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Intended learning outcomes. A!er the course, the student will be able to…

explain the fundamental concepts of numerical analysis, like condi"on number, stability, and convergence rate;
construct the floa"ng point numbers;
discuss and employ basic numerical algorithms like Newton’s method;
use the Monte-Carlo method in basic problems in analysis and geometry;
apply different methods of interpola"on polynomials and numerical quadrature rules;
understand the Euler scheme and linear mul"-step methods for solving ordinary differen"al equa"ons.

Floa!ng-point numbers

The set of real numbers  is infinite in two ways: it is unbounded and con"nuous. In most prac"cal compu"ng, the second
kind of infiniteness is more consequen"al than the first kind, so we turn our a$en"on there first.

Instead of , we shall introduce the set of floa!ng-point numbers (floats) . They come with different bases, precisions and
exponent ranges, and other features. The basic representa"on is

 is called base or radix,  is called the precision, , , and the sequence of
numbers

is called man!ssa or significand. The exponent  is bounded , where .
If , we can read the usual decimal commas from the man"ssa:

If , we have binary floats. In the binary case, we observe that we can always choose , hence saving one bit, which
can be expressed by . We refer to this as normaliza!on. The man"ssa is always contained in the interval .

Example. (Toy floa"ng point system). Binary floats of the type

with exponents .
Hence , , , and > . By mul"plying with the exponents , 

, , we get the whole set:
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Important quan"ty: , the so-called machine epsilon.

Define the machine epsilon by .

Rounding

For the rounding func"on , we have 5 alterna"ve defini"ons:

Rounding to nearest (default)
Rounding to 
Rounding to 
Rounding to 
Rounding away from 

It holds that , where , where  denotes the machine epsilon. Note that usually  depends on .
There is a way to define the standard arithme"c opera"ons on  such that

Here, generally , .

IEEE 754 “Double precision”

, 64 bits, where:

The sign: 1 bit;
The exponent field : 11 bits, where , and , where  and

 are special cases.
The man"ssa 52 bits, precision .
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 if , otherwise NaN excep!on

Thus, there are two zeros, two infini"es and NaN which denotes “not a number”. The smallest posi"ve normalized number is:

The largest posi"ve number is:

The machine epsilon is:

Here’s an easy-to-follow video explaining floa"ng point numbers (and a specific version of Newton’s algorithm).

Condi!on number and stability

Condi!oning of problems

Assume that  “solu"on map” of the problem, input numbers , , close in value, e.g. . Set 
, .

Defini!on. The absolute condi!on number  is defined by the rela"on

The rela!ve condi!on number  is defined by the rela"on

By the normaliza"on, we guarantee that

Now,

Thus, .
Furthermore,
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Thus, .

Example. , . Thus, , . This is a well-condi"oned problem.

Example. , . Thus,  is becomes unbounded for  close to zero, e.g.  yields

. On the other hand, .

Stability of algorithms

Defini!on. An algorithm or numerical process is called stable if small changes in the input produce small changes in the output.
It is called unstable if large changes in the output are produced by small changes in the input.

An algorithm is stable, if every step is well-condi"oned (i.e. has a uniformly bounded condi"on number). It is unstable if any
step is ill-condi"oned (i.e. the condi"on number may become arbitrarily large).

Forward error analysis (FEA) is asking:
“How far are we from the true solu"on?”

Backward error analysis (BEA) is asking:
“Given the answer, what was the problem?”

Example.
Set:

where , .
FEA:

The absolute error is

The rela"ve error is:

BEA:

Thus the rela"ve error for each term is less or equal to .
Hence the sum of two floa"ng point numbers is backwards stable.
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Well-condi"oned problems may have unstable algorithms. For stability, each step has to be well condi"oned. Some ill-
condi"oned steps produce an unstable algorithm. Ill-condi"oned problems cannot be reliably solved with a stable algorithm.

Example. Consider evalua"ng  for  close to zero. The rela"ve condi"on number is:

and .
Consider the following 3 steps;

1. , well-condi"oned,  close to .
2. , rela"vely well-condi"oned, also absolutely well condi"oned, because  is close to .

3. , ill-condi"oned, rela"ve condi"on number of this step: , which becomes unbounded

for  close to !
On the other hand, the problem is well-condi"oned. Solve it by wri"ng:

which can be evaluated directly close to zero.

Numerical differen!a!on

Recall Taylor’s theorem, for a twice differen"able func"on ,

for any , where .

What is that  (= “xi”)? Under certain assump"ons elementary func"ons have their series expansions. If the series is
truncated, we have the Taylor polynomial. However, the residual has an explicit expression but due to applica"on of an
intermediate value theorem, the exact loca"on of the point  is not known, i.e. “generic”.

By se%ng , , we obtain the useful equivalent formula

for every , .

Rate of convergence ( -convergence)

Let  be an infinite sequence of real numbers. Let , , be the supremum (i.e., the lowest upper bound)
of the tail (that is, large indices ) of . Define the  (limes superior) as
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Other than a limit, it always exists, but can be . If  is bounded, the  is the largest limit of a converging
subsequence. If  exists, then . The opposite is not true.

Examples. (1) , then , and .
(2) , then , and .

Assume that  and that there exists some large index  such that  for all . Then we
define the following quan"ty for 

We observe that  for some  implies  for every . If  for some 
then  for any .

Proof. By the submul"plica"ve property of ,

Thus, there exists a (possibly infinite)  such that

The number  is called order of convergence for the sequence  and determines the rate of convergence as follows:

If  and  then we say the convergence is sublinear.
If  and  then we say the convergence is linear.
If  or  then we say the convergence is superlinear.
If  then we say the convergence is quadra!c.
If  then we say the convergence is cubic, etc.

When working with convergence es"mates it is o!en useful to use the following approxima"on:

for some constant , not necessarily .
Here, it is useful to look at the logarithmic behavior:

The rate of convergence can be used interchangeably with the order of convergence. However, there is some cau"on
necessary, as different authors use different terminology here. Usually, the order of convergence always refers to the same
thing, namely, the -exponent in the denominator of the limit defining the order of convergence. Most confusingly, some
authors call the order of convergence “rate of convergence”, as e.g. here. The English Wikipedia ar"cle calls it the order of
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https://www.math-cs.gordon.edu/courses/ma342/handouts/rate.pdf
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convergence, whereas here the rate of convergence is the constant in the defini"on, which also determines the speed of
convergence, together with the order of convergence. So, please always check the context, as the use of the terminology
should be clear from it. If there is no defini"on, try to figure out what is meant in each text. As a rule of thumb: The “order
of convergence” is a unique terminology in numerical analysis. The “rate of convergence” can mean at least two different
things. I will use both words for the same thing, but will try to make clear what I mean from case to case. In any case, to be
sure, use “order of convergence”. My PhD advisor usually said that in mathema"cs “it’s all hollow words” (meaning that one
should check the defini"on).

Landau’s li#le - and big -nota!on

Copied from Wikibooks under a Crea"ve Commons BY-SA 4.0 license.

The Landau nota"on is an amazing tool applicable in all of real analysis. The reason it is so convenient and widely used is
because it underlines a key principle of real analysis, namely ‘‘es"ma"on’’. Loosely speaking, the Landau nota"on introduces
two operators which can be called the “order of magnitude” operators, which essen"ally compare the magnitude of two given
func"ons.

The “li#le- ”

The “li$le- ” provides a func"on that is of lower order of magnitude than a given func"on, that is the func"on  is of a
lower order than the func"on . Formally,

Defini!on.
Let  and let .
Let .

If  then we say that

"As , "

Examples.

As , (and ), ;
As , (and ), ;
As , .

The “Big- ”

The “Big- ” provides a func"on that is at most the same order as that of a given func"on, that is the func"on  is at
most the same order as the func"on . Formally,

Defini!on.
Let  and let 

Let 

If there exists  such that  then we say that

"As , "

Examples.

o O

o

o o(g(x))

g(x)

A ⊆ R c ∈ R
f , g : A → R

lim =x→c g(x)
f(x) 0

x → c f(x) = o(g(x))

x → ∞ m < n x =m o(x )n

x → ∞ n ∈ N log x = o(x )n

x → 0 sin x = o(1)

O

O O(g(x))

g(x)

A ⊆ R c ∈ R

f , g : A → R

M > 0 lim <x→c ∣
∣

g(x)
f(x)

∣
∣

M

x → c f(x) = O(g(x))

https://en.wikibooks.org/wiki/Real_Analysis/Landau_notation


As , ;
As , .

