oo if p> p*'

[

Thus, there exists a (possibly infinite) p* such that

0 if 0<p<p*
Clp) =4 C) if p=p,
00 if p>p*.

The number p* is called order of convergence for the sequence (1) and determines the rate of convergence as follows:

o Ifp* = 1and C(1) = 1 then we say the convergence is sublinear.

o Ifp* =1and1 > C(1) > 1 then we say the convergence is linear.
o Ifp* > 1orC(1) = 0 then we say the convergence is superlinear.

o If p* = 2 then we say the convergence is quadratic.

o If p* = 3 then we say the convergence is cubic, etc.

When working with convergence estimates it is often useful to use the following approximation:

|zki1 — x| = Clay — :c|p*

for some constant C' > 0, not necessarily C(p*).
Here, it is useful to look at the logarithmic behavior:

log(|zi1 — ) ~ log (Clax — al?") = log(C) + log |z — a]”") = 10g(C) + p* log(|zx — ).

The rate of convergence can be used interchangeably with the order of convergence. However, there is some caution
necessary, as different authors use different terminology here. Usually, the order of convergence always refers to the same
thing, namely, the p*-exponent in the denominator of the limit defining the order of convergence. Most confusingly, some

authors call the order of convergence “rate of convergence”, as e.g. here. The English Wikipedia article calls it the order of


https://www.math-cs.gordon.edu/courses/ma342/handouts/rate.pdf
https://en.wikipedia.org/wiki/Rate_of_convergence

convergence, whereas here the rate of convergence is the constant in the definition, which also determines the speed of
convergence, together with the order of convergence. So, please always check the context, as the use of the terminology
should be clear from it. If there is no definition, try to figure out what is meant in each text. As a rule of thumb: The “order
of convergence” is a unique terminology in numerical analysis. The “rate of convergence” can mean at least two different
things. | will use both words for the same thing, but will try to make clear what | mean from case to case. In any case, to be
sure, use “order of convergence”. My PhD advisor usually said that in mathematics “it's all hollow words” (meaning that one
should check the definition).

Landau’s little o- and big O-notation

Copied from Wikibooks under a Creative Commons BY-SA 4.0 license.

The Landau notation is an amazing tool applicable in all of real analysis. The reason it is so convenient and widely used is
because it underlines a key principle of real analysis, namely “estimation”. Loosely speaking, the Landau notation introduces
two operators which can be called the “order of magnitude” operators, which essentially compare the magnitude of two given
functions.

The “little-0”

The “little-0” provides a function that is of lower order of magnitude than a given function, that is the function o(g(z)) is of a
lower order than the function g(). Formally,

Definition.
Let A C Randletc € R.
Let f,g: A — R

If lim, . % = 0 then we say that

"Asz — ¢, f(z) = o(g(z))"

Examples.

o Asxz — o0o,(andm < n), z™ = o(z");
e Asxz — 00, (andn € N),log z = o(z");
e Asz — 0,sinz = o(1).

The “Big-O”

The “Big-O” provides a function that is at most the same order as that of a given function, that is the function O(g(z)) is at

most the same order as the function g(z). Formally,

Definition.
Let A CRandletc € R

let f,g: A— R

f(=)

If there exists M > 0 such that lim,_,. @

< M then we say that

"Asx — ¢, f(z) = O(g(x))"

Examples.


https://en.wikibooks.org/wiki/Real_Analysis/Landau_notation

o Asz — 0,sinz = O(z);
e Asz — Z,sinz = O(1).

Applications

We will now consider few examples which demonstrate the power of this notation.
Differentiability
let f: U CR—Randxzg € U.

Then f is differentiable at xg if and only if

There existsa A € R such thatas z — o, f(z) = f(20) + A(z — x0) + o (| — z0o]).
Mean Value Theorem

Let f : [a, ] — R be differentiable on [a, b]. Then,

Asz — a, f(z) = f(a) + O(z — a).

Taylor’s Theorem

Let f : [a, ] — R be n-times differentiable on [a, b]. Then,

z—a)f'(a z—a)f"(a z—a)" L (g n
Asz > a, f(z) = f(a) + TG 4 L S gy el @ 4 O (2 - a)").

Finding roots of functions and fixed points

Let f : R — R be continuous. We are interested in methods for finding zeros, that is, roots of f, in other words, z € R, such
that f(z) = 0.

Definition. If f : R” — R, n € Nis k-times continuously differentiable, then we write f € C*(R™) or just f € C*. For
k=0,fcC%rfecC(R") orf e C([a,b]) just means that f is assumed to be continuous.

Bisection method

The intermediate value theorem for continuous functions implies that 1 < & < 2 with f(z) = 0 exists if f(z1) f(z2) <0
, i.e., there is a sign change. The bisection method is based on halving the interval such that the sign condition is preserved. Note
that, in principle, we have to look for intervals [z1, 2].

Let us analyze the convergence rate. Let [a, b] be an interval. After k steps the interval of analysis has length I’;—k" which
converges to zero for k — 0o. Let us look in a neighborhood of radius & > 0, so that

b—
2k

Y<2% o 2’““2% = k210g2<b;a>—1.

Every step reduces the error by factor % The convergence rate is thus linear.

Newton’s method



Assume that f € C*. For an initial value x, consider the iteration

_ f(xw)
f'(zk)

Heuristics. If f(x,) = 0 and f € C?, by the Taylor’s expansion,

Tkl = Tk k=0,1,....

(s — m0)?

0= f(z:) = fo) + (2 — z0)f (20) + 5

' (€)

for £ € [z, x.], and upon neglecting the 2nd order term,

Theorem. If f € C? and xy is sufficiently good (i.e. close to the root &,) and if f'(:c*) # 0, then Newton’s method converges
quadratically.

