
Computational
Methods in
Stochastics

Lecture II

Sampling from Different
Distributions aka

Stochastic Simulation

Logarithmic binning

Motivation: Stochastic Simulation
We want to understand the dynamics of a stochastic system.

2. We may want to determine how an initial distribution of some
(continuous) quantity evolves in time. In this case, we determine
states from evolving distributions. If we want estimates of
expected values, we must sample from many runs of the
dynamics and average – this is inevitably cruder than computing
expected values from a stationary distribution.

All models in this context are just distributions. All model
parameters 𝜃 = 𝜃1, 𝜃2, … , 𝜃𝑁 are parameters characterising
these distributions, for example, mean and variance.

1. We may want to simulate – generate states from - a
stationary distribution

Both 1 and 2 are regarded as stochastic dynamics.

We have a random variable 𝑋 with probability density
function (PDF) 𝑓(𝑥) (or 𝑓𝑋(𝑥)). We wish to evaluate E(𝑔 𝑋) for

some function 𝑔(∙): E 𝑔 𝑋 = ׬
𝑋

𝑔 𝑥 𝑓 𝑥 𝑑𝑥 .

Here, think of 𝑓 𝑥 𝑑𝑥 as the measure you are working with: you
measure everything with respect to this probability measure.

Motivation: Stochastic Simulation

Think of 𝑔(𝑥) as a
curve in the
dimension orthogonal
to 𝑥 and 𝑓(𝑥). Then
𝑔 𝑥 𝑓 𝑥 𝑑𝑥 is a
volume in these
coordinates =
“probability density
element” 𝑑𝑝.

Motivation: Stochastic Simulation

We resort to Monte Carlo integration:

We simulate realisations 𝑥1, … , 𝑥𝑛 of 𝑋 and form realisations of
the random variable 𝑔(𝑋) as 𝑔 𝑥1 , … , 𝑔 𝑥𝑛 . Then, provided
that the variance of 𝑔 𝑋 is finite, the law of large numbers
assures that we can approximate the integral by

E 𝑔 𝑋 ≃
1

𝑛
෍

𝑖=1

𝑛

𝑔 𝑥𝑖 . (𝑥𝑖 are drawn from 𝑓)

Motivation: Stochastic Simulation

Monte Carlo integration:

Basic numerical integration:

In (non-random)
numerical integration
one sums up, for
instance, values at mid-
points of intervals.

In Monte Carlo
integration one takes
randomly samples of
the area/volume
under/inside the curve.
MC integration is more
effective in dimension
3 or greater.

Motivation: Stochastic Simulation
Monte Carlo integration:

E 𝑔 𝑋 ≃
1

𝑛
෍

𝑖=1

𝑛

𝑔 𝑥𝑖 .

This is importance sampling.

(𝑥𝑖 are drawn from 𝑓)

Even if we cannot simulate realisations of 𝑋, but can simulate
realisations of 𝑌 that has PDF ℎ ∙ , then

𝐸 𝑔 𝑋 = න
𝑋

𝑔 𝑥 𝑓 𝑥 𝑑𝑥 = න
𝑋

𝑔 𝑥 𝑓 𝑥

ℎ 𝑥
ℎ 𝑥 𝑑𝑥

⇒ 𝐸(𝑔 𝑋) ⋍
1

𝑛
෍

𝑖=1

𝑛
𝑔 𝑦𝑖 𝑓 𝑦𝑖

ℎ 𝑦𝑖
. (𝑦𝑖 drawn from ℎ)

Motivation: Stochastic Simulation

𝐸 𝑔 𝑋 = න
𝑋

𝑔 𝑥 𝑓 𝑥 𝑑𝑥 = න
𝑋

𝑔 𝑥 𝑓 𝑥

ℎ 𝑥
ℎ 𝑥 𝑑𝑥

⇒ 𝐸(𝑔 𝑋) ⋍
1

𝑛
෍

𝑖=1

𝑛
𝑔 𝑦𝑖 𝑓 𝑦𝑖

ℎ 𝑦𝑖
.

