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With this course I try to give a reasonable understanding on 
the fundamentals of stochastic processes and of common 
computational methods used to simulate them.

Course “Statements”

The formalism needed to state things precisely is tedious, 
sometimes even overwhelming. After this course you 
hopefully will be fluent enough with the concepts and 
notation to be able to read the literature, so that you can learn 
and understand new things.

The field is vast! You will not run out of things to learn during 
your lifetime.
When reading the slides, try to understand the messages 
conveyed by the formalism. These slides are also meant to be a 
reference for you; hence they are detailed.

Try to develop a feeling for how formal things could be 
implemented as algorithms. 



Most importantly, try to find the fun in implementing methods 
as algorithms. Optimally, python and stochastic simulation 
should start seeming like a playground for you.

Course “Statements”

For those into machine learning: understanding the concepts 
within this course will make understanding machine learning 
methods a whole lot easier.

The final exam will concentrate on understanding and I will 
write a page or two about what you should understand and at 
how detailed a level (of notation) before the time comes.

Sometimes understanding exactly what is expected in the 
assignments can be hard. Please ask TAs in good time before 
the deadline. TAs are not obliged to respond to zillions of 
Slack messages 1 hour before DL. – And please be polite.



The word “stochastic” derives from the Greek ( to 
aim, to guess) and means ”random” or “chance”.

A stochastic model predicts a set of possible outcomes 
weighted by their likelihoods or probabilities.

A deterministic model predicts a single outcome from a given 
set of circumstances.

Stochastic modelling can be applied also to deterministic 
states whose outcome is not known (e.g. a hidden tossed 
coin).

Stochastic Modelling

Notation for stochastic processes is really compact: 
Computing a deterministic equation 𝑥 = −𝐴 log(𝑢) means 
computing 𝑥 from a single value of 𝑢, whereas the stochastic 
equation 𝑋 = −𝐴 log(𝑈) requires computing from the 
distribution 𝑈.



Stochastic Modelling
Scientific modelling (SM) has three components: (i) a natural 
phenomenon under study, (ii) a logical system for deducing 
implications about the phenomenon, and (iii) a connection 
linking the elements of the natural system under study to the 
logical system used to model it.

Example: (i) The earth with airports, (ii) mathematics of 
spherical geometry, and (iii) viewing the airports in the 
physical system as points in the logical system.

Stochastic SM is based on the law of large numbers: The 
relative fraction of times in which an event occurs in a 
sequence of independent similar experiments approaches, 
in the limit of an infinite sequence, the probability of the 
occurrence of the event on any single trial. (Related to 
ergodicity.)



Stochastic Modelling
A stochastic process is a family of random variables 𝑋𝑡, 
where 𝑡 is a parameter running over a suitable index set 𝑇. 
(Sometimes we write 𝑋(𝑡) instead of 𝑋𝑡.) 

In a common situation the index 𝑡 corresponds to discrete 
units of time, and the index set is 𝑇 = 0, 1, 2, … .

Stochastic processes for which 𝑇 = [0, ∞) are important. 𝑡 
often represents time. It may also represent e.g. distance from 
an arbitrary origin, and 𝑋𝑡 may count the number of defects 
in the interval (0, 𝑡] along a thread, or the number of cars in 
the interval (0, 𝑡] along a highway.

Stochastic processes are distinguished by their state space, 
or the range of possible values for the random values 𝑋𝑡, by 
their index set 𝑇, and by the dependence relations among 
the random variables 𝑋𝑡.



Probability Review

Let 𝐴 and 𝐵 be events.

The event that both 𝐴 and 𝐵 occur: 𝐴 ∩ 𝐵, or 𝐴𝐵 (intersection).

The event that at least one of 𝐴 or 𝐵 occurs: 𝐴 ∪ 𝐵 (union).

This notation extends to finite and countable sets of events 𝐴1, 𝐴2, …:

At least one event occurs: 𝐴1 ∪ 𝐴2 ∪ ⋯ = ∪𝑖=1
∞ 𝐴𝑖.

All events occur: 𝐴1 ∩ 𝐴2 ∩ ⋯ = ∩𝑖=1
∞ 𝐴𝑖.

The probability of an event 𝐴: Pr{𝐴}.

The certain event is denoted by Ω: Pr Ω = 1.

The impossible event is denoted by ∅: Pr ∅ = 0.

For a clear review, see: Intro of the online book

https://www.probabilitycourse.com/chapter1/1_0_0_introduction.php


Probability Review
Disjoint events, 𝐴 ∩ 𝐵 = ∅, cannot both occur.

The addition law for disjoint events: Pr 𝐴 ∪ 𝐵 = Pr 𝐴 + Pr 𝐵 ; 
if events 𝐴𝑖 and 𝐴𝑗 are disjoint for 𝑖 ≠ 𝑗, then 

Pr ∪𝑖=1
∞ = σ𝑖=1

∞ Pr{𝐴𝑖}.

The law of total probability: Let 𝐴1, 𝐴2, … be disjoint events for 
which Ω = 𝐴1 ∪ 𝐴2 ∪… (exactly one event will occur). Then 
Pr 𝐵 = σ𝑖=1

∞ Pr{𝐵 ∩ 𝐴𝑖} for any event 𝐵.

Events are said to be independent if Pr 𝐴 ∩ 𝐵 = Pr 𝐴 × Pr 𝐵 , 

or Pr 𝐴𝑖1
∩ 𝐴𝑖2

∩ ⋯ ∩ 𝐴𝑖𝑛
= Pr 𝐴𝑖1

Pr{𝐴𝑖2
} ∙∙∙ Pr{𝐴𝑖𝑛

} for every 

infinite set of distinct indices 𝑖1, 𝑖2, … , 𝑖𝑛.

Many important equations and principles are derived from the law of total 
probability.



Random Variables

A useful non-formal definition: 
A random variable is one that takes on its values by chance.

Random variables are denoted by capital letters, e.g. 𝑋, 𝑌, and 𝑍.