Proof. By Taylor's expansion, it follows that

flzr)  (ze —z1) (&)

Ty = Tk — -

f' () 2 f'(zk)

for some &, € [:c*, azk] Take xk+1 from the method and subtract,

2 f”(é.k)
2f"(zk)
N, e’

<D

Tkl — Ty = (T4 — Tk)

In other words,

Tkr1 — | < Dlzp — z*[7,

as k — oo and thus z — .

Hence the method is quadratic. Note that f’(:vk) does not vanish by continuity if zx is close to z,. [J
What happens if f'(z,) = 0?

Thy1 — Ty = (T4 — mk)z&
2f (zx)
\:/O_/

ask — oo.
By Taylor’s expansion (n="eta”):

fe) = (@) + (@ — @) £ (me) = (@i — @) £ (me)
=0

for some Mk € [X4, Tk|, and hence

ee1 — 2o = () = (zr — 2.) f" () (2 — ).

The method has degenerated to a linear method!

Example. f(z) = z?, f'(z) = 2. Newton:



Secant method

Sometimes it can be difficult or computationally expensive to compute the derivative f'(xk) Newton 's method can be
adapted by approximating the derivative by the differential quotient. The secant method is the following two-step recursive
algorithm.

f(zr)(zk — Th-1)

LTI fan) — fmra)

k=1,2,...

with two distinct starting points £g # x1. The convergence rate is 1+T\/5 ~ 1.62, the golden ratio.
Fixed point iteration

Definition. A point € R is called a fixed point of p : R — R if p(z) = x.
We could for instance use Newton’s method to find fixed points by setting f(z) := ¢(z) — .

Banach’s Fixed Point Theorem. Suppose that ¢ is a contraction, that is, there exists a constant L < 1 such that

lp(z) — (y)| < Llz -y

forall z,y € R. Then there exists a unique fixed point z, € R of ¢, i.e., go(:c*) = x,, and the fixed point iteration ¢,, :=
(o ...o0  satisfies lim,, oo gon(:co) = x, for any starting point o € R. The convergence rate is at least linear.
W—/

n-times

Proof. We prove that the sequence {¢r(20) }22, = {Zk }72, is a Cauchy sequence. Let k > j. Then, by the triangle
inequality,

lzr — xj| < Tk — Tp-1| + [Br-1 — Tp—2| + ...+ [T501 — 5]

(k—j)-summands

Furthermore,

|Zm — Tm—1| = |@(Tm-1) — @(Tm—2)| < L|Zm-1 — Tm_a| < L™ |21 — z0l.

Hence, by the geometric series,

1— Lk

m—ag| < L

|z1 — @o|.

Ifk > N,j > N,then

|z, — x| < LY |z1 — 20| — 0

1
1-L
as N — 00, which proves that {a:k} is a Cauchy sequence. The linear convergence rate follows also from this estimate.

The existence of a fixed point follows from the continuity of ¢ (as contractions are uniformly continuous, in fact, even Lipschitz
continuous) as follows.

z, = lim xp = lim zx11 = lim p(zr) = p(lim zx) = p(z4).
k—o00 k—o00 k—o00 k—oo



O

Theorem. Assume that ¢ € CP for p > 1. Furthermore, assume that has a fixed point &, and assume that
¢'(@)=¢"(@@)=...= " V(@) =0
forp > 2 and
G'(z.) <1

if p = 1. Then the fixed point sequence {¢x (o)} converges to z, at least with rate p, provided that the starting point x is
sufficiently close to x,. If, in addition, go(p)(a:*) = 0, then the rate of convergence is precisely p.

Proof. First note that by Banach’s fixed point theorem the limit indeed converges to . for suitable starting points xg. By the

Taylor expansion,

L () a®)
s = 2. = plen) = p(e) = 3 P @)+ W @y oy
2 !

for some £, between x, and xx. The sum will be left empty for the case p = 1. Since (p(l)(:r*) =0forl <I<p—1,we
get that

o) (&)

p! |‘m’“_m*p

Tp1 — Tu| =

By continuity, there exists C' > 0 (with C' < 1 for p = 1) such that
()
p!
for &, sufficiently close to x, (that is, for sufficiently large k). Thus,

[Tk+1 — zo| < Clak — 2P

for large k, and thus the rate of convergence is at least p. Note that for p = 1, this also proves convergence by

ek — @] < [p(&r)l|n — 4]
———

<1
If <p(p) = (), then by continuity, there exists K > 0 such that
(p)
') (&) S K

p!

for £k sufficiently close to x,. Thus
|Tr1 — 2| > Kok — x|f

which implies that the rate of convergence cannot be higher than p. Thus the rate of convergence is precisely p. []

Note. From the above proof, we expect that close to the fixed point .

o) (2.)]

|Th+1 — .| = p [Tk — x|,



when

but o) () # 0.

Polynomial interpolation

Idea. Approximate a function f : R — R over [a, b] by a polynomial p such that in distinct data points (z;, ¥i), 7 =
0,1,...,n,the approximation is exact, that is,

f(z:) =yi =p(x;), forall ¢=0,1,...,n.

We may call z; node and y; value.
We need at least 2 data points. We usually just assume that x; 75 x; fori 75 3

Note. Interpolation polynomials are not per se unique, for instance the data {(—1,1), (1, 1)} can be interpolated by

p(z) = 1,q(z) = 2%, orr(x) = z*

withdegp < 1 =n.

— 2?2+ 1. However, we will see later that p is the unique interpolation polynomial

Example. (1,2), (2,3), (3,6), as data set {(xi,y;) : ¢ =0, 1,2} on theinterval [1, 3].
We are looking for a polynomial p2 (a:) = Z?:o cja:j, which is chosen to be 2nd order, because we have 3 data points and 3

unknown coefficients.