Once more to make this clear: We have PDF 𝑓 ∙ that is hard to
simulate. So, we simulate ℎ ∙ that is easier and use the
realisations of 𝑌 (samples drawn from that distribution) and
compute the values of 𝑓 𝑦 and ℎ 𝑦 in the process of
computing the expectation - we change the measure.

(𝑦𝑖 drawn from ℎ)

Motivation: Stochastic Simulation

g

ℎ(𝑥) should be as similar to 𝑓(𝑥) as possible to make the
integration computationally effective: this way sampling is
done primarily in the regions that contribute most to

𝐸 𝑔 𝑋 → weighted integration.

This may also be written as 𝐸(𝑔 𝑋) ⋍
1

𝑛
෍

𝑖=1

𝑛

𝑔 𝑦𝑖 𝑤 𝑦𝑖 ,

where 𝑤 𝑦𝑖 =
𝑓 𝑦𝑖

ℎ 𝑦𝑖
 is a weight function if ׬

𝑋
𝑤 𝑥 𝑑𝑥 = 1.

Hence, “importance sampling”.

Transformation Methods

A prerequisite: Change of variable

The mathematical foundation for transformations of (random)
variates reads as follows:

The PDF of an arbitrary differentiable invertible
transformation 𝑌 = 𝑔 𝑋 is

𝑓𝑌 𝑦 = 𝑓𝑋 𝑔−1 𝑦
𝑑

𝑑𝑦
𝑔−1 𝑦 .

The last term is the Jacobian of the transformation (in
dimension 2 or greater). (For an example in 2D, see the Box-
Müller method, page 16.)

“Equal measures”: 𝑓𝑌 𝑦 𝑑𝑦 = 𝑓𝑋 𝑔−1 𝑦 𝑑[𝑔−1(𝑦)].

Transformation Methods

“Proof”. The event 𝑌 ≤ 𝑦 is the same as the event 𝑋 ≤ 𝑔−1(𝑦)

⇒ 𝐹𝑌 𝑦 = Pr 𝑌 ≤ 𝑦 = Pr 𝑋 ≤ 𝑔−1 𝑦 = 𝐹𝑋(𝑔−1 𝑦)

𝑦 = 𝑔 𝑥 ⇔ 𝑥 = 𝑔−1(𝑦)

𝑑𝑔−1

𝑑𝑦
=

𝑑𝑥

𝑑𝑦
=

1

𝑔′(𝑥)

𝑓𝑌 𝑦 =
𝑑𝐹𝑌(𝑦)

𝑑𝑦
=

𝑑𝐹𝑋(𝑔−1 𝑦)

𝑑𝑦
=

𝑑𝐹𝑋(x)

𝑑𝑥

𝑑𝑥

𝑑𝑦
=

1

𝑔´ 𝑥
𝑓𝑋 𝑥

=
𝑑𝑔−1(𝑦)

𝑑𝑦
𝑓𝑋 𝑔−1 𝑦 ∎

The differentiation
𝑑𝑔−1(𝑦)

𝑑𝑦
generalises to a Jacobian in multiple

dimensions.

Transformation Methods

When the inverse transformation can be determined, the inverse
distribution method can – should, for efficiency, - be used:

1. Sample 𝑦 from a uniform distribution 𝑦 ∈ 0,1 (notation Y ∼
𝒰[0,1], or 𝑌 ∽ 𝑈(0,1)).

2. Compute 𝑥 = 𝐹−1(𝑦), where 𝐹 𝑥 = Pr 𝑋 ≤ 𝑥 . (If 𝑥 ∈ [𝑎, 𝑏],

then 𝐹 𝑥 = ׬
𝑎

𝑥
𝑝 𝑥′ 𝑑𝑥′, or the sum 𝐹 𝑥 = σ𝑎≤𝑥𝑖≤𝑥 𝑝 𝑥𝑖 in the

discrete case.) 𝑋 follows the distribution 𝐹 𝑥 as desired.