Applica!ons

We will now consider few examples which demonstrate the power of this nota"on.

Differen!ability

Let  and .

Then  is differen"able at  if and only if

There exists a  such that as , .

Mean Value Theorem

Let  be differen"able on . Then,

As , .

Taylor’s Theorem

Let  be -"mes differen"able on . Then,

As , .

Finding roots of func!ons and fixed points

Let  be con"nuous. We are interested in methods for finding zeros, that is, roots of , in other words, , such
that .

Defini!on. If ,  is -"mes con"nuously differen"able, then we write  or just . For
,  or  or  just means that  is assumed to be con"nuous.

Bisec!on method

The intermediate value theorem for con"nuous func"ons implies that  with  exists if 
, i.e., there is a sign change. The bisec!on method is based on halving the interval such that the sign condi"on is preserved. Note
that, in principle, we have to look for intervals .

Let us analyze the convergence rate. Let  be an interval. A!er  steps the interval of analysis has length  which
converges to zero for . Let us look in a neighborhood of radius , so that

Every step reduces the error by factor . The convergence rate is thus linear.

Newton’s method

x → 0 sin x = O(x)

x → 2
π sin x = O(1)

f : U ⊆ R → R x ∈0 U

f x0

λ ∈ R x → x0 f(x) = f(x ) +0 λ(x − x ) +0 o ∣x − x ∣( 0 )

f : [a, x] → R [a, b]

x → a f(x) = f(a) + O(x − a)

f : [a, x] → R n [a, b]

x → a f(x) = f(a) + +1!
(x−a)f (a)′

+2!
(x−a) f (a)2 ′′

… + +(n−1)!
(x−a) f (a)n−1 (n−1)

O (x − a)( n)

f : R → R f x ∈ R
f(x) = 0

f : R →n R n ∈ N k f ∈ C (R )k n f ∈ Ck

k = 0 f ∈ C0 f ∈ C(R )n f ∈ C([a, b]) f

x <1 x < x2 f(x) = 0 f(x )f(x ) <1 2 0

[x , x ]1 2

[a, b] k 2k
b−a

k → ∞ δ > 0

≤
2k

b − a
2δ ⇔ 2 ≥k+1 ⇔

δ

b − a
k ≥ log −2 (

δ

b − a) 1.

2
1

1



Assume that . For an ini"al value , consider the itera"on

Heuris!cs. If  and , by the Taylor’s expansion,

for , and upon neglec"ng the 2nd order term,

Theorem. If  and  is sufficiently good (i.e. close to the root ) and if , then Newton’s method converges
quadra"cally.

Proof. By Taylor’s expansion, it follows that

for some . Take  from the method and subtract,

In other words,

as  and thus .
Hence the method is quadra"c. Note that  does not vanish by con"nuity if  is close to . 

What happens if ?

as .
By Taylor’s expansion ( =“eta”):

for some , and hence

The method has degenerated to a linear method!

Example. , . Newton:

f ∈ C1 x0

x =k+1 x −k k =
f (x )′

k

f(x )k
0, 1, … .

f(x ) =∗ 0 f ∈ C2

0 = f(x ) =∗ f(x ) +0 (x −∗ x )f (x ) +0
′

0 f (ξ)
2

(x − x )∗ 0
2

′′

ξ ∈ [x , x ]0 ∗

x ≈∗ x −0 .
f (x )′

0

f(x )0

f ∈ C2 x0 x∗ f (x )′
∗ = 0

x =∗ x −k −
f (x )′

k

f(x )k

2

(x − x )∗ k
2

f (x )′
k

f (ξ )′′
k

ξ ∈k [x , x ]∗ k xk+1

x −k+1 x =∗ (x −∗ x ) .k
2

≤D

2f (x )′
k

f (ξ )′′
k

∣x −k+1 x ∣ ≤∗ D∣x −k x ∣ ,∗ 2

k → ∞ x →k x∗

f (x )′
k xk x∗ □

f (x ) =′
∗ 0

x −k+1 x =∗ (x −∗ x )k
2

2

→0

f (x )′
k

f (ξ )′′
k

k → ∞
η

f (x ) =′
k +

=0

f (x )′
∗ (x −k x )f (η ) =∗

′′
k (x −k x )f (η )∗

′′
k

η ∈k [x , x ]∗ k

x −k+1 x =∗ f (η ) =′′
k (x −k x )f (η )(x −∗

′′
k k x ).∗

f(x) = x2 f (x) =′ 2x

2 1



Secant method

Some"mes it can be difficult or computa"onally expensive to compute the deriva"ve . Newton 's method can be
adapted by approxima"ng the deriva"ve by the differen"al quo"ent. The secant method is the following two-step recursive
algorithm.

with two dis"nct star"ng points . The convergence rate is , the golden ra!o.

Fixed point itera!on

Defini!on. A point  is called a fixed point of  if .

We could for instance use Newton’s method to find fixed points by se%ng .

Banach’s Fixed Point Theorem. Suppose that  is a contrac!on, that is, there exists a constant  such that

for all . Then there exists a unique fixed point  of , i.e., , and the fixed point itera"on 
 sa"sfies  for any star"ng point . The convergence rate is at least linear.

Proof. We prove that the sequence  is a Cauchy sequence. Let . Then, by the triangle
inequality,

Furthermore,

Hence, by the geometric series,

If , , then

as , which proves that  is a Cauchy sequence. The linear convergence rate follows also from this es"mate.
The existence of a fixed point follows from the con"nuity of  (as contrac"ons are uniformly con"nuous, in fact, even Lipschitz
con"nuous) as follows.

x =k+1 x −k =
2xk

xk
2

x .
2

1
k

f (x )′
k

x =k+1 x −k , k =
f(x ) − f(x )k k−1

f(x )(x − x )k k k−1
1, 2, …

x0 = x1 ≈2
1+ 5 1.62

x ∈ R φ : R → R φ(x) = x

f(x) := φ(x) − x

φ L < 1

∣φ(x) − φ(y)∣ ≤ L∣x − y∣

x, y ∈ R x ∈∗ R φ φ(x ) =∗ x∗ φ :=n

n-times

φ ∘ … ∘ φ lim φ (x ) =n→∞ n 0 x∗ x ∈0 R

{φ (x )} =k 0 k=0
∞ {x }k k=0

∞ k > j

∣x −k x ∣ ≤j .

(k−j)-summands

∣x − x ∣ + ∣x − x ∣ + … + ∣x − x ∣k k−1 k−1 k−2 j+1 j

∣x −m x ∣ =m−1 ∣φ(x ) −m−1 φ(x )∣ ≤m−2 L∣x −m−1 x ∣ ≤m−2 L ∣x −m−1
1 x ∣.0

∣x −k x ∣ ≤j L ∣x −j

1 − L

1 − Lk−j

1 x ∣.0

k > N j > N

∣x −k x ∣ ≤j L ∣x −N

1 − L

1
1 x ∣ →0 0

N → ∞ {x }k

φ

x =∗ x =
k→∞
lim k x =

k→∞
lim k+1 φ(x ) =

k→∞
lim k φ( x ) =

k→∞
lim k φ(x ).∗



Theorem. Assume that  for . Furthermore, assume that has a fixed point  and assume that

for  and

if . Then the fixed point sequence  converges to  at least with rate , provided that the star"ng point  is
sufficiently close to . If, in addi"on, , then the rate of convergence is precisely .

Proof. First note that by Banach’s fixed point theorem the limit indeed converges to  for suitable star"ng points . By the
Taylor expansion,

for some  between  and . The sum will be le! empty for the case . Since  for , we
get that

.
By con"nuity, there exists  (with  for ) such that

for  sufficiently close to  (that is, for sufficiently large ). Thus,

for large , and thus the rate of convergence is at least . Note that for , this also proves convergence by

If , then by con"nuity, there exists  such that

for  sufficiently close to . Thus

which implies that the rate of convergence cannot be higher than . Thus the rate of convergence is precisely . 

