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You may use a scientific calculator, i.e. a calculator that has operations for trigonometry,
power, exponential function, logarithm, and binomial coefficients. No other type of calculator
is allowed. In particular, you may not use programmable calculators which can run program
code, symbolic calculators which can manipulate symbolic expressions, graphical calculators
which are able to plot functions, or calculators with Internet connection. You may have a
personally handwritten double-sided A4 at the exam. Present the intermediate steps
of all your calculations, and justify all your answers in detail. A correct answer
alone is worth zero points. All assignments are worth six points. Check your
answers. Next double-check them. Best of success to the exam! Note1: Some quantiles of the
Standard normal distribution and formulae are at the end of the exam sheet. Note2: You can
have a handwritten two-sided A4 memory sheet with you at the exam. You do not have to
return it with your answers.

1. Telecommunication corporation DNA conducts annually a school survey
about phone use and purchases. The survey 2.–13.2.2023 was answered by 704
parents of children between 5 and 12 years of age.1 For the age group 10–12 years
all or 325 parents answered that his or her child owns a phone (smartphone,
ordinary cell phone, or wrist phone).

Let us assume that the responses are a random sample. Calculate an ap-
proximate 95% confidence interval for the proportion of children between 10–12
years of age who do not own a phone. Use a meaningful way of calculating the
interval.

2. John Arbuthnot (1667–1735) observed that during the years 1629–1710
more boys than girls were born each year in London. He calculated a tiny
probability for the event that more boys are born than girls for 82 years if both
boys and girls are born with probability 1/2. He reasoned that the probability
of a newborn to be a boy must be greater than 1/2. Arbuthnot regarded it as
evidence of God’s good will: more men die prematurely than women, so there
will be one of opposite sex for everybody (figure). Arbuthnot’s calculation and
reasoning are regarded as the first statistical test ever.2

The histogram depicts the distribution of the ratio of number of newborn
boys to girls in London 1629–1710. The ratio would be 1 if the same number
of boys and girls were born during a year. The ratio was larger than 1 for all
years in the data.

a) Formulate the sign test statistic and calculate the value of it for the null
hypothesis that the probability of a newborn boy or girl is the same 1/2. Can
you reject the null hypothesis at significance level 0.002 (two-sided test)?

1https://www.dna.fi/documents/94506/11594975/DNA_Koululaistutkimus_2023_media
lle_final_pdf.pdf (read 5.6.2024). Nepa conducted the poll by drawing a random sample
from an online panel. I thank DNA Oyj and Nepa Insight Oy for the detailed information
about the poll (personal notification 6.–7.6.2024).

2J. Arbuthnot (1710): II. An Argument for Divine Providence, Taken from the Constant
Regularity Observ’d in the Births of Both Sexes. By Dr. John Arbuthnott, Physitian in
Ordinary to Her Majesty, and Fellow of the College of Physitians and the Royal Society.
Philosophical Transactions of the Royal Society, 27, 186–190. The ratio figures are taken
from the HistData package.

3Figure: Royal Society (https://royalsocietypublishing.org/doi/10.1098/rstl.1710
.0011). Editing of the figure: Pekka Pere (2024).



Figure 1: The 1st page of Arbuthnot’s article (1710).3

Figure 2: The distribution of the ratio of number of born boys to the number
of born girls in London 1629–1710 (suhde = ratio, lkm = frequency).



b) The ratio of number of born boys to the number of born girls is saved in
dataframe Arbuthnot under name Ratio. Command shapiro.test(Arbuthnot
$Ratio) returns (“p-value” refers to a two-sided test):

## Shapiro-Wilk normality test
## data: Arbuthnot$Ratio
## W = 0.95956, p-value = 0.01117

What is the null hypothesis associated with the R output above? Should the
null hypothesis be rejected at significance level 0.01 if the test were conducted
at significance level 0.01 (two-sided test)? Explain.

3. Fire resistance of cross-laminated timber panels (figure) was studied with
experiments. The panels were composed of lumber boards glued together in
perpendicular layers. Charring rates were measured for the bottom 1st and 2nd
layers when fire was directed to the panel from below. The number of such
charring rate experiments was 53 for both layers.4 Let us assume that the data
are composed of two independent samples of charring rate measurements from
the two layers and that the measurements are Normally distributed (N(µ1, σ2

1)
and N(µ2, σ2

2)) and independent also within the samples.

Figure 3: Structure of a cross-laminated timber panel.

a) Sample variances of the charring rates are s2
1 = 0.002843024 (1st layer)

and s2
2 = 0.1669577 (2nd layer). Present a test statistic and calculate its value

for the null hypothesis that the variances are the same (σ2
1 = σ2

2). What dis-
tribution (perhaps approximately) does the statistic follow under the null hy-
pothesis? What are the degrees of freedom of the distribution if such a concept
is associated with the distribution? Explain concisely how could the p-value
of the test statistic be calculated from the left or right tail of the distribution
(one-sided test with alternative hypothesis σ2

1 < σ2
2).