Proposition. If 𝑌 ∼ 𝑈(0,1) and 𝐹(∙) is a valid invertible
cumulative distribution function (CDF), then
𝑋 = 𝐹−1 𝑌 has CDF 𝐹 ∙ .
Proof.

Pr 𝑋 ≤ 𝑥 = Pr 𝐹−1 𝑌 ≤ 𝑥 = Pr 𝑌 ≤ 𝐹 𝑥 = 𝐹𝑌 𝐹 𝑥 = 𝐹 𝑥 .

The inverse distribution method

Transformation Methods

Example. Uniform random variates. Given 𝑈 ∼ 𝑈(0, 1), simulate
𝑉 ∼ 𝑈(𝑎, 𝑏), where 𝑎 < 𝑏.

1. Sample 𝑢 ∈ 0,1 .

2. Compute v from 𝑣 = 𝑎 + 𝑏 − 𝑎 𝑢.

Now, 𝐹−1 𝑢 = 𝑣 = 𝑎 + 𝑏 − 𝑎 𝑢. 𝐹 𝑣 =
𝑣−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑣 ≤ 𝑏.

Example. Exponential random variates. Given 𝑈 ∼ 𝑈(0, 1),
simulate X ~ 𝐸𝑥𝑝(𝜆).

PDF 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0. ⇒ CDF 𝐹 𝑥 = 1 − 𝑒−𝜆𝑥, 𝑥 ≥ 0.

⇒ 𝐹−1 𝑢 = 𝑥 = −
1

𝜆
ln 1 − 𝐹 𝑥 = −

1

𝜆
ln 1 − 𝑢 .

1. Sample u ∈ 0,1 .

2. Compute x from 𝑥 = −
1

𝜆
ln 1 − 𝑢 .

Transformation Methods

Example. Variates from the Lorentzian distribution.

1. Sample 𝑦 ∈ 0,1 .

2. Compute x from

PDF

Learn to do this “without thinking”, that is, learn the
“notation” and derive 𝐹−1 using it. It’s easy to get mixed up, if
you think too much! Assignments →

Transformation Methods

When playing around with distributions it is often useful to
identify factors contributing to scaling and location. In the
prototypical case, if 𝑌 has PDF 𝑓(𝑦) and CDF 𝐹(𝑦), and 𝑋 =
𝑎𝑌 + 𝑏 (affine relation), then 𝑋 has CDF

𝐹𝑋 𝑥 = Pr 𝑋 ≤ 𝑥 = Pr 𝑎𝑌 + 𝑏 ≤ 𝑥 = Pr 𝑌 ≤
𝑥 − 𝑏

𝑎
= 𝐹

𝑥 − 𝑏

𝑎

and PDF

𝑓𝑋 𝑥 =
1

𝑎
𝑓

𝑥 − 𝑏

𝑎
.

Here, 𝑎 is the scale parameter and 𝑏 is the location parameter.

Transformation Methods

Example. Gamma random variates. Simulate 𝑋 ∼ 𝐺𝑎 𝑛, 𝜆 random
variates for integer 𝑛.

Exact inverse 𝐹−1(∙) does not exist, but use the property that if
𝑌𝑖 ∼ 𝐸𝑥𝑝(𝜆), and the 𝑌𝑖 are independent, then

𝑋 = ෍

𝑖=1

𝑛

𝑌𝑖 ∽ 𝐺𝑎 𝑛, 𝜆 .

In practise, to simulate gamma random variates, simulate
exponential random variates and sum them up. (𝐺𝑎 1, 𝜆 =
Exp(λ), see Lecture 1) Note: sum of memoryless processes →
Gamma.

𝑛 is the shape parameter and 𝜆 is the scale parameter.

Often library algorithms generate 𝐺𝑎 𝑛, 1 , after which one
needs to rescale: if 𝑌 ∼ 𝐺𝑎(𝑛, 1), then 𝑋 = 𝑌/𝜆 ∼ 𝐺𝑎(𝑛, 𝜆).