Note. From the above proof, we expect that close to the fixed point 

□

φ ∈ Cp p ≥ 1 x∗

φ (x ) =′
∗ φ (x ) =′′

∗ … = φ (x ) =(p−1)
∗ 0

p ≥ 2

G (x ) <′
∗ 1

p = 1 {φ (x )}k 0 x∗ p x0

x∗ φ (x )(p)
∗ = 0 p

x∗ x0

x −k+1 x =∗ φ(x ) −k φ(x ) =∗ (x −
l=1

∑
p−1

l!

φ (x )(l)
∗

k x ) +∗
l (x −

p!

G (ξ )(p)
k

k x )∗
p

ξk x∗ xk p = 1 φ (x ) =(l)
∗ 0 1 ≤ l ≤ p − 1

∣x −k+1 x ∣ =∗ ∣x −
p!

∣φ (ξ )∣(p)
k

k x ∣∗
p

C > 0 C < 1 p = 1

≤
p!

∣φ (ξ )∣(p)
k

C

ξk x∗ k

∣x −k+1 x ∣ ≤∗ C∣x −k x ∣∗
p

k p p = 1

∣x −k+1 x ∣ <∗ ∣x −

<1

∣φ(ξ )∣k k x ∣.∗

φ(p) = 0 K > 0

≥
p!

∣φ (ξ )∣(p)
k

K

ξK x∗

∣x −k+1 x ∣ ≥∗ K∣x −k x ∣∗
p

p p □

x∗

∣x −k+1 x ∣ ≈∗ ∣x −
p!

∣φ (x )∣(p)
∗

k x ∣ ,∗
p



when

but .

Polynomial interpola!on

Idea. Approximate a func"on  over  by a polynomial  such that in dis!nct data points , 
, the approxima"on is exact, that is,

We may call  node and  value.
We need at least  data points. We usually just assume that  for .

Note. Interpola"on polynomials are not per se unique, for instance the data  can be interpolated by
, , or . However, we will see later that  is the unique interpola"on polynomial

with .

Example. , , , as data set  on the interval .
We are looking for a polynomial , which is chosen to be 2nd order, because we have  data points and 

unknown coefficients.
We can formulate the problem in matrix form:

which is a so-called Vandermonde matrix which has determinant

and is thus inver"ble. Here,

As a result, , , and , and thus,

The computa"onal complexity of solving the linear system is . We used the natural basis for the polynomials.
What would be the ideal basis?
Defini!on. (Lagrange basis polynomials) Suppose that  if . We call

φ (x ) =′
∗ φ (x ) =′′

∗ … = φ (x ) =(p−1)
∗ 0,

φ (x )(p)
∗ = 0

f : R → R [a, b] p (x , y )i i i =

0, 1, … , n

f(x ) =i y =i p(x ), for all i =i 0, 1, … , n.

xi yi

2 xi = xj i = j

{(−1, 1), (1, 1)}

p(x) = 1 q(x) = x2 r(x) = x −4 x +2 1 p

deg p ≤ 1 = n

(1, 2) (2, 3) (3, 6) {(x , y ) : i =i i 0, 1, 2} [1, 3]

p (x) =2 c x∑j=0
2

j
j 3 3

⋅⎝
⎛1

1
1

x0

x1

x2

x0
2

x1
2

x2
2⎠
⎞

=⎝
⎛c0

c1

c2
⎠
⎞

,⎝
⎛y0

y1

y2
⎠
⎞

det =⎝
⎛1

1
1

x0

x1

x2

x0
2

x1
2

x2
2⎠
⎞

(x −
i<j

∏ j x )i = 0,

⋅⎝
⎛1

1
1

1
2
3

1
4
9⎠

⎞
=⎝

⎛c0

c1

c2
⎠
⎞

.⎝
⎛2

3
6⎠

⎞

c =0 3 c =1 −2 c =2 1

p (x) =2 x −2 2x + 3.

O(n )3

xi = xj i = j

ϕ (x) :=i

j=0
i=j

∏
n

x − xi j

x − xj



the th Lagrange basis polynomial.
The Lagrange interpola!on polynomial is given by

Clearly,

Example. , , :

Evalua"ng the Lagrange polynomials has the computa"onal complexity .

Newton’s interpola!on

Idea. Extend the natural basis:

Defini!on. Define Newton’s interpola"on polynomials by

in such a way that .
Clearly,

and

More generally, we have the lower triangular linear system

i

p(x) := y φ (x).
i=0

∑
n

i i

φ (x ) =i j δ :=i,j {1 if i = j,

0 if i = j.

(1, 2) (2, 3) (3, 6)

φ (x) =0 (1 − 2)(1 − 3)

(x − 2)(x − 3)

φ (x) =1 (2 − 1)(2 − 3)

(x − 1)(x − 3)

φ (x) =2 (3 − 1)(3 − 2)

(x − 1)(x − 2)

p (x) =2 2φ (x) +0 3φ (x) +1 6φ (x) =2 x −2 2x + 3.

O(n )2

1, x − x , (x −0 x )(x −0 x ), … , (x −1

j=0

∏
n−1

x ).j

p (x) =n a +0 a (x −1 x ) +0 … + a (x −n

j=0

∏
n−1

x )j

p (x ) =n i yi

p(x ) =0 y ⇒0 a =0 y ,0

p(x ) =1 a +0 a (x −1 1 x ) =0 y ⇒1 a =1 .
x − x1 0

y − a1 0

⎛1 0 ⋯ ⎞ ⎛ ⎞ ⎛ ⎞



Example.

with the system

and hence , , and  which yields .

Uniqueness

Theorem. Interpola"on polynomials with  nodes ,  are unique in the class of polynomials  with
.

Proof. (Idea).  has at most  roots. Let  and  be two interpola"ng polynomials for the same set of data. Then

Hence  has  dis"nct roots. As , the only polynomial with 
roots is the polynomial which is constantly zero. Hence,

We have used the corollary to the fundamental theorem of algebra which states that every non-constant real polynomial of
degree  has at most  zeros. 

Divided differences

Let  be a Newton interpola"on polynomial

Defini!on. The divided difference of order , denoted by , is defined as the -coefficient of the Newton
interpola"on polynomial with data , in other words,

Theorem.

Note. The recursion terminates because .

Example. ** , , , , Newton: , , .

=

⎝

⎛1
1
1

⋮
1

0
x − x1 0

x − x1 0

⋮
x − x1 0

⋯
0

(x − x )(x − x )2 0 2 1

⋮
(x − x )(x − x )2 0 2 1

⋯
0

⋮

⋯

⋯ (x − x )∏j=0
n−1

n j
⎠

⎞

⎝

⎛a0

a1

a2

⋮
an

⎠

⎞
.

⎝

⎛y0

y1

y2

⋮
yn

⎠

⎞

p (x) =2 a +0 a (x −1 1) + a (x −2 1)(x − 2)

⋅⎝
⎛1

1
1

0
1
2

0
0
2⎠

⎞
=⎝

⎛a0

a1

a2
⎠
⎞

⎝
⎛2

3
6⎠

⎞

a =0 2 a =1 1 a =2 1 p (x) =2 x −2 2x + 3

n + 1 xi i = 0, 1, … , n q

deg q ≤ n

pn n pn qn

p (x ) =n j q (x ) =n j 0, for any j = 0, 1, … , n.

p −n qn n + 1 deg(p −n q ) ≤n max(deg p , deg q ) =n n n n + 1

p =n q .n

m m □

p

p(x) = a +0 a (x −1 1 x ) +0 a (x −2 x )(x −2 x ) +1 … + a (x −n

j=0

∏
n=1

x ).j

k f [x , x , … , x ]0 1 k ak

y =i f(x )i

f [x , x , … , x ] :=0 1 k a .k

f [x , x , … , x ] =0 1 k .
x − xk 0

f [x , … , x ] − f [x , … , x ]1 k 0 k−1

f [x ] =i yi

(1, 2) (2, 3) (3, 6) p (x) =2 x −2 2x + 3 a =0 2 a =1 1 a =2 1

3−2 6−3 3−1



, , , , , 

.

