

Intermediate Microeconomics

Public Goods

Professor Marko Terviö

Department of Economics
Aalto BIZ

Fall 2024 ECON-2110

Classification of goods

- Does one's consumption of the good reduce its value to others?
 If so, it's a rival good
- Can individual consumers be excluded from consuming the good? If so, it's an excludable good

good	Excludable	Non-Excludable	
Rival	Private	Common	
Non-Rival	Club	Public*	

Do not confuse public goods with goods produced by public sector.

*Sometimes called *pure public goods* to emphasize the distinction

Producing non-excludable goods creates a positive externality

Efficiency is hard without excludability or rivalry

- Non-excludability of outputs likely to lead to too little production. Who's going to pay when they don't have to?
- Non-excludability of inputs is likely to lead to overuse. Why not use it all, before others do?
- Non-rivalry means that efficient price is zero.
 Just charging the average cost would leads to underuse.

Partial solutions

- Excludability may be achieved at a cost (a kind of DWL)
- Fixed cost may be paid from public funds (tax may cause DWL)
- Altruism, social punishments (if small groups)

Examples: Lighthouse, roads (rival if congested), broadcasts, R&D

Public goods: Aggregation of Preferences

- What is the efficient quantity of public good? Everyone gets the same quantity (non-rival & non-excludable)
- A separate but related issue: How is the cost divided?
- One-or-None decision: production efficient if $TB \ge TC$ (sum of individual valuations) \ge cost
- General case: Aggregate demand $P^d(q) = \sum_i P_i^d(q)$ Efficient quantity: $\underbrace{P^d(q)}_{MB(q)} = MC(q)$

Produce if total benefit $TB(q) = \int_0^q P^d(z) dz \ge TC(q)$

Example: Three housemates

Yes or no decision: streaming service for the common TV? Cost would be 120 €/year

Valuations €/year				
Case#	1	2	3	
Ann	70	45	100	
Bob	45	45	35	
Cecilia	30	5	35	
TB	145	95	170	
CS	25	-25	50	

Suppose "house constitution" stipulates equal cost sharing.

What will they decide if purchases require i) majority ii) unanimity?

Example: Two countries

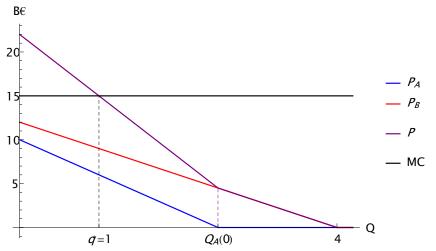
Demand for i.e. Marginal Benefit from R&D in country i = A, B.

R&D is never a bad, but can be useless beyond a point

$$P_A(q) = 10 - 4q$$

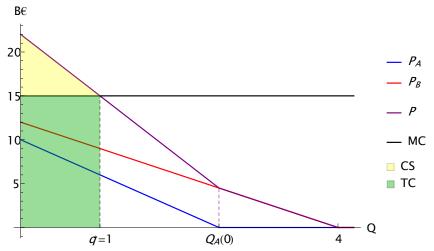
$$P_B(q) = 12 - 3q$$

Aggregate demand i.e. aggregate marginal benefit

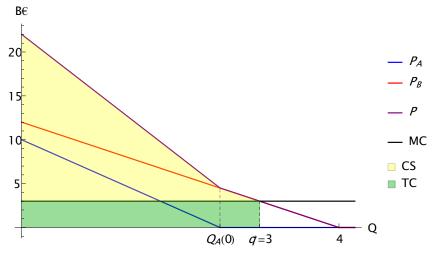

$$P(q) = P_A(q) + P_B(q)$$
 = 22 - 7q if $P_A(q) \ge 0$, $P_B(q) \ge 0$
=0 + $P_B(q)$ = 12 - 3q if $P_A(q) < 0$, $P_B(q) \ge 0$
=0 if $P_A(q) < 0$, $P_B(q) < 0$

A does not benefit from additional q beyond $Q_A(0) = 2.5$

Constant MC of R&D. Consider high MC = 15 and low MC = 3


How much should be produced? High MC example

$$P(q) = MC \Leftrightarrow 22 - 7q = 15 \Rightarrow q^* = 1.$$


How much should be produced? High MC example

$$TB = 18.5, TC = 15, CS = 3.5$$

How much should be produced? Low MC example

$$P(q) = MC \Leftrightarrow 12 - 3q = 3 \Rightarrow q^* = 3$$
. TB = 35, TC = 9, CS = TB - TC = 26

How to find out valuations for the public good?

Naive method #1. Ask people to report their valuation, cost sharing unrelated to report

- Expect net benefit from production → maximize overstatement
- Expect net loss from production → maximize understatement

Naive method #2. Ask people to report their valuation, payment increasing in reported benefit

Understate reported benefit (unless extremely high valuation)

Invest into making the good excludable \rightarrow DWL from underconsumption

Problems tend to grow in the number of people. Consider cleaning at a three person dorm or at a park for three thousand people.

Failures in reaching effiency

- Competitive market for a private good results in efficiency
- Monopoly / large market power results in underproduction, DWL
- Hard to get efficiency in public good production for large groups
- Regulation of monopolies is a public good
- Implementation of public policy requires delegation
 Voters → representatives → (layers of) officials
- Monitoring politicians, informed voting decisions are public goods
 → Rational ignorance

Market failure, government failure

- Causes of failure:
 - Asymmetric information
 - Externalities
 - Market power
- Market failure: too little production of a good, or too much of activity with negative externalities
- Government failure: use of government power for private or subgroup gain
- Optimal level of government power?
 Trade-off between likelihood for types of failure

Political economy

A few concepts from the economics of politics, "political economy"

- Influencing politics (voting, lobbying) are public goods within an interest group
- Concentrated vs dispersed interest
- Efficient vs inefficient transfers
- Logrolling (Extra reading http://blog.hse-econ.fi/?p=1688 in Finnish)
- "Voting with feet" (Tiebout model)
- Voting paradox, agenda-setting power, Arrow's impossibility theorem

Voting paradox

Example: three voters, majority decision to pick one alternative

- Ann: television > party > nothing
- Bob: nothing > television > party
- Cindy: party > nothing > television

Agenda-setting power: the ordering of voting can determine the winning alternative

Rank preferences cannot in general be aggregated to an aggregate decision-maker that behaves as if a rational person

Important exception: one-dimensional single-peaked preferences