Transformation Methods
Normal random variates

Obviously, efficient simulation of Gaussian random
quantities is of great importance. However, the inverse
transformation cannot be applied.

We need a technique for simulating 𝑍 ∼ 𝑁(0, 1) random
variables, because 𝑋 = 𝜇 + 𝜎𝑍 ∼ 𝑁 𝜇, 𝜎2 .

CLT-based method

This approximate method makes use of the central limit theorem.

𝑍 = ෍

𝑖=1

12

𝑈𝑖 − 6For example, , where 𝑈𝑖 ∽ 𝑈 0, 1 , 𝑖 = 1, 2, … , 12

are independent, is approximately normal with 𝐸 𝑍 = 0
and Var 𝑍 = 1.

Transformation Methods
Normal random variates

This example case for the CLT-based method has support on
[-6, 6] and is poorly behaved in the extreme tails. For 𝑍 ∼
𝑁(0, 1), 𝑃(𝑍 > 6) ≈ 2 × 10−9, so the truncation is not a major
problem in many applications. The method is, however, slow:
12 uniform random numbers to get one Gaussian.

Remember: In CLT for the mean,

𝑍𝑛 =
ത𝑋𝑛−𝜇

Τ𝜎 𝑛
; then as 𝑛 → ∞ 𝑍𝑛 ~𝑁(0,1).

Transformation Methods

Normal random variates

- fast and efficient way to generate normal random variates

The Box-Muller method

1. Simulate Θ ~ 𝑈(0,2𝜋) and 𝑅2 ~ 𝐸𝑥𝑝(Τ1 2) independently.

2. Compute two independent standard normal random variables

𝑋 = 𝑅 cos Θ and 𝑌 = 𝑅 sin Θ.

Proof. 𝑓𝑋,𝑌 𝑥, 𝑦 =
1

2𝜋
exp(− 𝑥2 + 𝑦2 /2)

If 𝑋 = 𝑅 cos Θ and 𝑌 = 𝑅 sin Θ,

𝑓𝑅,Θ 𝑟, 𝜃 = 𝑓𝑋,𝑌 𝑥, 𝑦
𝜕 𝑥, 𝑦

𝜕 𝑟, 𝜃
=

1

2𝜋
𝑒−𝑟2/2 cos 𝜃 −𝑟 sin 𝜃

sin 𝜃 𝑟 cos 𝜃

=
1

2𝜋
𝑟𝑒−𝑟2/2 𝜕 𝑥,𝑦

𝜕 𝑟,𝜃
=

Τ𝜕𝑥 𝜕𝑟 Τ𝜕𝑥 𝜕𝜃
Τ𝜕𝑦 𝜕𝑟 Τ𝜕𝑦 𝜕𝜃

 (Jacobian)

- this is the standard method

Transformation Methods
To relate the Box-Muller transformation to the general notation
on slide 10:

𝑋 ≜ 𝑋, 𝑌 , 𝑥 ≜ 𝑥, 𝑦 ; 𝑌 ≜ 𝑅, Θ , y ≜ (𝑟, 𝜃) ⇒

𝑥 = 𝑔−1 𝑦 , 𝑓𝑋 𝑔−1 𝑦 =
1

2𝜋
𝑟𝑒−𝑟2/2;

𝑑

𝑑𝑦
𝑔−1 𝑦 =

𝜕𝑔−1(𝑟,𝜃)

𝜕 𝑟,𝜃
=

𝜕𝑥

𝜕𝑦
=

𝜕(𝑥,𝑦)

𝜕(𝑟,𝜃)

So,

𝑓𝑅,Θ 𝑟, 𝜃 = 𝑓𝑋,𝑌 𝑥, 𝑦
𝜕 𝑥,𝑦

𝜕 𝑟,𝜃
 is the same as (corresponds to)

𝑓𝑌 𝑦 = 𝑓𝑋 𝑔−1 𝑦
𝑑

𝑑𝑦
𝑔−1 𝑦 in the general notation on slide 10.