Why does this work?

One point: .

Two points:  which is the line spanned by the two points  and , i.e.,

Proof. (Idea). We have three interpola"on polynomials , , , where , .  interpolates at
,  interpolates at , and  interpolates at .

Claim.

: .
: .

: .

The highest order term has the coefficient

where  and ,

which can be proved by the general Leibniz rule. 

Interpola!on error

Assume that . We are interested in the local (pointwise) error (residual)

where  is the interpola"on polynomial with .
Fix data , , , , . Let  be an dis"nct extra point.
Define an auxiliary func"on:

where

and

f [x ] =0 2 = a0 f [x ] =1 3 f [x ] =2 6 f [x , x ] =0 1 =2−1
3−2 1 = a1 f [x , x ] =1 2 =3−2

6−3 3 f [x , x , x ] =0 1 2 =3−1
3−1

1 = a2

f [x ] =j f =j yj

f [x , x ] =i j x −xj i

f [x ]−f [x ]j i (x , y )i i (x , y )j j

y − y =i (x −
x − xj i

y − yj i
x ).i

p q r deg p = k deg q = deg r = k − 1 p

x , x , … , x0 1 k q x , x , … , x0 1 k−1 r x , … , x1 k

p(x) = q(x) + .
x − xk 0

x − x0

=0 for xi

(r(x) − q(x))

x0 p(x ) =0 q(x ) =0 f0

x , … , x1 k−1 p(x ) =i q(x )i

xk p(x ) =k q(x ) +k (r(x ) −

=1

x − xk 0

x − xk 0
k q(x ) =k r(x )k

=
k!

p (x)(k)

,
x − xk 0

r − qk−1 k−1

r =k−1 f [x , x , … , x ] =1 2 k (k−1)!
r(k−1)

q =k−1 f [x , x , … , x ] =0 2 k−1 (k−1)!
q(k−1)

□

f ∈ Cn+1

R(x) := f(x) − p(x),

p deg p = n

(x , y )i i y =i f(x )i i = 0, 1, … , n xi = xj i = j x′

h(x) = f(x) − p(x) − cw(x),

w(x) = (x −
j=0

∏
n

x )j

c = .
w(x )′

f(x ) − p(x )′ ′



We find that

Furthermore,

Hence  has  dis"nct zeros. By Rolle’s theorem (see Differen"al and Integral Calculus 1),  will have at least one
zero. Let’s call this point .

Hence

and thus

We have proved that:

Theorem. If , the residual  at  has the form

No"ce that, in general,  is not a polynomial, as  depends nonlinearly on .

Note. The constant  is a divided difference:

which follows from the formula for ,  and  for .

Piecewise interpola!on

Setup. Fix a bounded interval  and a step size / mesh

for some , where  is the number of subintervals.

Idea. Approximate the func"on on each subinterval using some low order interpola"on polynomial such that the interpola"on
func"on is exact at the nodes.

Piecewise linear case:

h(x ) =i 0 for i = 0, 1, … n.

h(x ) =′ f(x ) −′ p(x ) −′ w(x ) =
w(x )′

f(x ) − p(x )′ ′
′ 0.

h n + 2 h(n+1)

ξ

h (x) =(n+1) f −(n+1) −

=0

p (x)(n+1) cw (x) =(n+1) f (x) −(n+1) c(n + 1)!

h (ξ) =(n+1) f (ξ) −(n+1) c(n + 1)! = 0

c = .
(n + 1)!

f (ξ)(n+1)

f ∈ Cn+1 R = f − p x

R(x) = (x −
(n + 1)!

f (ξ)(n+1)

j=0

∏
n

x ).j

R ξ = ξ(x) x

c

f [x , x , … , x , x] =0 1 n f (ξ(x)),
(n + 1)!

1 (n+1)

R R =(n+1) f (n+1) R(x ) =i f(x )i i = 0, 1, … , n

[a, b]

h :=
n

b − a

n ∈ N n

x − x x − x



By the residual formula on each subinterval , we get the interpola"on error

which simplifies if  by maximiza"on as follows

Note. If  is bounded over the whole interval  then the error is the same over the whole interval.

Hermite interpola!on

Piecewise interpola"on by degree  polynomials . As we have  coefficients, we need  constraints. We

demand that not only the func"on but also the deriva"ves are exact at the nodes. Let  be a cubic interpola"on polynomial on
. Then  is a quadra"c polynomial. Recall that .

We have the condi"ons:

1. ,
2. ,
3. ,
4. .

Set

Integra"ng yields

Plugging in  for  yields that . Plugging in  for  and integra"ng yields

Splines

Let us construct a global piecewise interpola"on func"on  such that:

1. We do not impose exactness for deriva"ves.
2. We get a piecewise polynomial construc"on of cubic interpola"on polynomials which is exact and has con"nuous 1st and

2nd deriva"ves.

This requires a global setup. All coefficients are defined first, only evalua"on is piecewise.
Setup. Let  be constant. Define

ℓ (x) =i f(x ) +i−1
x − xi−1 i

x − xi
f(x ) , x ∈i

x − xi i−1

x − xi−1 [x , x ].i−1 i

R(x) = (x −
(n+1)!

f (ξ)(n+1)

∏j=0
n

x )j

f(x) − ℓ (x) =i (x −
2!

f (ξ)′′

x )(x −i−1 x ),i

∣f (x)∣ ≤′′ M

∣f(x) − ℓ (x)∣ ≤i M , x ∈
8

h2

[x , x ].i−1 i

f ′′ [a, b]

3 p (x) =3 c x∑j=0
3

j
j 4 4

p

[x , x ]i−1 i p′ h = x −i xi−1

p(x ) =i−1 f(x )i−1

p(x ) =i f(x )i

p (x ) =′
i−1 f (x )′

i−1

p (x ) =′
i f (x )′

i

p (x) =′ f (x ) +′
i−1

x − xi−1 i

x − xi
f (x ) +′

i
x − xi i−1

x − xi−1
α(x − x )(x −i−1 x ).i

p(x) = − (t −
h

f (x )′
i−1 ∫

xi−1

x

x ) dt +i (t −
h

f (x )′
i ∫

xi−1

x

x ) dt +i−1 α (t −∫
xi−1

x

x )(t −i−1 x ) dt +i C.

xi−1 x C = f(x )i−1 xi x

α = (f (x ) +
h3

3 ′
i−1 f (x )) +′

i (f(x ) −
h3

6
i−1 f(x )).i

s ∈ C2

h = x −i xi−1

z :=i s (x ), i =′′
i 1, … , n − 1.



Now,

Denote  on the interval  by . Integra"ng twice yields

where

Set . We get that

and

Now  has been defined over all subintervals. However, the  are s"ll unknown!
Using the condi"on for con"nuity of the deriva"ves  for all  yields

for .
In fact, this cons"tutes a triangular system:

The values  and  at the interval boundary have to be moved to the right hand side, and thus:

and

 and  can be chosen freely, for example to force that the 1st deriva"ve of the spline is exact at the interval boundary
points. If ,  is called a natural spline.

Bézier curves

Bézier curves are parametrized curves in , that is, ,

s (x) =′′ z (x −
h

1
i−1 i x) + z (x −

h

1
i x ).i−1

s [x , x ]i−1 i si

s (x) =i z +
h

1
i−1

6

(x − x)i
3

z +
h

1
i

6

(x − x )i−1
3

C (x −i x ) +i−1 D ,i

s (x) =i
′ − z +

h

1
i−1

2

(x − x)i
2

z +
h

1
i

2

(x − x )i−1
2

C .i

f :=i f(x )i

D =i f −i−1 z
6

h2

i−1

C =i f − f + (z − z ) .
h

1 [ i i−1
6

h2

i−1 i ]

s zi

s (x ) =i
′

i s (x )i+1
′

i i

z +
2

h
i (f − f ) + (z − z ) =

h

1 [ i i−1
6

h2

i−1 i ] − z +
2

h
i (f − f ) + (z − z ) ,

h

1 [ i+1 i
6

h2

i i+1 ]

i = 1, … , n − 1

z +
3

2h
i z +

6

h
i−1 z =

6

h
i+1 (f −

h

1
i+1 2f +i f ) =:i−1 b .i

z0 zn

b :=1 (f −
h

1
2 2f +1 f ) −0 z

6

h
0

b :=n−1 (f −
h

1
n 2f +n−1 f ) −n−2 z .