Real numbers are denoted by lowercase letters, e.g. 𝑥, 𝑦, and 𝑧.

The expression {𝑋 ≤ 𝑥} is the event that the random variable 𝑋 
assumes a value that is less than or equal to the real number 𝑥.

The probability that this event occurs is Pr{𝑋 ≤ 𝑥}.

Allowing 𝑥 to vary, this probability defines the distribution 
function (or cumulative distribution function, CDF) of the 
random variable 𝑋 as
   𝐹 𝑥 = Pr 𝑋 ≤ 𝑥 , −∞ < 𝑥 < +∞.

See Introduction to Probability, Statistics and Random 
Processes, Chapter 3

https://www.probabilitycourse.com/chapter3/3_1_1_random_variables.php
https://www.probabilitycourse.com/chapter3/3_1_1_random_variables.php


Random Variables
Subscripts are used, when several random variables appear in the 
same context, 𝐹𝑋 𝜉 = Pr{𝑋 ≤ 𝜉} and 𝐹𝑌 𝜉 = Pr{𝑌 ≤ 𝜉}. 

It’s easy to see that, for example, Pr 𝑋 > 𝑎 = 1 − 𝐹 𝑎 , Pr{
}

𝑎 <
𝑋 ≤ 𝑏 = 𝐹 𝑏 − 𝐹(𝑎), 
and Pr 𝑋 = 𝑥 = 𝐹 𝑥 − lim

𝜖↓0
𝐹 𝑥 − 𝜖 = 𝐹 𝑥 − 𝐹(𝑥−).

Discrete random variable 𝑋: There is a finite or denumerable set of 
distinct values 𝑥1, 𝑥2, … such that 𝑎𝑖 = Pr 𝑋 = 𝑥𝑖 > 0 for 𝑖 =
1, 2, … and σ𝑖 𝑎𝑖 = 1.

The probability mass function (PMF) for the random variable 𝑋:
   𝑝 𝑥𝑖 = 𝑝𝑋 𝑥𝑖 = 𝑎𝑖        for 𝑖 = 1, 2, …

𝑝 𝑥𝑖 = 𝐹 𝑥𝑖 − 𝐹(𝑥𝑖−) and 𝐹 𝑥 = σ𝑥𝑖≤𝑥 𝑝(𝑥𝑖).

The relation between the probability mass and distribution
function:



Probability Mass Function

Distribution function at value 3 would be
 𝐹 𝑥 = 3 = 𝑝 0 + 𝑝 1 + 𝑝 2 + 𝑝(3). For discrete random 
variables 𝑋, 𝑝 and 𝐹 are discrete.



Random Variables
For a continuous random variable 𝑋: Pr 𝑋 = 𝑥 = 0 ∀𝑥.

If there is a nonnegative function 𝑓 𝑥 = 𝑓𝑋(𝑥) defined for 
− ∞ < 𝑥 < ∞ such that

  Pr 𝑎 < 𝑋 ≤ 𝑏 = ׬
𝑎

𝑏
𝑓(𝑥) for −∞ < 𝑎 < 𝑏 < ∞,

then 𝑓 𝑥 = 𝑓𝑋(𝑥) is called the probability density function (PDF) 
for the random variable 𝑋.

Then the cumulative distribution (CDF) takes the form:

𝐹 𝑥 = 𝐹𝑋(𝑥) = Pr 𝑋 ≤ 𝑥 = න

−∞

𝑥

𝑓 𝑧 𝑑𝑧 .

⇒ 𝑓𝑋 𝑥 =
𝑑

𝑑𝑥
𝐹𝑋 𝑥 .



Random Variables

Then the continuous distribution function

  𝐹 𝑥 = ׬
−∞

𝑥
𝑓 𝜉 𝑑𝜉,  −∞ < 𝑥 < ∞.

If 𝐹(𝑥) is differentiable in 𝑥, 𝑓 𝑥 =
𝑑

𝑑𝑥
𝐹 𝑥 = 𝐹′(𝑥),   −∞ < 𝑥 < ∞.

⟹ Pr 𝑥 < 𝑋 ≤ 𝑥 + 𝑑𝑥 = 𝐹 𝑥 + 𝑑𝑥 − 𝐹 𝑥 = 𝑑𝐹 𝑥 = 𝑓 𝑥 𝑑𝑥.

More precisely, Pr{𝑥 < 𝑋 ≤ 𝑥 + Δ𝑥 + 𝑜 ∆𝑥 }, ∆𝑥 ↓ 0.
𝑜(∆𝑥) represents any term for which lim

∆𝑥↓0
Τ𝑜(∆𝑥) ∆𝑥 = 0.



Random Variables
The mth moment of a discrete random variable 𝑋:

   𝐸 𝑋𝑚 = σ𝑖 𝑥𝑖
𝑚Pr{𝑋 = 𝑥𝑖}

If the infinite sum diverges, the moment is said not to exist.

The mth moment of a continuous random variable 𝑋:

  𝐸 𝑋𝑚 = ׬
−∞

∞
𝑥𝑚𝑓 𝑥 𝑑𝑥

(the integral must converge absolutely).



Random Variables
The first moment, 𝑚 = 1, is called the mean or expected value of 
𝑋, denoted by 𝑚𝑋 or 𝜇𝑋.

The mth central moment of 𝑋 is defined as the mth moment of 
the random variable 𝑋 − 𝜇𝑋.

The second central moment is called the variance of 𝑋 and 
written 𝜎𝑋

2 or Var[𝑋]. Var 𝑋 = 𝐸[ 𝑋 − 𝜇)2 = 𝐸 𝑋2 − 𝜇2.

The median of a random variable 𝑋 is any value 𝜈 such that

   Pr{𝑋 ≥ 𝜈} ≥
1

2
  and Pr{𝑋 ≤ 𝜈} ≥

1

2
 .

The mode of a random variable 𝑋 is the value 𝑥 ∈ 𝑋, where PMF 
or PDF has the maximum value: Pr 𝑥 = 𝑥𝑚 = max{Pr 𝑥 }. 