Here, ≜ means “corresponds to”. For example, vector 𝑥 of
the general notation is in this Box-Muller case 𝑥, 𝑦 .

Transformation Methods

Box-Müller is an inverse distribution transformation:

𝐹 𝑥 = ඵ
0

𝑥 1

2𝜋
𝑟′𝑒−𝑟′2

𝑑𝑟′𝑑𝜃 = 1 − 𝑒−𝑟2/2 = 𝑢1

⇒ 𝑟 = −2 ln 𝑢1 and 𝜃 = 2𝜋𝑢2

For N(0, 1) distribution.

0

2𝜋

Transformation Methods

The Box-Muller algorithm:

4. Multiply 𝑥 and 𝑦 by 𝜎𝑋 and 𝜎𝑌 to get the desired
variances 𝜎𝑋

2and 𝜎𝑌
2. Add the desired 𝜇.

5. Go to 1.

1. Generate 𝑢1, 𝑢2 ~ 𝑈(0, 1) independently.

3. Compute 𝑥 = 𝑟 cos(𝜃) and
 𝑦 = 𝑟 sin(𝜃)

2. Compute 𝑟 = −2 ln 𝑢1 and
 𝜃 = 2𝜋𝑢2

You can use this stuff as an aid when doing Assignment 2.1.

Lookup Methods

The lookup method is the discrete version of the inverse
transformation method. It is used in simulating a discrete
random quantity 𝑋 with outcome space 𝑆 = {0, 1, 2, … }.

The probability mass function (PMF) of 𝑋: 𝑝𝑘 = Pr 𝑋 = 𝑘 , 𝑘 =
0, 1, 2, …

Define 𝑞𝑘 = Pr 𝑋 ≤ 𝑘 = σ𝑖=0
𝑘 𝑝𝑖.

To generate realisations of 𝑋, first simulate 𝑢 ~ 𝑈(0, 1), then
compute 𝑋 = min{𝑘|𝑞𝑘 ≥ 𝑢}.

⇒ 𝑞𝑘−1 < 𝑢 ≤ 𝑞𝑘, so

Pr 𝑋 = 𝑘 = Pr 𝑢 ∈ 𝑞𝑘−1, 𝑞𝑘 = 𝑞𝑘 − 𝑞𝑘−1 = 𝑝𝑘 .

(This method is used e.g. for simulating discrete Markov models.)

Lookup Methods

𝑞𝑘 = Pr 𝑋 ≤ 𝑘

Rejection Samplers/Rejection method

Rejection samplers are used in generating random numbers
that follow an arbitrary distribution 𝒑(𝒙) that is not
analytically invertible.

Basic method

We want to simulate from 𝑓(𝑥) with finite support on [𝑎, 𝑏]. If
we can determine 𝑚 such that 𝑓 𝑥 ≤ 𝑚, ∀𝑥 ∈ [𝑎, 𝑏], we can
simulate 𝑋 ~ 𝑈(𝑎, 𝑏) and 𝑌 ~ 𝑈(0, 𝑚) and accept 𝑋, if 𝑌 <
𝑓(𝑋), otherwise reject and try again. The accepted 𝑋 values
have PDF 𝑓 𝑥 .

(For a proof, see e.g. Proposition 4.4. in Stochastic Modelling
for Systems Biology.)

Rejection Samplers/Rejection method
The algorithm:

1. Generate 𝑥 in the support of 𝑋: 𝑥 ∈ [𝑎, 𝑏].

2. Generate 𝑦 ~ 𝑈(0, 1): if 𝑦 ≤ 𝑓(𝑥)/𝑚 , accept 𝑥. (This
means: ”accept 𝑥 with probability 𝑓(𝑥)/𝑚”.)

3. Go to 1.
𝑦, 𝑓(𝑥)

𝑚

Rejection Samplers/Rejection method

The acceptance probability for this method is

Pr Accept = Pr 𝑋, 𝑌 ∈ 𝐴

= ׬
𝑎

𝑏
Pr 𝑋, 𝑌 ∈ 𝐴 𝑋 = 𝑥 ×

1

𝑏−𝑎
𝑑𝑥 = ׬

𝑎

𝑏 𝑓(𝑥)

𝑚
×

1

𝑏−𝑎
𝑑𝑥

=
1

𝑚(𝑏 − 𝑎)
න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥 =
1

𝑚(𝑏 − 𝑎)
.