6

h
n

z0 zn

z =0 z =n 0 s

R2 r(t) = x(t)i + y(t)j
1 0



where ,  and .

Bernstein polynomials

Define the Bernstein polynomial , , , , by

Proper"es:

1.  ( ),
2. ,
3. , otherwise, if ,  and if , .

We have the combinatorial rule:

Bézier curves

Fix a finite set  of control points .

Defini!on. The convex hull of  is defined by

Defini!on. The Bézier curve  is defined,

Sanity check: , , except .
 ,
 .

We get closed curves if .

What about the con!nuous tangents?
Recall that .

Therefore,

i := (1
0

) j := (0
1

) x, y : [0, 1] → R

B (t)k
n t ∈ [0, 1] n ∈ N ∪ {0} k = 0, … , n

B (t) :=k
n t (1 −(

k

n) k t) .n−k

B (t) =∑k=0
n

k
n 1 = (t + 1 − t)n

0 ≤ B (t) ≤k
n 1

B (0) =0
n B (1) =n

n 1 k = 0 B (0) =k
n 0 k = n B (1) =k

n 0

B (t) =k
n (1 − t)B (t) +k

n−1 tB (t).k−1
n−1

X = {x , x … , x }0 1 k x ∈i Rn

X

conv(X) = y ∈ R : y = λ x , λ ∈ [0, 1], λ = 1 .{ n

k=0

∑
k

i i i

k=0

∑
k

i }
βn

β (t) =n x B (t).
k=0

∑
n

k k
n

t = 0 B (0) =k
n 0 B (0) =0

n 1

⇒ β (0) =n x0

⇒ β (1) =n xn

x =0 xn

=(
k
n)

k!(n−k)!
n!

B (t) =
dt

d
k
n kt (1 − t) − (n − k)t (1 − t)(

k

n) ( k−1 n−k k n−k−1)

= n t (1 − t) − t (1 − t)[
(k − 1)!(n − k)!

(n − 1)! k−1 n−k

(k)!(n − k − 1)!

(n − 1)! k n−k−1]

= n B (t) − B (t) .( k−1
n−1

k
n−1 )

n



Hence, for the closed curves:

For smoothness, we need that , i.e.,  and  are parallel.

Li$ing

Control points define the curve but the converse is not true.
Consider:

Let us use the conven"on . We get the condi"on

De Casteljau’s algorithm

For control points  the algorithm of De Casteljau is as follows:

1. Define constant curves .
2. Set

Th

The algorithm terminates at  and has  opera"ons.

There is also a reverse algorithm for spli%ng Bézier curves.

β (t) =
dt

d n n B (t) − B (t) x

k=0

∑
n

( k−1
n−1

k
n−1 ) k

= n B (t)x − B (t)x[
k=1

∑
n

k−1
n−1

k

k=0

∑
n−1

k
n−1

k]

= n B (t)x − B (t)x[
k=0

∑
n−1

k
n−1

k+1

k=0

∑
n−1

k
n−1

k]

= .

B zieré

n (x − x )B (t)
k=0

∑
n−1

k+1 k k
n−1

{ β (0) = n(x − x ),
dt
d n

1 0

β (1) = n(x − x ).
dt
d n

n n−1

(x −1 x ) ∥0 (x −n x )n−1 x −1 x0 x −n xn−1

β (t) =n B (t)x =
k=0

∑
n

k
n

k B (t)y =
k=0

∑
n+1

k
n+1

k α (t).n+1

x =−1 x =n+1 0

y =k 1 − x +(
n + 1

k ) k x .
n + 1

k
k−1

x , x , … , x0 1 n

β (t) =i
0 xi

β (t) =i
r (1 − t)β (t) +i

r−1 tβ (t), r =i+1
r−1 1, … , n, i = 0, … , n − r.

β (t)0
n (2

n)



Numerical integra!on

Integra"on schemes are called quadratures. Therefore, numerical integra"on methods are simply called numerical quadratures.

Note. There are no simple integra"on schemes in higher dimensions. Already 2D-cases are complicated.

Newton-Cotes quadrature rules

Let .
Idea. Approximate

by the integral of an interpola"on polynomial

where  is an interpolant of  over .

Lagrange:

Let :

so

 Trapezoidal rule!
Error formula"on:

Now,  for .
Therefore, by the mean value theory of integra"on,

Composite rule: , , .

f : [a, b] → R

f(x) dx =:∫
a

b

I

I ≈ p (x) dx =:∫
a

b

k Q(p ),k

pk f [a, b]

f(x) dx ≈∫
a

b

f(x ) dx.
i=0

∑
n

i ∫
a

b

⎝
⎛

j=0
i=j

∏
x − xi j

x − xj

⎠
⎞

n = 1

p (x) =1 f(a) +
a − b

x − b
f(b) ,

b − a

x − a

f(x) dx ≈∫
a

b

p (x) dx =∫
a

b

1 [f(a) +
2

b − a
f(b)].

⇒

f(x) dx −∫
a

b

p (x) dx =∫
a

b

1 f (ξ)(x −
2

1 ∫
a

b
′′ a)(x − b) dx.

(x − a)(x − b) < 0 x ∈ (a, b)

= f (η) (x −
2

1 ′′ ∫
a

b

a)(x − b) dx.

= − (b −
12

1
a) f (η).3 ′′

h =
n

b−a x =i a + ih i = 0, … , n

b



Total error: . We say that the method is quadra"c.

Let . When is a method exact for degree  (or lower)?

Note. In this context, exactness means, that the integral and the method give the exact same result for
polynomials of certain order.

where we call the  weights.

Thus,

and

As integrals and the methods are linear, this extends to all polynomials of .

This is the so-called Simpson’s rule:

The associated composite rule becomes:

Error for :

Error for the composite: . The method is exact for cubic polynomials!

f(x) dx ≈∫
a

b

f(x ) + 2f(x ) + … + 2f(x ) + f(x ) .
2

h
[ 0 1 n−1 n ]

O(h ) ∼2 O( )
n2
1

n = 2 2

f(x) dx =∫
a

b

A f(a) +1 A f +2 (
2

a + b) A f(b),3

Ai

1 dx =∫
a

b

b − a ⇒ A +1 A +2 A =3 b − a.

x dx =∫
a

b

⇒
2

b − a2 2

A a +1 A +2 (
2

a + b) A b =3 .
2

b − a2 2

x dx =∫
a

b
2 (b −

3

1 3 a ) ⇒3 A a +1
2 A +2 (

2

a + b)
2

A b =3
2 (b −

3

1 3 a ).3

A =1 A =3
6

b − a

A =2 .
6

4(b − a)

deg ≤ 2

f(x) dx ≈∫
a

b

f(a) + 4f + f(b) .
6

b − a [ (
2

a + b) ]

f(x) dx ≈∫
a

b

f(x ) + 4f(x ) + 2f(x ) + 4f(x ) + … + 4f(x ) + f(x ) .
6

h
[ 0 1 2 3 n−1 n ]

n = 2

(b −
4!5!

1
a) f (η).5 (4)

O(h )4



Orthogonal polynomials

Define the inner product of two real-valued polynomials on  (depends on  and !) by:

The associated norm on  is given by

Defini!on. Two non-zero polynomials are said to be orthogonal on  if their inner product is zero. They are said to be
orthonormal if they are orthogonal and have both norm .
In other words, orthogonality: , then we write .
Orthonormality:  and .

Gram-Schmidt (GS) procedure.
Idea. Transform a basis to an orthogonal one:

Note. The GS procedure depends on the inner product, and thus, here, on  and .

The elements of the orthonormal basis are called orthogonal polynomials.

2. For ,

and

The new basis is (pairwise) orthonormal!
Above, as usually, we denote the polynomial  with the symbol .

Observa!on. By bilinearity,  is orthogonal to all polynomials of .
Thus,

As a consequence, the GS procedure reduces to

which is a three-term recurrence rule!