𝜎𝑋 is called the standard deviation (stdev).



Random Variables
The more asymmetric (= skewed) the distribution, the less 
descriptive is the mean value. 

Skewness = 3 *(mean 
– median)/stdev
is a measure of 
distribution’s 
asymmetry (normal 
distribution is 
symmetrical). 



Random Variables
𝑌 = 𝑔(𝑋) is also a random variable. The expectation of 𝑔(𝑋):
   𝐸 𝑔 𝑋 = σ𝑖=1

∞ 𝑔 𝑥𝑖 Pr{𝑋 = 𝑥𝑖} .

For continuous 𝑋:     𝐸 𝑔 𝑋 = ׬ 𝑔 𝑥 𝑓𝑋 𝑥 𝑑𝑥.

Generally, for both the discrete (in the limit of fine 
discretisation) and continuous cases:
   𝐸 𝑔 𝑋 = ׬ 𝑔 𝑥 𝑑𝐹𝑋 𝑥 ,

where 𝐹𝑋 is the distribution function of the random variable 
𝑋. (Lebesque-Stieltjes integral.)

Given a pair (𝑋, 𝑌) of random variables, their joint distribution 
function is given by
   𝐹𝑋𝑌 𝑥, 𝑦 = 𝐹 𝑥, 𝑦 = Pr{𝑋 ≤ 𝑥 and 𝑌 ≤ 𝑦}.



Random Variables
A joint distribution is said to possess a (joint) probability 
density if there exists a function 𝑓𝑋𝑌 of two real variables for 
which

    𝐹𝑋𝑌 𝑥, 𝑦 = ׬
−∞

𝑥
׬

−∞

𝑦
𝑓𝑋𝑌 𝜉, 𝜂 𝑑𝜂𝑑𝜉 ∀𝑥, 𝑦.

The marginal distribution functions of 𝑋 and 𝑌 are 
𝐹𝑋 𝑥 = lim

𝑦→∞
𝐹𝑋𝑌 𝑥, 𝑦  and 𝐹𝑌 𝑦 = lim

𝑥→∞
𝐹𝑋𝑌 𝑥, 𝑦 , respectively.

The marginal density functions are

𝑓𝑋 𝑥 = ׬
−∞

∞
𝑓 𝑥, 𝑦 𝑑𝑦  and 𝑓𝑌 𝑦 = ׬

−∞

∞
𝑓 𝑥, 𝑦 𝑑𝑥.

If 𝑋 and 𝑌 are jointly distributed, then 𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸[𝑌].

 𝑦 “integrated out”



Random Variables
The random variables 𝑋 and 𝑌 are said to be independent if 
𝐹 𝑥, 𝑦 = 𝐹𝑋(𝑥) × 𝐹𝑌(𝑦)   ∀ 𝑥, 𝑦.

Then the joint density function 𝑓 𝑥, 𝑦 = 𝑓𝑋 𝑥 𝑓𝑌 𝑦 ∀ 𝑥, 𝑦.

Given that the jointly distributed 𝑋 and 𝑌 have means 𝜇𝑋 and 
𝜇𝑋 and finite variances, the covariance of 𝑋 and 𝑌 is
 Cov 𝑋, 𝑌 = 𝜎𝑋𝑌 = 𝐸 𝑋 − 𝜇𝑋 𝑌 − 𝜇𝑌 = 𝐸 𝑋𝑌 − 𝜇𝑋𝜇𝑌

𝑋 and 𝑌 are said to be uncorrelated if 𝜎𝑋𝑌 = 0.

Independent random variables having finite variances are 
uncorrelated, but the converse is not true; there are 
uncorrelated random variables that are not independent.

Correlation coefficient: 𝜌 =
𝜎𝑋𝑌

𝜎𝑋𝜎𝑌
 .



Random Variables
The joint distribution function of any finite collection 𝑋1, 𝑋2, … , 𝑋𝑛:

𝐹 𝑥1, … , 𝑥𝑛 = 𝐹𝑋1,…,𝑋𝑛
𝑥1, … , 𝑥𝑛 = Pr{𝑋1 ≤ 𝑥1, … , 𝑋𝑛 ≤ 𝑥𝑛)

Independence of 𝑋1, 𝑋2, … , 𝑋𝑛:

𝐹 𝑥1, … , 𝑥𝑛 = 𝐹𝑋1
𝑥1 … 𝐹𝑋𝑛

𝑥𝑛 ∀𝑥1, … , 𝑥𝑛

A joint distribution function is said to have a probability density 
function 𝑓 𝜉1, … , 𝜉𝑛 if

𝐹 𝑥1, … , 𝑥𝑛 = න

−∞

𝑥1

⋯ න

−∞

𝑥𝑛

𝑓 𝜉1, … , 𝜉𝑛 𝑑𝜉1, … , 𝑑𝜉𝑛 ∀𝑥1, … , 𝑥𝑛 .



Random Variables
For jointly distributed 𝑋1, 𝑋2, … , 𝑋𝑛 and arbitrary functions 
ℎ1, … , ℎ𝑛 of 𝑛 variables each, the expectation is:

𝐸 ෍

𝑗=1

𝑚

ℎ𝑗( 𝑋1, … , 𝑋𝑛) = ෍

𝑗=1

𝑚

𝐸[ℎ𝑗(𝑋1, … , 𝑋𝑛)] .



Random Variables

If 𝑿 and 𝒀 are independent random variables having 
distribution functions 𝐹𝑋 and 𝐹𝑌, respectively, then the 
distribution function of their sum  𝑍 = 𝑋 + 𝑌 is the convolution 
of 𝐹𝑋 and 𝐹𝑌:

𝐹𝑍 𝑧 = න
−∞

∞

𝐹𝑋 𝑧 − 𝜉 𝑑𝐹𝑌 𝜉 = න

−∞

∞

𝐹𝑌 𝑧 − 𝜂 𝑑𝐹𝑋 𝜂 .