If Pr Accept is very low, one can use the envelope method.

Rejection Samplers/Rejection method
The envelope method

This method also extends application of the rejection method
to distributions with infinite support. Decent computational
efficiency can be obtained choosing the enveloping region
carefully.

To simulate 𝑋 with PDF 𝑓(∙) we choose a PDF ℎ(∙) such that

𝑓 𝑥 ≤ 𝑎ℎ 𝑥 , ∀𝑥

and for which we can simulate values of 𝑌 with the same
support as 𝑋.

𝑎 is an upper bound for 𝑓(𝑥)/ℎ(𝑥); 𝑎 ≥ 1, since both 𝑓(𝑥) and
ℎ(𝑥) integrate to 1.

Rejection Samplers

The envelope method.

𝑓(𝑥)

𝑎ℎ(𝑥)

Rejection Samplers/Rejection method
The envelope algorithm.

1. Draw 𝑌 = 𝑦 from ℎ(∙) and then 𝑈 = 𝑢 ~ 𝑈 0, 𝑎ℎ 𝑦 .

2. Accept 𝑦 as a simulated value of 𝑋 if 𝑢 < 𝑓(𝑦) (with
probability 𝑓(𝑦)/ 𝑎ℎ 𝑦)*, otherwise reject.

3. Go to 1.

This procedure distributes points uniformly over a region
covering 𝑓(𝑥) and keeps ones that lie under 𝑓(𝑥).

The overall acceptance probability:

Pr 𝑈 < 𝑓 𝑌 = න
−∞

∞

Pr 𝑈 < 𝑓 𝑌 𝑌 = 𝑦 ℎ 𝑦 𝑑𝑦 = න
−∞

∞ 𝑓(𝑦)

𝑎
𝑑𝑦

=
1

𝑎
. → 𝑎 should be as close to 1 as possible.

(In practise, 𝑎 should be smaller than 10.)

(* “with probability 𝑓(𝑦)/ 𝑎ℎ 𝑦 ” means:
 accept 𝑦 if 𝑧 < 𝑓(𝑦)/[𝑎ℎ 𝑦], where 𝑧 ~ 𝑈[0, 1])

Importance Resampling

This stochastic simulation method sort of spawns from
importance sampling and the envelope rejection method.

The advantage over the envelope rejection method is that one
does not have to “guess” a good envelope and bounding
constant.

Instead, any proposal distribution ℎ(∙) having the same
support as 𝑓(∙) can be used. In practise, the method works the
better the more similar ℎ(∙) is to 𝑓(∙).

Unlike importance sampling, the importance resampling is
approximate: the samples are only approximately from 𝑓(∙).
The approximation improves with increasing number of
generated samples.

Importance Resampling

Here, we rewrite the expectation of an arbitrary function in the
importance sampling

𝐸(𝑔 𝑋) ≃
1

𝑛
෍

𝑖=1

𝑛
𝑔 𝑦𝑖 𝑓(𝑦𝑖)

ℎ(𝑦𝑖)

as

𝐸(𝑔 𝑋) ≃
1

𝑛
෍

𝑖=1

𝑛

𝑤𝑖𝑔 𝑦𝑖 ,

where 𝑤𝑖 = 𝑓(𝑦𝑖)/ℎ(𝑦𝑖).
The procedure:
1. generate samples from the proposal ℎ(∙)
2. resample from the sample using the weights 𝑤𝑖.
→ the new sample is distributed approximately according to 𝑓(∙).