We can formulate the problem in matrix form:

2

1 =y =z Co Yo
2

1 z1v zi|-|a]l=1u],
2

1 zo x3 C2 Yo

which is a so-called Vandermonde matrix which has determinant

1 zp 2
det |1 z1 23| = H(w] —z;) # 0,

1 ac% i<j
and is thus invertible. Here,

1 1 1 co 2

1 2 4 C1 = 3

1 3 9 Co 6
Asaresult,co = 3,¢c1 = —2,and ¢c2 = 1, and thus,

pa(z) = 2® — 2z + 3.

The computational complexity of solving the linear system is O(n3). We used the natural basis for the polynomials.
What would be the ideal basis?
Definition. (Lagrange basis polynomials) Suppose that x; # z;ife 2 j. We call

:L‘—.’Bj

¢i(z) =1

T — 1
j=0 """
1#]



the 2th Lagrange basis polynomial.
The Lagrange interpolation polynomial is given by

Clearly,

Example. (1,2), (2, 3), (3,6):

pa() = 2p0(x) + 31 () + 6pa(x) = 2° — 2z + 3.

Evaluating the Lagrange polynomials has the computational complexity O(n2).

Newton’s interpolation

Idea. Extend the natural basis:

n—1
1, z—=z, (z—m)(z—21), ..., H(m —zj).
§=0
Definition. Define Newton'’s interpolation polynomials by
n—1
pn(z) =ap+ar(z —x0) +...+an H(m — ;)
§=0
in such a way that p,(z;) = y;.
Clearly,
p(zo) =y = a0 =yo,
and
_ Y9~

p(1)=ar+ai(zi—z0) =1 = a .
Ir1 — &g

More generally, we have the lower triangular linear system



1 0 ao Yo

1 x1—x 0 oo ai n
1 21—z (x2—xo)(z2—21) 0 --- a | — | v
1 z1—x (z2—20)(22 — 21) e H;l;ol(wn —zj)/ \an Yn

Example.
p2(z) =ap+ai(z —1) + ax(z — 1)(z — 2)

with the system

1 0 O ao 2
1 1 0 ar | =13
1 2 2 as 6

and hence ag = 2,a; = 1,and a2 = 1 which yields pz(z) = 2> — 2z + 3.
Uniqueness

Theorem. Interpolation polynomials with n + 1 nodes ;,¢ = 0,1, ..., n are unique in the class of polynomials g with
degqg < n.

Proof. (Idea). p, has at most 1 roots. Let p,, and gy, be two interpolating polynomials for the same set of data. Then

pn(zj) = qu(z;) =0, forany j=0,1,...,n.

Hence p, — gy has n + 1 distinct roots. As deg(p, — ¢») < max(degpn,deggn) = n, the only polynomial with n + 1
roots is the polynomial which is constantly zero. Hence,

We have used the corollary to the fundamental theorem of algebra which states that every non-constant real polynomial of
degree m has at most m zeros. []

Divided differences

Let p be a Newton interpolation polynomial

n=1
p(z) = ap + ai(z1 — o) + a2z —z2)(z — 1) + ... + an H(a: — ;).

3=0
Definition. The divided difference of order k, denoted by f[xo, 1, . .., k], is defined as the ax-coefficient of the Newton
interpolation polynomial with data y; = f(x;), in other words,

flzo, 1, .., Tk] := ak.
Theorem.
flew, ... 2k — flzo, ..., Tr—1
f[xo,wl’...,xk]: [ ) ) ] [ ) ? ]'
Tk — To
Note. The recursion terminates because f[x;] = y;.

Example. ** (1,2), (2, 3), (3,6), pa2(z) = > — 22 + 3, Newton: ag = 2,a; = 1,a3 = 1.



f[a?()} =2= ao, f[%ﬂ =3, f[ﬂ“z} =6, f[-rll-/xl} - 37? =1= al,f[l’lam?} - 27‘3 =3, f[.l‘(),ﬂh,l‘z} - 37

1:a2.

Why does this work?

One point: f[z;] = f; = y;.

Two points: f[z;, z;] = w which is the line spanned by the two points (z;, y;) and (z;, y;), i.e.,
j i
y—yi= 2"V a).
Tj — T

Proof. (Idea). We have three interpolation polynomials p, g, 7, where deg p = k, deg q = degr = k — 1. p interpolates at
To,L1,- .., Tk, q interpolates at xg, 1, ..., Tk—1, and 7 interpolates at 1, . . . , Tk.
Claim.

xo: p(z0) = q(x0) = fo.

Z1, ..y xh—1: p(x;) = q(@).
Tk —

zr:p(zr) = q(xk) + sz(r(l’k) — q(zk) = r(zk).

=1
The highest order term has the coefficient

P(k)(l') _ Th-1 — Qk-1
k! Tk — T

(k1)
where y—1 = f[z1,Z2,...,Tk] = h and gx—1 = f|xo,®2,...,Tk-1] = =)L

which can be proved by the general Leibniz rule. []

Interpolation error

Assume that f € C™*1. We are interested in the local (pointwise) error (residual)

R(z) := f(z) — p(=),

where p is the interpolation polynomial with deg p = n.
Fix data (zs,¥:), ¥i = f(zi), i =0,1,...,n,@; # x;,1 # j. Let 2’ be an distinct extra point.
Define an auxiliary function:

where

w(z) = [[(z —2))

J=0

and



We find that

Furthermore,

(n+1)

Hence h has i + 2 distinct zeros. By Rolle’s theorem (see Differential and Integral Calculus 1), A will have at least one

zero. Let's call this point £.

h(”H)(a:) — f(n+1) - p(”+1)(:11) . C’w(n+l)($) — f(”H)(m) . C(TL + 1)|
=0

Hence

R () = FH () —e(n+ 1)1 =0

and thus

L)
C (n+ 1)

We have proved that:

Theorem. If f € C™*1, the residual R = f — p at 2 has the form

(n+1) n
R(z) = ) n S') Ho(m — zj).