Respectively, for probability density functions:

𝑓𝑍 𝑧 = න
−∞

∞

𝑓𝑋 𝑧 − 𝜉 𝑓𝑌 𝜉 𝑑𝜉 = න

−∞

∞

𝑓𝑌 𝑧 − 𝜂 𝑓𝑋 𝜂 𝑑𝜂 .

(for nonnegative random variables, replace the lower limit −∞ 
by 0.)

The variance: 𝜎𝑍
2 = 𝜎𝑋

2 + 𝜎𝑌
2



Random Variables
For all events 𝐴 and 𝐵 such that Pr 𝐵 > 0, the conditional 
probability of  𝐴 given 𝐵 is written

Pr 𝐴 𝐵 =
Pr{𝐴 ∩ 𝐵}

Pr{𝐵}
if Pr 𝐵 > 0.

If Ω = 𝐵1 ∪ 𝐵2 ∪ ⋯ and 𝐵𝑖 ∩ 𝐵𝑗 = ∅ for 𝑖 ≠ 𝑗, then

Pr 𝐴 = ෍

𝑖=1

∞

Pr 𝐴 ∩ 𝐵𝑖 = ෍

𝑖=1

∞

Pr 𝐴 𝐵𝑖 Pr 𝐵𝑖 .

This is the law of total probability.

This is the Bayes Theorem.



Discrete Distributions
Bernoulli Distribution

Random variable 𝑋 has two possible values 0 and 1.

The probability mass function (PMF) 𝑝 1 = 𝑝 and 𝑝 0 =
1 − 𝑝 where 0 < 𝑝 < 1. 
The mean: 𝐸 𝑋 = 𝑝.
The variance: Var 𝑋 = 𝑝(1 − 𝑝).

Bernoulli random variables occur frequently as indicators 
of events. The indicator of an event 𝐴 is the random variable

𝟏 𝐴 = 𝟏𝐴 = ቊ
1
0

if 𝐴 occurs
if 𝐴 does not occur

𝟏𝐴 is a Bernoulli random variable with parameter 
𝑝 = 𝐸 𝟏𝐴 = Pr A .



Discrete Distributions
Binomial Distribution

Independent events 𝐴1, 𝐴2, … , 𝐴𝑛 all having the same 
probability 𝑝 = Pr{𝐴𝑖} of occurrence. Let 𝑌 count the total 
number of events among 𝐴1, 𝐴2, … , 𝐴𝑛 that occur. Then 𝑌 has a 
binomial distribution with parameters 𝑛 and 𝑝.
The probability mass function:

𝑝𝑌 𝑘 = Pr 𝑌 = 𝑘 =
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘(1 − 𝑝)𝑛−𝑘 for 𝑘 = 0,1 … , 𝑛.

Using indicator function, for which 𝟏 𝐴 = 1 or 𝟏 𝐴 = 0, 
when event 𝐴 takes place or not, simplifies maths: Write 𝑌 
as a sum of indicators 𝑌 = 𝟏 𝐴1 + ⋯ + 𝟏 𝐴𝑛  to determine 
the moments.
𝐸 𝑌 = 𝐸 𝟏 𝐴1 + ⋯ + 𝐸 𝟏 𝐴𝑛 = 𝑛𝑝

Var 𝑌 = Var 𝟏 𝐴1 + ⋯ + Var 𝟏 𝐴𝑛 = 𝑛𝑝(1 − 𝑝)



Discrete Distributions
Notation: 𝑋 ~ 𝐵𝑖𝑛(𝑛, 𝑝) means 𝑋 is a binomial random 
quantity based on 𝑛 independent trials, each occurring with 
probability 𝑝. 

Binomial is the discrete version of the normal/Gaussian. 



Discrete Distributions
The Poisson Distribution

The probability mass function of the Poisson distribution 
with parameter 𝜆 > 0

𝑝 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
for 𝑘 = 0, 1, …

In calculations related to the Poisson distribution the series 
expansion for the exponential comes in handy

𝑒𝜆 = 1 + 𝜆 +
𝜆2

2!
+

𝜆3

3!
+ ⋯

෍

𝑘=0

∞

𝑘𝑝 𝑘 = 𝜆𝑒−𝜆 ෍

𝑘=1

∞
𝜆𝑘−1

𝑘 − 1 !
= 𝜆, ෍

𝑘=0

∞

𝑘 𝑘 − 1 𝑝 𝑘 = 𝜆2



Discrete Distributions
In terms of a Poisson distributed random variable 𝑋 ~ 𝑃𝑜 𝜆 :

Mean :    𝐸 𝑋 = 𝜆

Variance: Var 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2 =
= 𝐸 𝑋 𝑋 − 1 + 𝐸 𝑋 − 𝐸 𝑋 2 = 𝜆

The simplest form of the law of rare events: The binomial 
distribution with parameter 𝑛 and 𝑝 converges to the Poisson 
distribution with parameter 𝜆 if 𝑛 → ∞ and 𝑝 → 0 so that    
λ = 𝑛𝑝 remains constant. (See ‘An Introduction to Stochastic 
Modeling’ for a proof.)

An important property: The sum of Poisson random 
quantities is also a Poisson random quantity.



Discrete Distributions



Discrete Distributions
The Multinomial Distribution

= joint distribution of 𝑟 variables taking nonnegative values 
0, … , 𝑛. The joint probability mass function

Pr 𝑋1 = 𝑘1, … , 𝑋𝑛 = 𝑘𝑛 = ቐ

𝑛!

𝑘1! ⋯ 𝑘𝑟!
𝑝1

𝑘1 ⋯ 𝑝𝑟
𝑘𝑟

0

if σ𝑖=1
𝑟 𝑘𝑖 = 𝑛

otherwise

Here, 𝑝𝑖 > 0 for 𝑖 = 1, … , 𝑟 and σ𝑖=1
𝑟 𝑝𝑖 = 1.