4Mika Alanen, Mikko Malaska, Mikko Salminen, Pyry Paavola, and Sami Pajunen
(2024): Experimental Determination of the Charring Rate of Cross-Laminated Timber Panels
(manuscript). I thank Mika Alanen and Mikko Malaska for the data and explanation of the
experiments, and Mika Alanen for the figure.



b) Sample means of the charring rates are µ̂1 = 0.6818273 (1st layer) and
µ̂2 = 1.116031 (2nd layer). Present a test statistic and calculate its value for the
null hypothesis that the means are the same (µ1 = µ2). What distribution (per-
haps approximately) does the statistic follow under the null hypothesis? What
are the degrees of freedom of the distribution if such a concept is associated
with the distribution? Should the null hypothesis be rejected at significance
level 0.001 (two-sided test)?

4. Let us continue analyses of the charring rate experiments. The charring rate
data in the table is categorised according to the positioning of sensors (distance
from gab between two lumber boards) for measuring the charring rates and
specimen orientation (horizontal or vertical). The charring rates for the 1st
and 2nd layers are in the upper and lower part of the table, respectively. The
data are categorised further by distance of sensor from gab between two lumber
boards (small, at most 6 measurements, moderate, at most 2 measurements, or
large, at most 6 measurements) and whether the specimen were in vertical (P1,
P2, or P3) or horizontal (V1, V2, or V3) position. Each figure in a cell refers to
a particular positioning of sensor and specimen. An outlier (7.20 in red) in the
2nd layer and its counterpart (0.65) in the 1st layer have been removed from
the data before the statistical analyses. After the removals the data consists of
53 measurements in both layers.

charring rates in the 1st layer (mm/min)
distance of sensor from vertical gap between two lumber boards

small moderate large

P1 0.63 0.80 0.73 0.67 0.66 0.63 0.60 0.65 0.61
P2 0.65 0.70 0.66 0.67 0.75 0.72 0.61 0.67 0.73 0.66
P3 0.65 0.64 0.62 0.64 0.63 0.59 0.72 0.62 0.63 0.69
V1 0.67 0.67 0.77 0.68 0.68 0.77 0.65 0.66 0.66 0.68
V2 0.72 0.78 0.70 0.72 0.70 0.67 0.67 0.67 0.63 0.75
V3 0.71 0.82 0.77 0.69 0.70

charring rates in the 2nd layer (mm/min)
distance of sensor from vertical gap between two lumber boards

small moderate large

P1 2.67 0.67 0.95 0.75 1.71 1.67 1.07 2.06 0.94
P2 7.20 1.47 1.47 0.87 0.73 1.01 1.53 1.41 2.32 1.26
P3 0.80 0.73 0.97 0.85 0.73 0.69 0.58 0.90 1.13 0.91
V1 0.77 1.54 0.71 1.24 1.12 1.11 1.27 1.17 1.17 1.15
V2 0.77 1.16 1.14 1.02 1.09 1.26 0.96 1.05 1.20 1.12
V3 0.84 0.88 0.76 0.85 0.92

The measurements in the two layers are paired: Charring rate measurements
have been done under exactly the same circumstances in corresponding cells in
the two layers (e.g. the first observations of the P1 rows 0.63 and 2.67 in groups
“small” are a pair). The experimental design suggests that the measurements
from the 1st and 2nd layers are pairwise correlated. Let us thus relax the previ-
ous assumption that the measurements of the 1st and 2nd layers are independent
and assume instead that the measurements are pairwise independent. Let us also
assume that the pairwise differences (0.63 − 2.67 = −2.04, 0.80 − 0.67 = −2.04,
0.73 − 0.95 = −0.22, . . .) are Normally distributed (N(µD, σ2

D)). The sample
size is 53.



The sensor distances or specimen orientation are not explicitly taken account
of in the assignment. Pairwise differencing is considered to eliminate such effects
from the data. Let us challenge the null hypothesis of equal charring rates in
the two layers with a pairwise t test.

a) In a previous assignment it was found that the variance of charring rate
is much larger in the 2nd layer than in the 1st layer. Is the large difference
between the variances a barrier for applying the pairwise t test, or does the
pairwise t test presume identical variances in the groups to be compared? (2 p)

b) Sample mean and variance of the pairwise differences are −0.434204 and
0.1789338, respectively. Present the pairwise t test statistic and calculate its
value for the null hypothesis of equal charring rates in the two layers. What
distribution (perhaps approximately) does the statistic follow under the null
hypothesis? What are the degrees of freedom of the distribution if such a concept
is associated with the distribution? Should the null hypothesis be rejected at
significance level 0.001 (two-sided test)? (4 p)



A few quantiles and indicative formulae
The 0.925th, 0.95th, 0.975th, 0.99th, 0.9925th, 0.995th, 0.999th, and 0.9995th
quantiles of the Standard Normal distribution are 1.440, 1.645, 1.960, 2.326,
2.432, 2.576, 3.090, and 3.291, respectively.

• P(A ∪ B) = P(A) + P (B) − P(A ∩ B), P(A ∩ B) = P(A|B)P (B),
P(A|B) = P(A ∩ B)/P(B), P(AC) = 1 − P(A)

• Under independence P(A |B) = P(A) and P(A ∩ B) = P(A)P(B)

• P(A) =
∑n
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