(n ‘
J
Notice that, in general, R is not a polynomial, as § = §(:L') depends nonlinearly on .

Note. The constant c is a divided difference:

1

flzo,z1,..., 20, 2] = mf(nﬂ)(ﬁ(fc)),

which follows from the formula for R, R"*Y) = f("*1) and R(z;) = f(;) fori = 0,1,...,n.

Piecewise interpolation

Setup. Fix a bounded interval [a, b] and a step size / mesh

forsome n € N, where 11 is the number of subintervals.

Idea. Approximate the function on each subinterval using some low order interpolation polynomial such that the interpolation
function is exact at the nodes.

Piecewise linear case:



r — I; T — Tj-1

bi(z) = f(zi1) ———— + f(zi)) ———, = € [zi1,24].
i(z) f(zl)wiil_xi £ z)xi_xiila [@i-1, i
(n+1)
By the residual formula on each subinterval R(z) = f(nil(ﬁ) H?:o(m — ), we get the interpolation error
(¢
F@) ~ t(e) = (e~ 2@ - 2,

which simplifies if | f”(x)| < M by maximization as follows

f(z) = ti(z)] < M%2, T € [y, z).

Note. If f” is bounded over the whole interval [a, b] then the error is the same over the whole interval.
Hermite interpolation

Piecewise interpolation by degree 3 polynomials p3 (:c) = 23:0 cj:vj. As we have 4 coefficients, we need 4 constraints. We
demand that not only the function but also the derivatives are exact at the nodes. Let p be a cubic interpolation polynomial on
[€i—1, ;]. Then p' is a quadratic polynomial. Recall that h = x; — z;_1.

We have the conditions:

+a(z —zi1)(z — ;).

p(z) = _M/z (t — ;) dt + fl(hx’) /m (t—wil)dt—i-a/w (t—zi1)(t —x;)dt + C.

i—1 i—1 i—1

Plugging in z;_1 for x yields that C' = f(:[:i,l). Plugging in x; for © and integrating yields

3., , 6
a= 5 (F(@i) + (@) + 15 (F(@i1) — f(zi))-
Splines

Let us construct a global piecewise interpolation function s € C? such that:

1. We do not impose exactness for derivatives.
2. We get a piecewise polynomial construction of cubic interpolation polynomials which is exact and has continuous 1st and
2nd derivatives.

This requires a global setup. All coefficients are defined first, only evaluation is piecewise.
Setup. Let h = x; — z;_1 be constant. Define



Now,

§'(z) = =zi-1(zi — ) + —zi(x — zi1).

Denote s on the interval [mi,l, a:z] by s;. Integrating twice yields

1 (zi—z)* 1 (z—mz1)°

si(z) = Ezi—liﬁ + Eziifs + Ci(z — zi—1) + D,
where
1 (2, —z)? 1 (z—zi1)°
/ . 4 .. ¢
si() pE1 % 5 + C;

Set fi := f(x;). We get that

and

2
Ci= % [fi — fia+ %(zifl - Zz):| .

Now s has been defined over all subintervals. However, the z; are still unknown!
Using the condition for continuity of the derivatives s;(z;) = s} (x;) for all  yields

h 1 h? h 1 2
5% + 5 (fi — fi-1) + E(Zi—1 - Zi)] =% + N |:(fi+1 - fi)+ g(zi — Zit1)|
fort =1,...,n— 1.

In fact, this constitutes a triangular system:

2h h
AT Rzt Sz =

3 6 6 (fir1 = 2fi + fim1) =t bs.

S| =

The values 2z and z,, at the interval boundary have to be moved to the right hand side, and thus:

by = %(ﬁ —2fi+ fo) - gzo

and

1

h
bp—1:= E(fn - 2fn71 + fn72) - 6zn~

20 and 2z, can be chosen freely, for example to force that the 1st derivative of the spline is exact at the interval boundary
points. If zg = z, = 0, s is called a natural spline.

Bézier curves

Bézier curves are parametrized curves in R?, that is, r(t) = z(t)i + y(t)j,



where i := (é)_] = <[1)> andz,y:[0,1] = R.

Bernstein polynomials

Define the Bernstein polynomial B} (t),t € [0,1],n € NU {0}, k =0,...,n,by

Bl(t) := (Z)tk(l .

Properties:

LY b oBrt)=1(=(t+1-1t)",
2.0< B,Z(t) <1,
3. Bj(0) = By (1) = 1, otherwise, if k # 0, B} (0) = O and if k # n, B}}(1) = 0.
We have the combinatorial rule:
BMt) = (1 — t)BY () + tB 5 (¢).

Bézier curves

Fix a finite set X = {xo, x1 ...,z } of control points z; € R™.

Definition. The convex hull of X is defined by

k k
conv(X) = {y eER": y= Z)\imi, Ai €0,1], Z)‘i 1}.
k=0 k=0

Definition. The Bézier curve 3" is defined,

B(t) = Y @rBi(t).
k=0

Sanity check: t = 0, B} (0) = 0, except Bj(0) = 1.
= ,8”(0) = Xy,

= 0"(1) = zy.

We get closed curves if xg = x,.

What about the continuous tangents?

Recall that (}}) = ﬁlk)u

%B};(t) = (Z) (Rt 11 —t)"* — (n — k)t (1 — )" *)

(n—1)!

Wi kit A0

n—1)! 1 e
=" [(k —(1)!(n)— T G

=n (Bp1(t) — By ().