Mean:  𝐸 𝑋𝑖 = 𝑛𝑝𝑖

Variance:  Var 𝑋𝑖 = 𝑛𝑝𝑖 1 − 𝑝𝑖

Covariance: Cov 𝑋𝑖𝑋𝑗 = −𝑛𝑝𝑖𝑝𝑗

Multinomial is the generalisation of the binomial distribution.



Continuous Distributions
The Normal/Gaussian Distribution 𝑵 𝝁, 𝝈𝟐

The probability density function

𝜙 𝑥; 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒

−
𝑥−𝜇 2

2𝜎2 , −∞ < 𝑥 < ∞.

Mean: 𝐸 𝑋 = 𝜇

Variance: Var 𝑋 = 𝜎2

Standard normal distribution when 𝜇 = 0 and 𝜎 = 1; 𝑁 0,1 .



Continuous Distributions
The Normal Distribution



Continuous Distributions

The central limit theorem: For partial sums 𝑆𝑛 = 𝜉1 + ⋯ + 𝜉𝑛 
of independent and identically distributed (i.i.d.) summands 
𝜉1, 𝜉2, … having finite means 𝜇 = 𝐸[𝜉𝑘] and finite variances 
𝜎2 = Var[𝜉𝑘],

lim
𝑛→∞

Pr
𝑆𝑛 − 𝑛𝜇

𝜎 𝑛
≤ 𝑥 = Φ 𝑥 ∀ 𝑥.

Here, Φ 𝑥 = න
−∞

𝑥

𝜙 𝜉 𝑑𝜉 = න
−∞

𝑥 1

2𝜋
𝑒− Τ𝜉2 2𝑑𝜉

(the standard normal distribution function)

So, the normal distribution results for numerous small 
additive, independent 𝜉, no matter how they are distributed.

See the online book

https://www.probabilitycourse.com/chapter7/7_1_2_central_limit_theorem.php


Continuous Distributions

Equivalently, the central limit theorem for the sample mean 

𝑋𝑛 =
1

𝑛
𝑆𝑛:

lim
𝑛→∞

Pr
𝑋𝑛 − 𝜇

𝜎/ 𝑛
≤ 𝑥 = Φ 𝑥 ∀ 𝑥.

For the layman: Make independent observations of any
random process → The observed values are normally
distributed (with the original mean, of course).

This wiki page is good demystification of the CLT.

https://en.wikipedia.org/wiki/Illustration_of_the_central_limit_theorem


Continuous Distributions
The Lognormal Distribution

Here the natural logarithm of a nonnegative random 
variable 𝑉 is normally distributed.

Mean: 
E V = exp 𝜇 +

1

2
𝜎2

Variance: Var 𝑉 = exp 2 𝜇 +
1

2
𝜎2 exp 𝜎2 − 1 .

Lognormal distributions arise from multiplicative stochastic 
processes. Here, the random process is described by a product 
(instead of a sum) of independent random variables: for a large 
number of variables the distribution of ln 𝑉 is normal (central 
limit theorem), so 𝑉 is lognormally distributed.

𝑓𝑉 𝑣 =
1

2𝜋𝜎𝜈
exp −

1

2

ln 𝜈 − 𝜇

𝜎

2

, 𝜈 ≥ 0.



Continuous Distributions
The lognormal 
distribution is an 
example of a fat-tailed or 
skewed distribution. It is 
sometimes erroneously 
interpreted as a 
logarithmic distribution 
𝑝 𝑥 ∝ 𝑥−𝛼 , 𝑥 > 0 and 
the constant 𝛼 > 0. 
Moreover, many natural 
processes result in log-
normal distribution 
although it may 
approximately look like 
a normal distribution.

(Skewness, see p. 17.) 



Continuous Distributions

Logarithmic central-limit theorem

Just like an additive process for independent random 
variables gives normal distribution in the limit of infinite 
number of samples, so will a multiplicative process for 
such variables give log-normal distribution in this limit.

In a multiplicative process, taking a logarithm of the 
variables 𝑍, we see that variables  Y = log 𝑍 would result 
from an additive process and will be distributed normally 
in the limit of infinite number of samples due to the 
central-limit theorem, and variables 𝑍 from the  
multiplicative process are distributed log-normally.



Continuous Distributions

Logarithmic central-limit theorem

The outcome of such a multiplicative stochastic process is
log-normal distribution; PDF: 

𝑓 𝑥 =
1

2𝜋𝑥𝜎
exp −

ln 𝑥 − 𝜇 2

2𝜎2



Continuous Distributions
A commonly used model for a binary distribution leading to normal 
distribution is the so-called Galton board, where grains are sifted through 
equilateral triangles and end in different slots at the bottom. Making the 
triangles’ right sides longer in a certain way log-normal distribution 
results at the bottom for a sufficiently large number of grains and triangle 
layers.  Multiplication follows this asymmetry in this triangle board (see 
the reference).

See Limpert, E., Stahel, W. A., and 
Abbt, M., “Log-normal Distributions 
across the Sciences: Keys and 
Clues,” BioScience, Vol. 51, No. 5, 
May, 
2001.https://stat.ethz.ch/~stahel/logn
ormal/bioscience.pdf
(Referred to in numpy reference for   
numpy.random.lognormal)

https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf


Continuous Distributions
The Exponential Distribution 

The random variable 𝑇 has an exponential distribution with 
parameter 𝜆 > 0 (𝑇 ∼ 𝐸𝑥𝑝(𝜆)), if the probability density 
function is

𝑓𝑇 𝑡 = ቊ𝜆𝑒−𝜆𝑡

0
for 𝑡 ≥ 0,
for 𝑡 < 0.

The distribution function

𝐹𝑇 𝑡 = ቊ1 − 𝑒−𝜆𝑡

0
for 𝑡 ≥ 0,
for 𝑡 < 0.

Mean: 𝐸 𝑇 =
1

𝜆
Variance: Var 𝑇 =

1

𝜆2

There is an alternative definition for the parameter 𝜆, so be sure to specify which one 
you are using in assignment problems.



