
Casper Lassenius

CS-C3500, Software Engineering

Software Design

Agenda

• Key issues

• Principles

• Stages

• Outputs and Notations

• Patterns

• Strategies

• Evaluation

“The application of software engineering discipline in which
software requirements are analyzed to define the software’s
external characteristics and internal structure as the basis

for software construction”

Software Design Context

Software requirements Software design Software construction
(implementation) Software testingdefines problem

Software architecture

constrainsdefines problem

guides

provides foundation for

Is subject to

Key Issues

• Basic concerns

• How to define, refine, organize, interconnect, and
package software components

• Quality concerns

• Performance

• Security

• Reliability

• Usability

• Maintainability

• Other issues, “aspects”, i.e., cross-cutting concerns, such as
logging and persistence

Principles (1/2)

• Abstraction

• Separation of Concerns

• Modularization (refinement,
decomposition)

• Encapsulation

• Separation of interface and
implementation

Principles (2/2)

• Coupling

• Cohesion

• Uniformity

• Completeness (sufficiency)

• Verifiability

• Ethically aligned design

Design Levels

• Architectural design

• Fundamentals of the system as a whole

• High-level (external facing) design of the
system and its components

• Top-level structure and organization

• Components and their interactions

• Detailed (internal facing) design

• Internals of each component to facilitate
implementation

Software Design Outputs

• Include

• Aspects of the problems to be solved

• Solution vocabulary

• Major design decisions

• Rationale

• Result: “design description”, “design specification”

• Texts, diagrams, models, prototypes

• Design can evolve during development, in
particular when using agile methods

• Many notations exist to represent design
artifacts, several are typically used, e.g., structural
and behavioral descriptions

Examples of Notations

• Structural

• Class diagrams

• Component diagrams

• Deployment diagrams

• Entity relationship diagrams (ERD)

• Interface description languages

• Structure charts

• Behavioral

• Activity Diagrams

• Interaction diagrams

• Data flow diagrams (DFDs)

• Flowcharts

• State diagrams, state charts

• Formal specification languages

• Pseudocode

Design Pattern

• “A common solution to a common
problem in a given context”

• Examples

• Model-View-Controller

• Factory

• Decorator, Facade, …

• Publish-Subscribe

Design Strategies

• General

• Top-down, bottom-up

• Function-oriented (structured)

• Data-centered

• Object-oriented

• User-centered

• Component-based

• Aspect-oriented

Evaluating the Design

• Quality attributes, “ilities” and “nesses”

• Modularity, maintainability, portability,
testability, usability

• Correctness, robustness

• Techniques

• Reviews

• Static analysis

• Simulation and prototyping

Uses of Software Design

• Communication

• Enforcement

• Validation

• Work breakdown / Project planning and
control

Challenges

• Balance design value with costs

• Keeping the models up-to-date

• Learnability / Understandability

• Integrating design with modern life-
cycle approaches

• Tool support

Yoda, senior software engineer

“Use the Source, Luke”

10%
Of coders report using UML systematically and consistently

Summary

• Software design is the bridge between requirements and the implementation

• Design supports implementation, work breakdown, and validation

• Design is concerned with key issues and

• There are many different notations, and the domain, specifics of the software, and the use of
the model determines what notation is most suitable

• Typical design stages include architectural, high-level, and low-level design