Therefore,



¥ O =X (B0 - B 0)

=N

n n—1
SLEIRE LA
k=1 k=0

=N

n—1 n—1
Y By (t)mrer - Y Bg—l(t)mk]
k=0 k=0

7
L

=n Y (k1 —2x)By(t).

k=0
Bézier
Hence, for the closed curves:
28"(0) = n(z1 — m),
28™(1) = n(xn — T 1)

For smoothness, we need that (z1 — 2¢) || (2, — Zn—1),i.e., £1 — 2o and T, — T_1 are parallel.

Lifting

Control points define the curve but the converse is not true.
Consider:

n+1

BY(t) =) Bi()zr = Y B (t)yr = " (2).
k=0 k=0

Let us use the convention z_1 = x,11 = 0. We get the condition

(1 k n k
Yk = ntl Tk n—l—lmk*l'

De Casteljau’s algorithm

For control points g, x1, . . . , Tp, the algorithm of De Casteljau is as follows:

1. Define constant curves 37 (t) = ;.
2. Set

Bi(t)=Q-t)8] (1) +tBi1(t), r=1,...,n, i=0,...

Th
The algorithm terminates at 3§ (t) and has () operations.

There is also a reverse algorithm for splitting Bézier curves.



Numerical integration

Integration schemes are called quadratures. Therefore, numerical integration methods are simply called numerical quadratures.

Note. There are no simple integration schemes in higher dimensions. Already 2D-cases are complicated.
Newton-Cotes quadrature rules

Let f : [a,b] — R.
Idea. Approximate

/abf(:c)d:c =1

by the integral of an interpolation polynomial

b
Iz/ pr(z) dz =: Q(px),

where py, is an interpolant of f over [a, b].

Lagrange:
b " T—
[ @yde~ Y se) [\ T[22 | da
a — a Lz —
=0 ]:0
i£]
Letn = 1:
(0) = f(@)° =2+ fB) =
pii) = aa—b b—a’
so

=> Trapezoidal rule!

Error formulation:

/abf(a:)dm—/abpl(w)d:c ;/abf"(f)(x—a)(a;_b)dw_

Now, (z — a)(x — b) < Oforz € (a,b).

Therefore, by the mean value theory of integration,

Composite rule: h = b%‘ z;=a+1th,i=0,...,n.



/ F(z)dz ~ 2 [F(20) + 20 (21) + - + 2 (20 1) + F(n)].

N | S

Total error: O(h?) ~ O( ;). We say that the method is quadratic.
Let n = 2. When is a method exact for degree 2 (or lower)?

Note. In this context, exactness means, that the integral and the method give the exact same result for

polynomials of certain order.

[ #@rde = ais@ + aar (450) + ass

where we call the A; weights.

b
/1dw:b—a = A1+ A2+ A3 = b —a.

b 2 2 2 2
_ b _
/xdm:b 2“ :>A1a+A2(a;— )+A3b:b @

Thus,

and

As integrals and the methods are linear, this extends to all polynomials of deg < 2.

This is the so-called Simpson’s rule:

/abf(w)dw S [f(a) -y (‘”‘2”’) +f(b>] .

The associated composite rule becomes:

[ #(@)de = § £(a0) +45(@) + 26 (w0 + 45 (w) + .+ 4f () + S

Error forn = 2:

10— P,

Error for the composite: O(h4). The method is exact for cubic polynomials!



Orthogonal polynomials

Define the inner product of two real-valued polynomials on [a, b] (depends on a and b!) by:

(p,q) = / p(z)q(z) dz.

The associated norm on [a, b] is given by

. 1/2
lall = ( / |q(:c>|2dw) -

Definition. Two non-zero polynomials are said to be orthogonal on [a, b] if their inner product is zero. They are said to be
orthonormal if they are orthogonal and have both norm 1.

In other words, orthogonality: (p, g) = 0, then we write p L gq.

Orthonormality: p L gand (p,p) =1 = (q, q).

Gram-Schmidt (GS) procedure.
Idea. Transform a basis to an orthogonal one:

{1,z,2%,...,2%, ..} — {q,q1,...,¢k,...}, orthonormal.
Note. The GS procedure depends on the inner product, and thus, here, on a and b.

The elements of the orthonormal basis are called orthogonal polynomials.

1 1 1 1
. qO = — = 1/2 = — .
11| (fab 12d:z:) b—a
2. Forj=1,2,..
j—1
gi(z) = zqj_1(x) — Y (xgj-1,9)q(x),
i=0
and
gj
! ;]

The new basis is (pairwise) orthonormal!
Above, as usually, we denote the polynomial p(:c) = x with the symbol x.

Observation. By bilinearity, g; 1 is orthogonal to all polynomials of deg < j—2.
Thus,

(qj-1,q) = (gj-1,2¢) =0, < j—3.

As a consequence, the GS procedure reduces to

gj(z) = zgj-1(z) — (2gj-1,9j-1)gj-1(z) — (2gj-1, gj-2)gj—2(T)

which is a three-term recurrence rule!

Note. The trick (xgj_1, ¢i) = (gj—1, gi) relies heavily on the fact that the inner product is defined by an integral and

that we are dealing with polynomials. The GS procedure works generally in pre-Hilbert spaces, however, then we do not



expect this kind of simplification.

Claim. The GS procedure works.

Proof.
-1
<(ij,q1'—1> = <$Qj—17q]‘—1> - ;(fcq]‘—l,w <i1h%>1>
=0 except when i=j—1, then it is =1
= (zgj-1,9-1) — (zgj-1,qj-1) = 0.
OJ

Gauss quadrature

Idea. Choose the nodes and the weights simultaneously.
One interval:

b
/ f(x)de = Aof(z1) + Arf(z1),

with weights Ao, A1, and nodes xg, 1, forn = 1, thisisa (n + 1) = 2-rule.
The coefficients are determined by the usual process:

b
/ ldr=b—a= Ay + A;.

b 2 2
b° —
/ zdx = 2 a4 = Agzg + Ar21.

b
1
/ z* dx = g(b3 —a®) = Aozh + Ay23.