Note. The trick  relies heavily on the fact that the inner product is defined by an integral and
that we are dealing with polynomials. The GS procedure works generally in pre-Hilbert spaces, however, then we do not

[a, b] a b

⟨p, q⟩ = p(x)q(x) dx.∫
a

b

[a, b]

∥q∥ := ∣q(x)∣ dx .(∫
a

b
2 )1/2

[a, b]

1

⟨p, q⟩ = 0 p ⊥ q

p ⊥ q ⟨p, p⟩ = 1 = ⟨q, q⟩

{1, x, x , … , x , …} ⟶2 k {q , q , … , q , …}, orthonormal.0 1 k

a b

1. q =0 =
∥1∥
1

=
1 dx(∫

a

b 2 )1/2

1
.

b − a

1

j = 1, 2, …

(x) =q~j xq (x) −j−1 ⟨xq , q ⟩q (x),
i=0

∑
j−1

j−1 i i

q (x) :=j .
∥ ∥q~j

q~j

p(x) = x x

qj−1 deg ≤ j − 2

⟨xq , q ⟩ =j−1 i ⟨q , xq ⟩ =j−1 i 0, i ≤ j − 3.

(x) =q~j xq (x) −j−1 ⟨xq , q ⟩q (x) −j−1 j−1 j−1 ⟨xq , q ⟩q (x)j−1 j−2 j−2

⟨xq , q ⟩ =j−1 i ⟨q , xq ⟩j−1 i



expect this kind of simplifica"on.

Claim. The GS procedure works.
Proof.

Gauss quadrature

Idea. Choose the nodes and the weights simultaneously.
One interval:

with weights , , and nodes , , for , this is a -rule.
The coefficients are determined by the usual process:

The resul"ng system is nonlinear!

Let us use the orthogonal polynomials in the following way.

Theorem. Let  be the roots of an orthogonal polynomial  on  of degree .
Then

where

⟨ , q ⟩ =q~j j−1 ⟨xq , q ⟩ −j−1 j−1 ⟨xq , q ⟩
i=0

∑
j−1

j−1 i

=0 except when i=j−1, then it is =1

⟨q , q ⟩i j−1

= ⟨xq , q ⟩ −j−1 j−1 ⟨xq , q ⟩ =j−1 j−1 0.

□

f(x) dx =∫
a

b

A f(x ) +0 1 A f(x ),1 1

A0 A1 x0 x1 n = 1 (n + 1) = 2

1 dx =∫
a

b

b − a = A +0 A .1

x dx =∫
a

b

=
2

b − a2 2

A x +0 0 A x .1 1

x dx =∫
a

b
2 (b −

3

1 3 a ) =3 A x +0 0
2 A x .1 1

2

x , x , … , x0 1 n qn+1 [a, b] n

f(x) dx ≈∫
a

b

A f(x ),
i=0

∑
n

i i

A :=i φ (x) dx, φ (x) =∫
a

b

i i ,
j=0
j=i

∏
n

x − xi j

x − xj



is exact for all polynomials of degree  or less.

Proof. Let  be a polynomial with . By the polynomial division algorithm,

where  and . Then,

Integrate,

Because  can be interpolated exactly with  nodes. The last equality follows from the reasoning before. 

We can extend the no"on of orthogonal polynomials to so-called weighted orthogonal polynomials with respect to the inner
product

where  is a posi"ve weight func!on.

One (mathema"cal) advantage: Works also on .

Example. If , we get the so-called Laguerre polynomials. If , we get the so-called Hermite
polynomials, which are meaningful in probability theory (the weight is the density of the Gaussian normal distribu"on up to
mul"plica"on by a normaliza"on constant).

Theorem. The previous theorem holds a -orthogonal polynomial  with

Error formula. -point rule with nodes :

Where does the square come from?
We assume that the deriva"ves of  are con"nuous, therefore Hermite interpola"on is the natural choice.

Example. Gauss rule on , . No"ce, since we only want the roots, there is no need to normalize , .
GS: .

2n + 1

f deg f = 2n + 1

f = q p +n+1 n r ,n

deg p ≤n n deg r ≤n n

f(x ) =i p (x ) +

=0

q (x )n+1 i n i r (x ) =n i r (x ).n i

f(x) dx =∫
a

b

+

=⟨q ,p ⟩=0n+1 n

q (x)p (x) dx∫
a

b

n+1 n r (x) dx∫
a

b

n

= r (x) dx =∫
a

b

n A r (x ) =
i=0

∑
n

i n i A f(x ).
i=0

∑
n

i i

rn n + 1 □

⟨p, q⟩ =w p(x)q(x)w(x) dx,∫
a

b

w

R = (−∞, ∞)

w(x) = e−x w(x) = e−
2

x2

⟨⋅, ⋅⟩w qn+1

A :=i φ (x)w(x) dx, φ (x) =∫
a

b

i i .
j=0
j=i

∏
n

x − xi j

x − xj

(n + 1) x , x , … , x0 1 n

error = (x −
(2(n + 1))!

f (ξ(x))(2(n+1))

j=0
j=i

∏
n

x ) .j
2

f

[−1, 1] n = 1 q~i i = 0, 1, 2

=q~0 1

1



where , and .

where  and .
The resul"ng orthogonal polynomials on  are called Legendre polynomials.

 (and ) has the roots .

The associated Newton quadrature rule is:

Let us check exactness:

From this, we obtain easily that . This weights could of course also been determined by integra"ng the Lagrange
polynomials over .

Thus, the Newton quadrature is indeed exact up to degree !

Probabilis!c examples

Monte Carlo integra!on

Let , , be i.i.d. (independent, iden"cally distributed) random variables with mean  and variance . Then for the
arithme"c mean (also called Césaro sum)

By the law of large numbers, we have almost surely

=q~1 x ⋅ 1 − ⋅
⟨1, 1⟩
⟨x, 1⟩

1 = x − ⋅
1 dx∫−1

1

x dx∫−1
1

1 = x,

⟨1, 1⟩ = 2 ⟨x, 1⟩ = 0

=q~2 x ⋅ x − ⋅
⟨1, 1⟩
⟨x , 1⟩2

1 − ⋅
⟨x, x⟩
⟨x , x⟩2

x = x −2 ,
3

1

⟨x, x⟩ = ⟨x , 1⟩ =2
3
2 ⟨x , x⟩ =2 0

[−1, 1]

q~2 q2 x = ±
3

1

f(x) dx =∫
−1

1

A f − ) +0 (
3

1 ) A f .1 (
3

1 )

1 dx =∫
−1

1

2 = A +0 A .1

x dx =∫
−1

1

0 = +
3

−A0
.

3

A1

A =0 A =1 1

[−1, 1]

x dx =∫
a

b
2 =

3

2
1 ⋅ − +(

3

1 )
2

1 ⋅ .(
3

1 )
2

x dx =∫
a

b
3 0 = 1 ⋅ − +(

3

1 )
3

1 ⋅ .(
3

1 )
3

2n + 1 = 3

Xi i ∈ N µ σ2

A :=N X .
N

1

i=1

∑
N

i



We have that

In order to get the right unit, we have to consider the standard devia"on

Consequence:
If our integra"on problem can be cast into an averaging problem, the convergence rate will be .

Note. The rate is independent of the spa"al dimension.

Example. Es"ma"ng the value of . The area of a circle is . Set . Consider the box 
with volume . The ra"o of the areas of circle enclosed by the box and the enclosing box is . Let

Idea: Let us sample the points  uniformly from . In the limit, the number of “hits” over all samples tends to the ra"o of the
areas!

Buffon’s needle

Suppose we doing a random experiment with a large number of needles of same length  that we throw on the floor, which
has parallel strips drawn on it which have all the same distance  to their neighboring strip.

What is the probability that a dropped needle intersects with a line?

Let  be the distance from the center of the needle to the closest line and let  be the acute angle of the intersec"on point.

We assume, for simplicity, .

Both  and  are random variables with distribu"on

where  means that the needle is centered on a line and  means that  is perfectly centered between two lines.

where  means that the needle is parallel to the lines and  means that the needle is perpendicular to the lines.

We may assume that  and  are independent random variables (why?).