Continuous Distributions

To see if a distribution is really exponential, plot it in the 
semilogarithmic coordinates (y-axis logarithmic); you should 
have a straight line. (For logarithmic distributions, plot both 
with coordinates logarithmic scales/binning.)



Continuous Distributions
The exponential distribution is encountered in memoryless 
processes, which is why it is relevant for (continuous) Markov 
chains. (Markov property: the next state is determined only by 
the present state.) 

Pr 𝑇 − 𝑡 > 𝑥 𝑇 > 𝑡 =
Pr{𝑇 > 𝑡 + 𝑥, 𝑇 > 𝑡}

Pr{𝑇 > 𝑡}

=
Pr{𝑇 > 𝑡 + 𝑥}

Pr{𝑇 > 𝑡}
(𝑥 > 0)

=
𝑒−𝜆(𝑡+𝑥)

𝑒−𝜆𝑡
= 𝑒−𝜆𝑥

𝑇 is a lifetime. The unit has survived up to time 𝑡. What is the 
conditional distribution of the remaining life 𝑇 − 𝑡?

(Bayes)

← Independent of the 
past - no memory.



Continuous Distributions
The Uniform Distribution

The probability density function for a random variable 𝑈 
distributed uniformly over the interval 𝑎, 𝑏 , where 𝑎 < 𝑏:

𝑓𝑋 𝑢 = ቐ
1

𝑏 − 𝑎
0

for 𝑎 ≤ 𝑢 ≤ 𝑏,

otherwise.

The distribution function

𝐹𝑋 𝑥 = ൞

0
𝑥 − 𝑎

𝑏 − 𝑎
1

for 𝑢 ≤ 𝑎,

for 𝑎 < 𝑥 ≤ 𝑏,

for x > 𝑏.



Continuous Distributions

Mean: 𝐸 𝑋 =
1

2
(𝑎 + 𝑏) Variance: Var 𝑋 =

(𝑏−𝑎)2

12

The standard uniform distribution on the unit interval [0, 1] 
has 𝑎 = 0 and 𝑏 = 1. A random variable having this 
distribution is usually denoted by 𝑈 ~ 𝑈(0,1). 

Standard (pseudo)random number generators implement 
a random variable uniformly distributed over the interval 
(0, 1]. 

Notation: 𝑋 ~ 𝑈(𝑎, 𝑏)

E 𝑈 = 1/2, Var 𝑈 = 1/12.



Continuous Distributions
The Gamma Distribution

The random variable 𝑋 has a gamma distribution with 
parameters 𝛼, 𝛽 > 0, written X ~ 𝐺𝑎(𝛼, 𝛽), if it has PDF

𝑓 𝑥 = ൞

𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥 , 𝑥 > 0

0, 𝑥 ≤ 0,

𝐺𝑎 1, 𝜆 = Exp(λ), so the gamma distribution is a 
generalisation of the exponential distribution.

The mean and variance:

𝐸[𝑋] =
𝛼

𝛽
, Var[𝑋] =

𝛼

𝛽2
.

where  Γ 𝛼 = ׬
0

∞
𝑦𝛼−1𝑒−𝑦𝑑𝑦 is the gamma function.



Continuous Distributions

A useful property that can be utilised in sampling variates 
from the gamma distribution is that if 𝑌 = 𝑋1 + 𝑋2, 𝑋1 ∼
𝐺𝑎(𝛼1, 𝛽), and 𝑋2 ∼ 𝐺𝑎(𝛼2, 𝛽) are independent and 𝑌 ∼
𝐺𝑎(𝛼1+ 𝛼2, 𝛽), then

𝑌 ∼ 𝐺𝑎(𝛼1+ 𝛼2, 𝛽).



Continuous Distributions

(The cumulative distribution (CDF):

𝐹 𝑥 = 𝐹𝑋(𝑥) = Pr 𝑋 ≤ 𝑥 = න

−∞

𝑥

𝑓 𝑧 𝑑𝑧 . )

Frequently CDF-based quantities are used to characterise a
distribution:

Median 𝑚: 𝑃 𝑋 ≤ 𝑚 =
1

2
 , or equivalently, 𝐹𝑋(𝑚) = 0.5.

Lower quartile 𝑙: 𝐹𝑋(𝑙) = 0.25

Upper quartile 𝑢: 𝐹𝑋(𝑢) = 0.75



Quantifying noise
In stochastic modelling or when analysing data that is 
“noisy”or stochastic, one needs a measure of how noisy 
some random variable 𝑋 is.

One can use the variance 𝜎2 = Var[𝑋], or, for having the noise 
in the same units as 𝑋, the standard deviation SD[𝑋] = 𝜎.

A consistent way is to give the noise magnitude relative to 
the random quantity 𝑋:

1. The coefficient of variation is defined as

CV[X] =
SD[𝑋]

E[𝑋]
=

𝜎

𝜇

2. Signal-to-noise ratio SNR = ൗ1
CV[𝑋] is more commonly  

used in engineering.

3. The dispersion index, or variance-to-mean ratio:

VMR[𝑋] = ൗVar[𝑋]
E[𝑋] = ൗ𝜎2

𝜇.



Determining distributions 
Whether you simulate a stochastic process or try to make 
sense of measured data, you will be plotting PDFs or PMFs. 
In other words, you generate histograms of the data. (For 
clarity you may plot the midpoints of the bins – the 
histogram bars.)

You will want to change coordinates in which the 
histograms are plotted. Linearly scaled coordinates will 
do nicely for looking at PDFs of normally distributed 
data, but in order to determine if the pertinent 
distribution is e.g exponential or log-normal, you need to 
plot the PDF in semilogarithmic scale (𝑥- or 𝑦-axis 
logarithmic). 



Determining distributions 
For a first view of skewed distributions you can use a 
semilog-scale where y-axis is logarithmic. 