The resulting system is nonlinear!
Let us use the orthogonal polynomials in the following way.

Theorem. Let zg, x1, . . . , Tp, be the roots of an orthogonal polynomial g1 on [a, b] of degree n.
Then

b n
[ @)oY aifa),

=0

where



is exact for all polynomials of degree 2n + 1 or less.
Proof. Let f be a polynomial with deg f = 2n + 1. By the polynomial division algorithm,

f = Qn+1Pn + Tn,

where deg p,, < nanddegr, < n.Then,

—

F (i) = @ns1(@i)pa(s) + (i) = Tals).
=0

Integrate,

/ab f(z)dz = /ab dn+1(2)pn(z) dz + /ab () d

.

= <qn+1 7pn>:0

b n =
= / ro(z) dz = ZAiTn(fﬂi) = ZAlf(xl)
a i=0 i=0

Because 7, can be interpolated exactly with 1 + 1 nodes. The last equality follows from the reasoning before. [J

We can extend the notion of orthogonal polynomials to so-called weighted orthogonal polynomials with respect to the inner
product

b
P Q) = / p(z)q(z)w(z) de,

where w is a positive weight function.

One (mathematical) advantage: Works also on R = (—00, 00).

Example. If w(z) = e~ %, we get the so-called Laguerre polynomials. If w(z) = e~ 7, we get the so-called Hermite
polynomials, which are meaningful in probability theory (the weight is the density of the Gaussian normal distribution up to

multiplication by a normalization constant).

Theorem. The previous theorem holds a <-, ->w-orthogonal polynomial gn41 with

b L
A= / vi(z)w(z)dz, ¢i(z)= H i

J#

3:,-—33]-

Error formula. (n + 1)-point rule with nodes g, &1, . . . , Tn:

Where does the square come from?
We assume that the derivatives of f are continuous, therefore Hermite interpolation is the natural choice.

Example. Gauss rule on [—1, 1], n = 1. Notice, since we only want the roots, there is no need to normalize ¢;, 7 = 0, 1, 2.
GS:qy = 1.



1
1 zdx
(jl—m~1—<m’> 1:17—"[_117 l==zx
<171> f71 ldx
where (1,1) = 2,and (z,1) = 0.
<$271> <£L‘2,£E> 2 1
R VR

where (z,z) = (¢°,1) = 2 and (z?,z) = 0.

The resulting orthogonal polynomials on [—1, 1] are called Legendre polynomials.
1

%-

The associated Newton quadrature rule is:

[orose-as(- ) eas()

@2 (and @2) has the roots x = =+

Let us check exactness:

1
/ ldx =2 = Ay + A;.
-1

1
—Ap Ay
zdr=0= — + —.
/_1 V3 V3

From this, we obtain easily that Ag = A1 = 1. This weights could of course also been determined by integrating the Lagrange

polynomials over [—1, 1].

frosion (3 ()

Thus, the Newton quadrature is indeed exact up to degree 2n + 1 = 3!

Probabilistic examples

Monte Carlo integration

Let X;, ¢ € N, be i.i.d. (independent, identically distributed) random variables with mean y and variance a2. Then for the

arithmetic mean (also called Césaro sum)

By the law of large numbers, we have almost surely



We have that

N 2
1 lo)
var(Ay) N2 E var(X;) = -
i=1

In order to get the right unit, we have to consider the standard deviation

o(Ay) = .

2

Consequence:
If our integration problem can be cast into an averaging problem, the convergence rate will be O(\/iﬁ)
Note. The rate is independent of the spatial dimension.
Example. Estimating the value of 7r. The area of a circle is A = 7r?. Set » = 1. Consider the box V' = [—1,1] x [—1,1]

with volume |V'| = 4. The ratio of the areas of circle enclosed by the box and the enclosing box is - Let

1, if pisinside A,

gi= 0, otherwise.

Idea: Let us sample the points p; uniformly from V. In the limit, the number of “hits” over all samples tends to the ratio of the

areas!
Buffon’s needle

Suppose we doing a random experiment with a large number of needles of same length L that we throw on the floor, which

has parallel strips drawn on it which have all the same distance D to their neighboring strip.

What is the probability that a dropped needle intersects with a line?

Let y be the distance from the center of the needle to the closest line and let 8 be the acute angle of the intersection point.
We assume, for simplicity, L = D = 1.

Both y and 8 are random variables with distribution
) 1
y~ Unif ( |0, =] ],
2
where y = 0 means that the needle is centered on a line and y = % means that y is perfectly centered between two lines.

9~Unif<[0,gD,

where 6 = 0 means that the needle is parallel to the lines and 8 = % means that the needle is perpendicular to the lines.

We may assume that y and @ are independent random variables (why?).

By the law of sines, the condition for intersection with a line is

2y < sin 6.



The joint probability distribution of two independent random variables is the product of the respective distributions on

[0, g] x [0, %] Determining the probability requires calculation of the ratio of the area of the condition of intersection in

relation to the total area %.

The condition is fulfilled by

1 [2 1
2/0281110(19:2
1 71'_2
2/ 4 7w

By the law of large numbers, the ratio of needles intersecting the lines with all needles converges to 72? =~ 0.6366. Hence, we

Thus the probability of intersection is

have found yet another probabilistic algorithm to determine the value of 7.

Initial value problems (IVPs)

Problem. (Not necessarily linear) ordinary differential equation (ODE), with initial value yg at initial time ¢ up to a finite time
horizon T' > ty:

{y'(t> = f(t,y(t)),

y(to) = vo.