By the law of sines, the condi"on for intersec"on with a line is

A =
N→∞
lim N µ.

var(A ) =N var(X ) =
N 2

1

i=1

∑
N

i .
N

σ2

σ(A ) =N .
N

σ

O( )
N

1

π A = πr2 r = 1 V = [−1, 1] × [−1, 1]

∣V ∣ = 4 4
π

g =i {1, if p is inside A,

0, otherwise.

pi V

L

D

y θ

L = D = 1

y θ

y ∼ Unif 0, ,([
2

1])

y = 0 y = 2
1 y

θ ∼ Unif 0, ,([
2

π ])

θ = 0 θ = 2
π

y θ

2y ≤ sin θ.



The joint probability distribu"on of two independent random variables is the product of the respec"ve distribu"ons on
. Determining the probability requires calcula"on of the ra"o of the area of the condi"on of intersec"on in

rela"on to the total area .

The condi"on is fulfilled by

Thus the probability of intersec"on is

By the law of large numbers, the ra"o of needles intersec"ng the lines with all needles converges to . Hence, we
have found yet another probabilis"c algorithm to determine the value of .

Ini!al value problems (IVPs)

Problem. (Not necessarily linear) ordinary differen"al equa"on (ODE), with ini"al value  at ini"al "me  up to a finite "me
horizon :

Assump!ons. Existence and uniqueness of the solu"ons are understood (by e.g. Picard itera"on).
Let us assume that  is con"nuous as a func"on from  and Lipschitz con"nuous in the following sense:
There exists  such that for every , ,

Euler’s method

Fix a constant step size .

1. .
2.  and , .

Applying Taylor’s formula yields:

with .

We shall deal with two types of error:

(A) trunca"on error (local),
(B) global error.

Nota!on.  denotes the exact solu"on to the IVP at , whereas  denotes the result of the method at step .

For Euler, we get that

[0, ] ×2
π [0, ]2

1

4
π

sin θ dθ =
2

1 ∫
0

2
π

.
2

1

/ =
2

1

4

π
.

π

2

≈
π
2 0.6366

π

y0 t0

T > t0

{y (t) = f(t, y(t)),′

y(t ) = y .0 0

f [t , T ] ×0 R → R
L > 0 y, z ∈ R t ∈ [t , T ]0

∣f(t, y) − f(t, z)∣ ≤ L∣y − z∣.

h > 0

y :=0 y(t )0

t :=k t +k−1 h y =k+1 y +k hf(t , y )k k k = 0, 1, 2 … ,

y(t ) =k+1 y(t ) +k hy (t ) +′
k y (ξ ) =

2

h2
′′

k y(t ) +k hf(t , y(t )) +k k y (ξ ),
2

h2
′′

k

ξ ∈k [a, b]

y(t )k t = tk yk k

− h



Hence the Euler method is locally (in each point) or order .
The method is consistent:

Note that  depends on , which we omit in the nota"on.

What about the global error, that is, uniform convergence on ?

as ?

Theorem. Assume the following:

1.  is Lipschitz in the second component.
2.  for some global constant .
3.  as .

Then Euler’s method is uniformly convergent to the exact solu"on on  and the global error is .

Proof. Set .
By Taylor and Euler:

We get that

We shall need a lemma on recursive inequali"es.

Lemma. If for ,

then

Proof. Itera"ng the inequality yields

Note that by the Taylor formula,

=
h

y − yk+1 k
f(t , y ) +k k .

local error O(h)

y (ξ )
2

h ′′
k

1

=
h→0
lim

h

y − yk+1 k
y (t ) =′

k f(t , y(t )).k k

k h

[t , T ]0

max ∣y(t ) −k y ∣ →k 0

h → 0

f

max ∣y (t )∣ ≤′′
k M M > 0

y →0 y(t )0 h → 0

[t , T ]0 O(h)

d :=j y(t ) −j yj

d =k+1 d +k h[f(t , y(t )) −k k f(t , y )] +k k y (ξ ).
2

h2
′′

k

∣d ∣ ≤k+1 ∣d ∣ +k hL∣d ∣ +k M =
2

h2

(1 + hL)∣d ∣ +k M .
2

h2

α, β > 0

γ ≤k+1 (1 + α)γ +k β,

γ ≤n e γ +nα
0 β.

α

e − 1nα

γ ≤n (1 + α) γ +2
n−2 [(1 + α) + 1]β ≤ (1 + α) γ +n

0 (1 + α) β.[
j=0

∑
n−1

j]

e =α e +0 e α +0 e =
2

α2
ξ 1 + α + e

2

α2
ξ



with 
Hence

And thus,

Returning to the proof of the theorem, we get that

Now for ,

 as  by the 3rd assump"on. Hence, the method converges uniformly with linear convergence rate. 

Heun’s method

Idea. Predictor –corrector.

Explicit vs. Implicit

Quadrature. Integral formula"on of the IVP:

apply your favorite quadrature rule, for instance:

Combined, we get:

This method is implicit. Every step requires a solu"on of a nonlinear (fixed point) problem.

ξ ∈ [0, α].

1 + α ≤ 1 + α + =

>0

e
2

α2
ξ e .α

γ ≤n e γ +nα
0 β ≤

1 − (1 − α)

1 − (1 + α)n

e γ +nα
0 β.

α

e − 1nα

□

∣d ∣ ≤k e ∣d ∣ +khL
0 M .

Lh

e − 1khL

2

h2

kh ≤ T − t0

∣d ∣ ≤
k

max k e ∣d ∣ +L(T −t )0
0 M .

L

e − 1L(T −t )0

2

h

∣d ∣ →0 0 h → 0 □

=y~k+1 y +k hf(t , y ) (prediction)k k

y =k+1 y +k [f(t , y ) +
2

h
k k f(t , )] (correction)k+1 y~k+1

y(t + h) = y(t) + f(s, y(s)) ds,∫
t

t+h

[f(t, y(t)) +
2

h
f(t + h, y(t + h))] + O(h ).3

y =k+1 y +k [f(t , y ) +
2

h
k k f(t , y )].k+1 k+1



Heun’s method and Euler’s method are explicit.

Linear mul!step methods

Adams-Bashforth (explicit)

Interpola"on nodes . Polynomial .

where

The trunca"on error is .

What methods can be recovered?
For , , we get  and

and thus Euler’s method!

Adams-Moulton (implicit)

Add  as an interpola"on node. Interpola"on polynomial .

where

The trunca"on error is .

For , , we get  and

which is the so-called backward Euler method (also called implicit Euler method)!

Why do we need mul!step methods?

y(t ) =k+1 y(t ) +k f(s, y(s)) ds.∫
tk

tk+1

t , t , … , tk k−1 k−m+1 pm−1

y =k+1 y +k p (s) ds =∫
tk

tk+1

m−1 y +k h b f(t , y ),
l=0

∑
m−1

l k−l k−l

b =l ds.
h

1 ∫
tk

tk+1

⎝
⎛

j=0
j=l

∏
m−1

t − tk−l k−j

s − tk−j

⎠
⎞

O(h )m

m = 1 l = 0 b =0 1

y =k+1 y +k hf(t , y ),k k

tk+1 qm

y =k+1 y +k q (s) ds =∫
tk

tk+1

m y +k h c f(t , y ),
l=0

∑
m

l k+1−l k+1−l

c =l ds.
h

1 ∫
tk

tk+1

⎝
⎛

j=0
j=l

∏
m

t − tk+1−l k+1−j

s − tk+1−j

⎠
⎞

O(h )m+1

m = 0 l = 0 c =0 1

y =k+1 y +k hf(t , y ),k+1 k+1



Bad Example.

Exact solu"on . For  Euler’s method oscillates about zero.
Adams-Moulton (trapezoidal method) works!

General form.

The general form of a linear mul!step method is given for  by

where  (normaliza!on) and the coefficients  and  determine the method.

The method is called explicit if , and implicit otherwise.

We call the mul"step method consistent if the trunca"on error is  or be$er.

Theorem. The linear mul"step method is consistent if and only if

and

If, moreover,

for every  then the trunca"on error is .
(Here, we follow the non-standard conven"on that  if ).