For exponential distribution this view is perfect: a straight 
line. 
Log-normal will not look Gaussian in this view, however. 

To see if the PDF is logarithmic (scale invariant, power 
law) you need to use logarithmic scale (both the x- and y-
axis logarithmic).

To see the normally distributed log 𝑥 of log-normal 
distribution you need to both use logarithmic binning 
and plot the PMF with logarithmic 𝒙-axis and linear 𝒚-
axis. Now the PMF looks like a normal distribution.



Binning distributions 
Binning the data means assorting it to intervals along the 
abscissa (the horizontal axis).

Standard histogram uses linear binning. The intervals are 
of same size. 

With some distributions logarithmic binning should be 
used. Here the interval boundaries are located as exp(𝑖/𝑟), 
where 𝑖 ∈ ℤ. This way, for skewed distributions sufficient 
amount of data will be binned in the intervals for large 𝑥 
to see what the distribution looks like.

Binning in more detail in the next lecture.



Random Number 
Generators



RNGs
Most computational methods use random numbers, for 
example Monte Carlo, molecular dynamics, stochastic 
optimization and cryptography. And, of course, all machine 
learning rests upon massive amounts of random numbers.

Deterministic algorithms. (Pseudorandom numbers.) 
Pseudorandom number generators (RNG's): Deterministic 
algorithms that mimic randomness ➔ Generated numbers are 
only "pseudo-random” but approximate real random numbers 
reasonably well.

In what follows, the term “random number” means 
pseudorandom number.



RNGs
Most RNG algorithms produce pseudorandom uniformly 
distributed numbers 𝑥𝑖 ∈ 0,1 , 𝑖 = 1, 2, … , 𝑛. Roughly, 
𝑋 ~ 𝑈(0, 1)

These uniformly distributed random numbers can 
be used further to produce different distributions of random
numbers, in other words to simulate different distributions.



RNGs

The numbers have a correct distribution: 
- in simulations, the sequence of random numbers must be 
  uncorrelated
- in numerical integration, it is important that the distribution 
  is flat (uniform)

The sequence must have a long period:
- all RNGs repeat the same sequence of numbers eventually, 
  but the sequence must be sufficiently long

The sequences should be reproducible:
- for testing of simulation parameters
- for stopping a simulation and continuing later
Starting from the same seed number gives you the same sequence → store 
the seed, when testing.

The RNG must be fast. Simulations need loads of them.

A good RNG has the following properties:



Linear congruential generators (LCG)
LCGs are based on the integer recursion relation

Here, integers 𝑎, 𝑏, and 𝑚 are constants.

LCG generates a sequence 𝑥1, 𝑥2, … of random integers that are 
distributed within the intervals
- [0, 𝑚 − 1] (if 𝑏 > 0) or
- [1, 𝑚 − 1] (if 𝑏 = 0). (You need to start with 𝑥0 ≠ 0 to get 𝑥𝑖 ≠ 0.)

Scaling: divide by m for the 
interval 
- [0,1) (𝑏 > 0) or 
- (0,1) (𝑏 = 0).

Parameter 𝑚 determines the 
period 𝑃 of the LCG (it is 
usually close to the largest 
integer of the computer). 

A seed 𝑥0 is needed as input.Classification:
- mixed (𝑏 > 0): LCG(𝑎, 𝑏, 𝑚)
- multiplicative (𝑏 = 0): MLCG(𝑎, 𝑚)

AND to scale to (0,1): 𝑥𝑖+1/𝑚.

(Zero values are often 
eliminated from RNGs.)



LCGs
Two standard LCGs:

GGL

MLCG(16807, 231-1):

Available in some numerical software packages such as 
subroutine RAND in Matlab.

Simple and fast, but suffers from a short period of 231 - 1 
≈ 2 × 109 steps.

Problems due to correlation.



LCGs
RAND

LCG(69069, 1, 232):

Also has problems due to correlations. 

Visual Test

LCGs have a serious drawback of correlations between 
consecutive numbers 𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑖+𝑑 in the sequence.

In 𝑑-dimensional space, the points given by these 𝑑 numbers 
order on parallel hyperplanes. The average distance 
between these planes, whose dimension is 𝒅 – 𝟏, is constant. 
The smaller the number of these planes, the less uniform is 
the distribution.



Lagged Fibonacci 
Generators

These are generalisations of LCGs: The period of a LCG can 
be increased by the form

where 𝑝 >  1 and 𝑎𝑝 ≠  0.

An LF generator requires an initial set of elements 𝑥1, 𝑥2, … , 𝑥𝑟 
and then uses the integer recursion

where r and s are two integer lags satisfying 𝑟 > 𝑠
and      is one of the following binary operations: +, -, ×, or
    (exclusive-or). (To clarify: binary operations, 𝑥𝑖’s are 
integers.)



LFGs
The corresponding generators are termed LF(𝑟, 𝑠,    ).

The initialization requires a set of 𝑞 random numbers that 
can be generated for example by using another RNG.

The properties of LF-generators are not very well known but a 
definite plus is long period. Some evidence suggests that the 
exclusive-or operation should not be used.



LFGs
RAN3

LF(55,24,-): 

- also called a subtractive method
- period 255 − 1
- initialisation requires 55 numbers
- does not suffer from similar correlations as LCGs

𝑚 = 232

(Assignment 1.)



Shift Register Generators
These can be viewed as the special case 𝑚 = 2 of LF generators.

Feedback shift register algorithms  are based on the theory of 
primitive trinomials

Given such a primitive trinomial and 𝑝 initial binary digits, a 
sequence of bits 𝑏 = {𝑏𝑖} (𝑖 =  0, 1, 2, …) can be generated using 
the following recursion formula:

where 𝑝 > 𝑞.



Shift Register Generators
Using the recursion formula, random words 𝑊𝑖 of size 𝑖 can 
be formed by

where 𝑑 is a chosen delay.

The resulting binary vectors are treated as random numbers.