Assumptions. Existence and uniqueness of the solutions are understood (by e.g. Picard iteration).
Let us assume that f is continuous as a function from [tg, T] x R — R and Lipschitz continuous in the following sense:
There exists L > 0 such that forevery y, z € R, t € [to, T,

|f(t,y) — f(t,2)] < Lly — 2|.
Euler’'s method

Fix a constant step size h > 0.

1. yo := y(to)-
2.ty :=tr_1+hand yp11 = yr + hf(tk,yk), k=0,1,2...,.

Applying Taylor’s formula yields:

h? h?
y(teen) = y(te) + by (B6) + 54" (&) = () + hf (b, y(t)) + 54" (€r),
with & € [a, b].
We shall deal with two types of error:

(A) truncation error (local),
(B) global error.

Notation. y(tk) denotes the exact solution to the IVP at t = {1, whereas yi denotes the result of the method at step k.

For Euler, we get that



Yk+1 — Yk

= f e yr) + gy"(&c)

—_——
local error O(h)

Hence the Euler method is locally (in each point) or order 1.
The method is consistent:

o Ykl — Y _

Note that k depends on h, which we omit in the notation.

What about the global error, that is, uniform convergence on [to, T]?
max [y(tr) — yr| — 0

ash — 0?
Theorem. Assume the following:

1. f is Lipschitz in the second component.
2. max |y" (tx)| < M for some global constant M > 0.
3. yo — y(to) ash — 0.

Then Euler’s method is uniformly convergent to the exact solution on [tg, T'] and the global error is O(h).

Proof. Set d; := y(t;) — y;.
By Taylor and Euler:

2
i = di + BT (o y(10)) — F (o 30)] + (@),

We get that

h? B2
di1| < [di| + hL|ds| + %5 M = (1+hL)|dy| + - M.

We shall need a lemma on recursive inequalities.
Lemma. If for o, 8 > 0,

Yer1 < (1 + a)yw + B,

then

e -1

Yo < €M%y + B.

Proof. Iterating the inequality yields

—

n—

Yo < (14 a) yma+[1+a)+18<(1+a)y+

(1+ a)j] B.

Il
o

J
Note that by the Taylor formula,

2 2
ea:eo+eoa+%65:1+a+%e§



with & € [0, a.

Hence
o2
1+a§1+a+?egze°‘.
\//
>0
And thus,
1—(1—|—O¢)n e —1
n < no < no .
Tn > € 70+ 1—(1—&)13_6 70+ B
]
Returning to the proof of the theorem, we get that
khL 2
e —1h
dy| < eFlldy| + ———— — M.
du] < €F|do| + S
Now for kh < T — t,
eL(T—tO) -1 ﬁ

< SL(T—t)
m;:,mx|dk| <e |do| + 7 5

|d0\ — 0 as h — 0 by the 3rd assumption. Hence, the method converges uniformly with linear convergence rate. [

Heun’s method

Idea. Predictor -corrector.

Uk+1 = Yk + hf(tk,yx) (prediction)

h - .
Yk+1 = Yk + §[f (tes yr) + f(te+1,9r+1)]  (correction)
Explicit vs. Implicit

Quadrature. Integral formulation of the IVP:

y@+m=Mﬂ+[+f®M@Ma

apply your favorite quadrature rule, for instance:

P LA y®) + £+ Byt + )] + O,

Combined, we get:

h
Ykt1 = Y + g[f(tk, yr) + f(tes1, yrsn)]-

This method is implicit. Every step requires a solution of a nonlinear (fixed point) problem.



Heun’s method and Euler’s method are explicit.

Linear multistep methods

Y(te1) = y(te) + . f(s,y(s))ds.

tr

Adams-Bashforth (explicit)

Interpolation nodes tx, tk—1, - . . y tk—m+1. Polynomial pp—1.

tht1 m—1
Yk+1 = Yk + / Pm-1(s)ds = yr +h Z bif (te—1, Yr-1),
1=0

tr

where
1 tia [ M1 8 — th_
b=y [T | as
h Ji, Pttt — kg
7=0
J#l

The truncation erroris O(h™).

What methods can be recovered?
Form=1,1 =0,wegetby = 1 and

Yk+1 = Yk + hf(te, yr),

and thus Euler’s method!
Adams-Moulton (implicit)

Add 1 as an interpolation node. Interpolation polynomial gp,.

tht1 m
Ykt =Yk + / gm(s)ds = yk +h D crf(tesr i, yri1 1),
t 1=0

where

3 m

1 [t 8§ —trp1-j

= —— 7 ] ds.
h /s, g e~ tha

J#l
The truncation error is O(h™t1).
Form = 0,1 = 0, we getcy = 1 and

Yk+1 = Yk + hf(tk+17 yk+1)7

which is the so-called backward Euler method (also called implicit Euler method)!

Why do we need multistep methods?



Bad Example.

y = —15y, y(0) =1.
Exact solution y(¢) = e . For h = % Euler's method oscillates about zero.
Adams-Moulton (trapezoidal method) works!
General form.

The general form of a linear multistep method is given for s € N by

Z AkYn+j = h Z bjf(thrj, yn+j),
=0 =0

where as = 1 (normalization) and the coefficients ag, . .., as_1 and by, . . . , bs determine the method.
The method is called explicit if bs = 0, and implicit otherwise.
We call the multistep method consistent if the truncation error is O(h) or better.

Theorem. The linear multistep method is consistent if and only if

s—1
ar = —1
k=0
and
s s—1
b s S
k=0 k=0
If, moreover,
s s—1
g Kb =sT+ ) K,
k=0 k=0
forevery g = 1,. .., p then the truncation error is O(h!*P).

(Here, we follow the non-standard convention that K =0ifk = 0).