See [Ernst Hairer, Gerhard Wanner, Syvert P. Nørse$. Solving Ordinary Differen"al Equa"ons I: Nons"ff Problems. Springer,
2nd ed., 1993] for a proof.

The stability of mul"step methods depends on the convergence of the ini"al values  to  as . The second
condi"on yields a global error .

Example. , , , and by the normaliza"on assump"on, , , , and
thus we get,

backward Euler!

Example. (Good bad example)

y =′ −15y, y(0) = 1.

y(t) = e−15t h = 4
1

s ∈ N

a y =
j=0

∑
s

k n+j h b f(t , y ),
j=0

∑
s

j n+j n+j

a =s 1 a , … , a0 s−1 b , … , b0 s

b =s 0

O(h)

a =
k=0

∑
s−1

k −1

b =
k=0

∑
s

k s + ka .
k=0

∑
s−1

k

q k b =
k=0

∑
s

q−1
k s +q k a ,

k=0

∑
s−1

q
k

q = 1, … , p O(h )1+p

k =0 0 k = 0

y , … , y1 s−1 y0 h → 0

O(h )p

m = 1 a +0 a =1 0 0 ⋅ a +0 1 ⋅ a =1 b1 a =1 1 a =0 −1 b =1 1

y =k+1 y +k hf(t , y )k+1 k+1

13 5 5



This method sa"sfies the first condi"on. For the second condi"on, , we get that , so the second condi"on
is not sa"sfied and the method is not stable. Indeed,
for

which has the explicit solu"on , we consider a small perturba"on of the ini"al value, ,
so that

Hence, for , and , we get the error .
We note, however, that the method is consistent and the exact differen"al equa"on is stable (in the mathema"cal sense), and
the perturba"on  converges uniformly to the exact solu"on  as .

Example. (Effect of rounding error)

Returning to the proof of convergence for Euler, for the rounding error ,

we get,

Gradient descent

The following algorithm is widely used in machine learning, together with its probabilis"c counterpart, the stochas"c gradient
decent (SDG).

The goal is to find the minima of a func"on

which is assumed suitably regular, e.g. .

Gradient descent algorithm.

y −k+2 3y +k+1 2y =k h f(t , y ) − f(t , y ) − f(t , y ) .[
12

13
k+2 k+2

3

5
k+1 k+1

12

5
k k ]

p = q = 1 −1 = 12
13

y =′ 0, y(0) = 1,

y(t) = 1 δ > 0

y =0 1, y =1 1 + δ,

y =2 3y −1 2y =0 1 + 3δ,

⋯

y =k 3y −k−1 2y =k−2 1 + (2 −k 1)δ.

δ ∼ 2−53 k = 100 ∼ 247

y (t) =δ 1 + δ y(t) = 1 δ → 0

δ > 0

∣d ∣ ≤k+1 (1 + hL)∣d ∣ +k δ,

∣d ∣ ≤k+1 e +L(T −t )0

initial error or uncertainty

∣d ∣0

dominant term, if h is sufficiently small

δ
Lh

e − 1L(T −t )0

f : D → R, D ⊂ R ,d

f ∈ C (D ∖1 ∂D)



For simplicity, assume that .

For , where , iterate:

1. Fix ini"al point .
2.  is obtained by moving away from  in the opposite direc"on of the gradient of  at , with step size ,

more precisely,

The constants  are called learning rates.

3. A!er the th step, we may choose different outputs, as e.g. just  or

Less obviously, one may also choose

which is par"cularly useful for the SDG.

Defini!on.  is called convex, if for every , ,

Note that if  is convex,

for every , whenever  sa"sfy .

Con"nuously differen"able convex func"ons  enjoy the so-called subgradient property, i.e.

where  denotes the Euclidean scalar product.

Theorem. Let  be convex, con"nuously differen"able and -Lipschitz con"nuous, i.e.,

Let , . Set

Then for

0 ∈ D

k = 0, … , N N ∈ N

w :=0 0 ∈ D

wk+1 wk f wk η >k+1 0

w :=k+1 w −k η ∇f(w ), k =k+1 k 0, 1, … , N .

ηk

N :=w̄N wN

:=w̄N arg min f(w ).k=0,…,N k

:=w̄N w ,
N + 1

1

k=0

∑
N

k

f : R →d R λ ∈ [0, 1] x, y ∈ Rd

f(λx + (1 − λy) ≤ λf(x) + (1 − λ)f(y).

f

f λ x ≤(
i=0

∑
N

i i) λ f(x ),
i=0

∑
N

i i

x , x , … , x ∈0 1 N Rd λ ∈i [0, 1] λ =∑i=0
N

i 1

f : R →d R

f(x) − f(y) ≤ ⟨∇f(x), x − y⟩, x, y ∈ R ,d

⟨⋅, ⋅⟩

f : R →d R L

∣f(x) − f(y)∣ ≤ L∣x − y∣, x, y ∈ R .d

R > 0 N ∈ N

m := f(w), η :=
∣w∣≤R
min k η := .

L N + 1

R

:=w̄N w ,
N + 1

1

k=0

∑
N

k



we have that

Note. The point  is doubly dependent on ; not only through the number of steps, but also through the choice of .

Remark.

1. Assume that  has a global minimum in . Then, the above result ensures the convergence of  to the
minimum , provided that . Indeed, the claimed es"mate, together with

yields

2. It is not guaranteed that  converges to  unless  is the unique minimizer (e.g. if  is so-called strictly
convex (i.e., the inequality in the defini"on of convexity is strict for ).

3. The convergence rate is sublinear unless  is so-called strongly convex (i.e.,  is convex for some ), which
gives a linear convergence rate.

We start by proving an auxiliary result.

Lemma. Let  be a sequence of vectors in , and let . Se%ng
 and

we get that

In par"cular, we have that

for any  such that

and

Proof. A direct computa"on shows (polariza"on iden"ty)

Adding up with respect to  yields

f( ) −w̄N m ≤ .
N + 1

RL

w̄N N η

f w ∈∗ Rd f( )w̄N

f(w )∗ R ≥ ∣w ∣∗

f( ) −w̄N f(w ) ≥∗ 0

∣f( ) −w̄N f(w )∣ ≤∗ .
N + 1

RL

{ }w̄N N∈N w∗ w∗ f

λ ∈ (0, 1)

f f − δ∣ ⋅ ∣2 δ > 0

v , v , … , v , w1 2 k+1 ∗ Rd η > 0

w =0 0

w :=k w −k−1 ηv k ∈k N,

⟨v , w −
k=0

∑
N

k+1 k w ⟩ ≤∗ +
2η

∣w ∣∗
2

∣v ∣ .
2

η

k=0

∑
N

k+1
2

⟨v , w −
N + 1

1

k=0

∑
N

k+1 k w ⟩ ≤∗ ,
N + 1

RL

R, L > 0

η = ,
L N + 1

R

∣w ∣ ≤∗ R, ∣v ∣ ≤k L, k = 1, … , N + 1.

⟨v , w −k+1 k w ⟩ =∗ ∣w − w ∣ + η ∣v ∣ − ∣w − w − ηv ∣ =
2η

1
( k ∗

2 2
k+1

2
k ∗ k+1

2) ∣w − w ∣ − ∣w − w ∣ +
2η

1
( k ∗

2
k+1 ∗

2) ∣v ∣ .
2

η
k+1

2

k



The first term is a telescoping sum and , so that we get

which proves the first asser"on.
For the second asser"on it is enough to observe that under our condi"ons

Proof of the Theorem. Recalling that  is convex, we get that

Therefore, for any , we obtain by the Lemma,
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2

η
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+
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∣w ∣∗
2

∣v ∣ ≤
2

η

k=0

∑
N
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2 +

2η

R2

=
2

η(N + 1)L2

RL N + 1

□

f

f( ) =w̄N f w ≤(
N + 1

1

k=0

∑
N

k) f(w ).
N + 1

1

k=0

∑
N

k

w ∈∗ arg min f(w)∣w∣≤R

f( ) −w̄N m = f( ) −w̄N f(w ) ≤∗ (f(w ) −
N + 1

1

k=0

∑
M

k f(w )) ≤∗ ⟨ , w −
N + 1

1

k=0

∑
N
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