It can be shown that if 𝑝 is a Mersenne prime, which means that 
2𝑝 − 1 is also a prime, then the sequence of random numbers 
has a maximal possible period of 2𝑝 − 1.

If interested, see
https://en.wikipedia.org/wiki/Linear-feedback_shift_register

https://en.wikipedia.org/wiki/Linear-feedback_shift_register


Shift Register Generators
In generalized feedback shift register (GFSR) generators, 𝑖-bit 
words are formed by a recursion where two bit sequences  are 
combined using the binary operation ⨁ :

The best choices for 𝑞 and 𝑝 are Mersenne primes, which 
satisfy the condition  𝑝2 + 𝑞2 + 1 = prime.

Examples of pairs that satisfy this condition:

Generalized feedback shift register generators are denoted by
GFSR(𝑝, 𝑞, ⨁).



Shift Register Generators
R250

R250 for which 𝑝 = 250 and 𝑞 = 103 has been the most 
commonly used generator of this class.

The 32-bit integers (32-bit words)are generated by

250 uncorrelated seeds (random integers) are needed to 
initialize R250.

The latest 250 random numbers must be stored in memory.

The period length is 2250 - 1.



Shift Register Generators
R250 does not exhibit similar pair correlations as the LCG 
generators.

However, R250 has strong triple correlations:

In addition, R250 fails in some important physical 
applications such as random walks and simulations of the 
Ising model.

An efficient way of reducing correlations is to decimate the 
sequence by taking only every kth number (k = 3, 5, 7, …).



Combination Generators
It seems natural that shuffling a sequence or combining two 
separate sequences might help in reducing correlations.

The combination sequence 𝑧𝑖 is defined by

where 𝑥𝑖 and 𝑦𝑖 are from some (good) generators and ⊗     
denotes a binary operation (+, -, ×, ⊕).



Combination Generators
RANMAR

- the best known and tested combination generator

The first RNG is a lagged Fibonacci generator

Only 24 most significant bits are used for single precision reals.

The second part of the generator is a simple arithmetic 
sequence for the prime modulus 224 - 3 = 16777213.

The sequence is defined as

𝑐 = 7654321/16777216, 
𝑑 = 16777213/16777216



Combination Generators
The final random number 𝑧𝑖 is produced by combining 𝑥𝑖 and 𝑦𝑖:

The total period of RANMAR is about 2144.

The code is available in the lectures in MyCourses.

RANMAR is first initialized by the call (in C)
crmarin(seed); 
Here, seed is an integer seed.

The call 
cranmar(crn,len);  
fills the vector crn of length len  with uniformly distributed 
random numbers.



Combination Generators
RANMAR is a very fast generator.

RANMAR has also performed well in several tests, and should 
thus be suitable for most applications. 



RNG Tests
No single test can prove that a RNG is suitable for all 
applications

It is always possible to construct a test where a given RNG fails 
(since the numbers are not truly random but generated by a 
deterministic algorithm).

Classification of test methods

1. Theoretical tests

- based on theoretical properties of algorithms
- exact but often very difficult to perform
- only asymptotic: important correlations between 

consecutive number sets are not measured



RNG Tests
2. Empirical tests

- based on testing algorithms and their implementations in 
practice 

- can be tailored to measure particular correlations
- suitable for all algorithms
- often difficult to say how much testing is sufficient
- further division into standard tests (statistical tests) and 

application specific tests (physical quantities)

3. Visual tests

- can be used to locate global or local deviations from 
randomness

- e.g. pairs of random numbers can be used to plot points 
in a unit square Do visual tests when you can!



Mersenne Twister RNG
In large simulations currently the best and computationally 
heaviest RNG is the Mersenne Twister, see: 
https://en.wikipedia.org/wiki/Mersenne_Twister

Python uses the Mersenne Twister as the core generator. It 
produces 53-bit precision floats and has a period of 2**19937-
1. The underlying implementation is in C.

In Python you invoke the Mersenne-Twister RNG included in 
module random (import random) by random.random(). 
See the link: https://github.com/james727/MTP



Using Random Numbers
Example of a simple test

The moment test is a simple procedure to check that  your 
RNG implementation works as it should.

The moments of the uniform distribution are known

If we generate random numbers that should be uniformly 
distributed, the moments calculated from these numbers 
should be approximately equal to the analytical values 
within statistical fluctuations.



Using Random Numbers
Example: the mean value of random numbers for 100 
independent measurements over 𝑁 = 100 and 𝑁 = 1000 
random numbers using RANMAR.

The 'measured' values fluctuate around  the correct value 0.5.
Error goes as 𝟏/ 𝑵  for uncorrelated random numbers 
(idealisation). Note: This is a way to detect correlations.



Using Random Numbers
Central limit theorem

For any independently measured values 𝑀1, 𝑀2, … , 𝑀𝑚 that 
come from the same (sufficiently short-ranged) distribution 
𝑝(𝑥), the average

will asymptotically follow a Gaussian distribution (normal 
distribution), whose mean is  < 𝑀 > (equal to the mean of the 

parent distribution 𝑝(𝑥)) and standard deviation is 1/ 𝑁 
times the standard deviation of 𝑝(𝑥).

We can use this result to analyse the errors in the calculated 
values of any of the moments.



Using Random Numbers
Example

Denote the second moment

The errors should  follow the normal distribution and the 

width of this distribution should behave as 1/ 𝑁

Let's take a set of 𝑚 independent 'measurements’ of the 
second moment, each consisting of an average obtained from 
𝑁 random numbers.

From each measurement we obtain a single value 𝑀𝛼.

The average of all 𝑚 measurements is

and the variance is given by



Using Random Numbers

Here we have the variance of  𝑀 = < 𝑥2 
> obtained from 𝑚 =

 1000 measurements, each consisting of an average from 𝑁 
random numbers.

The variance behaves like 1/ 𝑁, meaning that the second 
moment obeys the scaling of the central limit theorem. U
Here, uniformly distributed random numbers from RANMAR.



Next time:

Sampling from different distributions

Logarithmic binning
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