See [Ernst Hairer, Gerhard Wanner, Syvert P. Ngrsett. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer,
2nd ed., 1993] for a proof.

The stability of multistep methods depends on the convergence of the initial values y1, . . . , Ys—1 to Yo as h — 0. The second
condition yields a global error O(h?).

Example.m = 1,a90 + a1 = 0,0-ag + 1 - a1 = by, and by the normalization assumption,a;1 = 1,a9 = —1,b; = 1, and
thus we get,

Yk+1 = Yk + hf (Ek+1, Yrr1)

backward Euler!

Example. (Good bad example)



13 5 5
Yk+2 — 3Yk+1 + 2y = h Ef(tk+2,yk+2) — gf(tkﬂ,ykﬂ) - Ef(tkayk) .
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13750 the second condition

This method satisfies the first condition. For the second condition, p = ¢ = 1, we get that —1
is not satisfied and the method is not stable. Indeed,

for

which has the explicit solution y(t) = 1, we consider a small perturbation of the initial value, § > 0,
so that

yO:]-a y1:1+6,

y2:3y1—2y0:1+35,

Yk = 3yk-1 — 2yr—2 = 14+ (2% — 1)4.

Hence, for § ~ 27%% and k = 100, we get the error ~ 247,
We note, however, that the method is consistent and the exact differential equation is stable (in the mathematical sense), and

the perturbation y5(t) = 1 + d converges uniformly to the exact solution y(¢) = 1 asd — 0.
Example. (Effect of rounding error)

Returning to the proof of convergence for Euler, for the rounding error § > 0,

|dy1| < (1+ hL)|dr| + 6,

we get,
L(T*to) _ 1
_ e
|dy41| < T |do + —
~~ Lh
initial error or uncertainty _—
dominant term, if his sufficiently small
Gradient descent

The following algorithm is widely used in machine learning, together with its probabilistic counterpart, the stochastic gradient
decent (SDG).

The goal is to find the minima of a function

f:D—R, DcR?

which is assumed suitably regular, e.g. f € C1(D \ dD).

Gradient descent algorithm.



For simplicity, assume that 0 € D.
Fork=0,...,N,where N € N, iterate:

1. Fix initial pointwg := 0 € D.
2. wg+1 is obtained by moving away from wy; in the opposite direction of the gradient of f at wg, with step size ng+1 > 0,

more precisely,
Wit1 = wk — Me1Vf(wr), k=0,1,...,N.
The constants 7, are called learning rates.

3. After the N'th step, we may choose different outputs, as e.g. just Wy := wy or

Wy 1= argming_o  n f(wk).

Less obviously, one may also choose

1 N
Dy 1= J\Hlkz;wk’

which is particularly useful for the SDG.

Definition. f : R? — Ris called convex, if for every A € [0,1], z,y € RY,
fOz+ (1= Xy) < Af(z) + (1= N f(y)

Note that if f is convex,

f (Z Az‘%) < iAif(xi);

1=0

for every zo, T1,. .., Ty € RY whenever \; € [0, 1] satisfy ZZ\,O A= 1

Continuously differentiable convex functions f : RY 5 R enjoy the so-called subgradient property, i.e.

f(m)_f(y) < <Vf(m),x—y>, m’yERdv

where (-, -) denotes the Euclidean scalar product.

Theorem. Let f : R% — R be convex, continuously differentiable and L-Lipschitz continuous, i.e.,
d
|f(m)—f(y)\§L|w—y|, m,yGR-
Let R > 0, N € N. Set
m = min f(w), n:=mn:=

lw|<R LvVN +1

Then for



we have that

T VN+1
Note. The point Wy is doubly dependent on IN; not only through the number of steps, but also through the choice of 7.
Remark.

1. Assume that f has a global minimum in w, € R%. Then, the above result ensures the convergence of f('lI)N) to the

minimum f(w,), provided that R > |w,|. Indeed, the claimed estimate, together with

f(wn) — f(ws) =0
yields

RL

|f(@n) = f(w.)| < T

2. Itis not guaranteed that {’U_)N}NGN converges to w, unless w is the unique minimizer (e.g. if f is so-called strictly
convex (i.e., the inequality in the definition of convexity is strict for A € (0, 1)).
|2

3. The convergence rate is sublinear unless f is so-called strongly convex (i.e., f — 5] - |* is convex for some § > 0), which

gives a linear convergence rate.
We start by proving an auxiliary result.

Lemma. Let vy, Vs, . . ., Ug+1, W, be a sequence of vectors in R, and let ) > 0. Setting
wo = 0 and

wg = wip—1 —Nvr k€N,

we get that
> w1
_ < 177 i
kg_o (Vks1, W — wy) < o + 5 kE_O |vk+1]
In particular, we have that
N
1 RL
- —w,) <
N1 E (Uk41, W — wy) < Tk

il
[e=}

forany R, L > 0 such that

and
lw,| <R, |w| <L, k=1,...,N+1.

Proof. A direct computation shows (polarization identity)

1
(Uhs1, wp — w,) = 2 (Jwr — wil? + 7°|vesa” — Jwk — wi — o) = 2 (lwr — wil? = Jwrsa — wi]?) + 7—27|Uk+1|2-

Adding up with respect to k yields



N N

1 77 2
Z<’Uk+1,’wk —w,) = o Z lwe — w,|* — Jwr 1 — w, ] +t3 Z V1]
k=0 k=0

The first term is a telescoping sum and wy = 0, so that we get

N N

1
Do foren =) = o (= oy —w. ) + 3 Z vk ?,

k=0 e

which proves the first assertion.
For the second assertion it is enough to observe that under our conditions

. R? N+1
|w nz{v <_+%_RL«/

O

Proof of the Theorem. Recalling that f is convex, we get that
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