Importance Resampling

The algorithm:

1. Sample 𝑦1, 𝑦2, … , 𝑦𝑛 ~ ℎ(∙).
2. Compute the weights 𝑤𝑘 = 𝑓(𝑦𝑘)/ℎ(𝑦𝑘), 𝑘 = 1, 2, … , 𝑛.
3. Compute the sum of the weights 𝑤0 = σ𝑗=1

𝑛 𝑤𝑗.

4. Compute the normalised weights 𝑤𝑘
′ = 𝑤𝑘/𝑤0, 𝑘 =

1, 2, … , 𝑛.
5. Sample 𝑛 times with replacement from the set {𝑦1, 𝑦2, … , 𝑦𝑛}

using the probabilities {𝑤1
′ , 𝑤2

′ , … , 𝑤𝑛
′ } (using e.g. the lookup

method) to generate a new sample {𝑥1, 𝑥2, … , 𝑥𝑛}.
6. Return the new sample {𝑥1, 𝑥2, … , 𝑥𝑛} as an approximate

sample from 𝑓(∙).

Note: ”Sample with replacement” means that if you pick for
example 𝑦3, you ”mentally” put it back to the set, so you may
pick it again.

Importance Resampling
So, samples from ℎ ∙ are used as if they were samples from
𝑓(∙), only they are re-weighted by 𝑤𝑖. So, generate samples
from the proposal ℎ ∙ and resample from the sample using
the weights 𝑤𝑖. One more effort to explain the resample part:
Once you have the list 𝑦1, 𝑦2, … , 𝑦𝑛 , you resample 𝑚 times
from this list using the weights 𝑤1, 𝑤2, … , 𝑤𝑚 as
probabilities to get a new list 𝑥1, 𝑥2, … , 𝑥𝑛 and you use this
as an approximate sample from the original 𝑓(∙). Because there
is replacement, you might have more than one instances of
the same 𝑦𝑖. What’s the point? To generate several
approximate samples from the original – that is, different
instances. To see the ”sense” in this method, one might think
of using the limited sample as if there were a number of
them.
One should try to find ℎ ∙ as closely reminiscent to 𝑓(∙) as
possible.

Importance Resampling

After all this fancy talk: Importance resampling just uses the
already generated ensemble of samples and takes “new”
batches of samples from it. This is done when the number of
available samples is limited. This is all you need to remember
of it in addition to the fact that such a trick exists; look into it
and use it when you need it.

The formal desription of this method is a typical example
of how some people in computer science like to present
things: Be so formal that no one will understand how
simple - and of how limited use - the trick you are
presenting is.

Binning of Distributions
In order to analyse/identify distributions and make them
more “presentable” one often needs to bin the data. The data
is assorted to intervals along the abscissa (the first axis).There
are two ways to bin the data:

1. Linear binning: The range 𝑎, 𝑏 in the abscissa is divided
into 𝐿 intervals of equal width Δ = Τ(𝑏 − 𝑎) 𝐿. The data
element 𝑥𝑗 belongs to the 𝑖th bin, if 𝑥𝑗 ∈ [𝑎 + 𝑖 − 1 Δ, 𝑎 +

𝑖Δ). After assorting the data there will be 𝑁𝑖 elements in the
𝑖th bin. One point represents the data in each bin. The
binned data:

𝑥ු𝑖 = 𝑎 +
Δ

2
+ (𝑖 − 1)Δ ;

𝑦𝑖 =
𝑁𝑖

∆
, where 𝑁𝑖 is the number of 𝑥𝑗 ∈ [𝑎 + 𝑖 − 1 Δ, 𝑎 + 𝑖Δ)

Binning of Distributions
2. Logarithmic binning: The range 𝑅 in the abscissa is divided
into intervals of width Δ𝑖 = exp(Τ𝑖 𝑟) − exp[Τ(𝑖 − 1) 𝑟], where 𝑖 ∈
{−𝑅, − 𝑅 − 1 , … , 𝑅 − 1, 𝑅}. 𝑅 and 𝑟 define the range and
resolution, respectively. The data element 𝑥𝑗 belongs to the 𝑖th

bin, if 𝑥𝑗 ∈ [exp
𝑖−1

𝑟
, exp 𝑖/𝑟). After assorting the data there

will be 𝑁𝑖 elements in the 𝑖th bin. One point represents the data
in each bin. The values of these points are calculated as

𝑥ු𝑖 =
exp[Τ𝑖 − 1 𝑟] + exp(Τ𝑖 𝑟)

2
;

For the layman: The bins are really small for small 𝑖 and grow
exponentially with 𝑖.

𝑦𝑖 =
𝑁𝑖

∆𝑖
, where 𝑁𝑖 is the number of 𝑥𝑗 ∈ [exp

𝑖−1

𝑟
, exp 𝑖/𝑟).

(You generate and plot points 𝑥ු𝑖 , 𝑦𝑖 to represent the data.)

Binning of Distributions

Here are ∆𝑖 vs interval midpoints in linear (left) and
logarithmic (right) coordinates.

Binning of Distributions
Log-binning allows you to see the functional dependence of a
fat-tailed distribution (density) more precisely at small 𝑥. It
also extends the visibility of the functional dependence to
larger 𝑥 values (for real data).

Power-Law Distributions
Log-binning is the way to determine exponents 𝛼 of power-
law distributions, whose PDFs are of form 𝑓 𝑥 ∝ 𝑥−𝛼 . Such
distributions are the hall-mark of scale-invariance: things look
the same at different (length) scales (e.g. fractals).

Power-Law Distributions
In the real world power-law distributions are usually
accompanied by an exponential cut-off: 𝑓 𝑥 ∝ 𝑥−𝛼exp(−𝑥/𝐴)
– because the magnitude (the size of objects, communities, etc.)
in the abscissa does not g to infinity.

Numbers
of objects

Sizes of objects

To avoid hassle and have faster algorithms we use python
histograms and tune the plotting a bit →

About axes and plotting

When trying to understand a given data, plot in linear, semilog,
and log-log axes to see what works.
In order to plot values at centres of the bins instead of histogram
bars do the following in python first generate the bins, then
compute the centre points, and plot.

For linear binning:

For logarithmic binning:

Edges → Centres → Plot:

	Slide 1: Computational Methods in Stochastics
	Slide 2: Sampling from Different Distributions aka Stochastic Simulation
	Slide 3: Motivation: Stochastic Simulation
	Slide 4: Motivation: Stochastic Simulation
	Slide 5: Motivation: Stochastic Simulation
	Slide 6: Motivation: Stochastic Simulation
	Slide 7: Motivation: Stochastic Simulation
	Slide 8: Motivation: Stochastic Simulation
	Slide 9: Motivation: Stochastic Simulation
	Slide 10: Transformation Methods
	Slide 11: Transformation Methods
	Slide 12: Transformation Methods
	Slide 13: Transformation Methods
	Slide 14: Transformation Methods
	Slide 15: Transformation Methods
	Slide 16: Transformation Methods
	Slide 17: Transformation Methods
	Slide 18: Transformation Methods
	Slide 19: Transformation Methods
	Slide 20: Transformation Methods
	Slide 21: Transformation Methods
	Slide 22: Transformation Methods
	Slide 23: Lookup Methods
	Slide 24: Lookup Methods
	Slide 25: Rejection Samplers/Rejection method
	Slide 26: Rejection Samplers/Rejection method
	Slide 27: Rejection Samplers/Rejection method
	Slide 28: Rejection Samplers/Rejection method
	Slide 29: Rejection Samplers
	Slide 30: Rejection Samplers/Rejection method
	Slide 31: Importance Resampling
	Slide 32: Importance Resampling
	Slide 33: Importance Resampling
	Slide 34: Importance Resampling
	Slide 35: Importance Resampling
	Slide 36: Binning of Distributions
	Slide 37: Binning of Distributions
	Slide 38: Binning of Distributions
	Slide 39: Binning of Distributions
	Slide 40: Power-Law Distributions
	Slide 41: Power-Law Distributions
	Slide 42: About axes and plotting

