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Conditional Probability and Expectation

In what follows, the main properties of Markov processes 
needed for understanding advanced Monte Carlo methods 
are presented.

(Notation: Pr · = 𝑃 · = Probability of event · )

Chapter 5 of the online book is worth skimming through. 

Notation is given for discrete, combined discrete and 
continuous variates. The things to learn are the same in all, 
only notation varies.

https://www.probabilitycourse.com/chapter5/5_1_5_conditional_expectation.php


Discrete variables

The conditional probability of the event 𝐴 given the event 𝐵:

Pr 𝐴 𝐵 =
Pr{𝐴 ∩ 𝐵}

Pr{𝐵}
if Pr 𝐵 > 0.

Pr 𝐴 𝐵  is not defined when Pr 𝐵 = 0.

Let 𝑋 and 𝑌 be random variables that can attain countably 
many values. The probability mass function of 𝑋 given 𝑌 = 𝑦: 

𝑝𝑋|𝑌 𝑥 𝑦 =
Pr{𝑋 = 𝑥 and 𝑌 = 𝑦}

Pr{𝑌 = 𝑦}
if Pr 𝑌 = 𝑦 > 0.

𝑝𝑋|𝑌 𝑥 𝑦 is not defined when Pr 𝑌 = 𝑦 = 0.

Conditional Probability and Expectation



Or, in terms of joint and marginal probability mass functions:

𝑝𝑋|𝑌 𝑥 𝑦 =
𝑝𝑋𝑌(𝑥, 𝑦)

𝑝𝑌(𝑦)
if 𝑝𝑌(𝑦) > 0;  𝑥, 𝑦 = 0, 1, …

The law of total probabilities

Pr X = x = 

𝑦=0

∞

𝑝𝑋|𝑌(𝑥|𝑦)𝑝𝑌(𝑦)

Conditional Probability and Expectation

The law of total probabilities is used to obtain marginal 
probabilities (for examples, see Ch5 of the online book. ) →

Note: In ratios Pr’s, PMFs, and PDFs all work equally.

Two variates in the conditional that can be summed over: 

1. Sum over the “given” variate → marginal probability 

https://www.probabilitycourse.com/chapter5/5_1_0_joint_distributions.php


Conditional Probability and Expectation
Example. Let 𝑋 have a binomial distribution with parameters 
𝑝 and 𝑁, where 𝑁 has a binomial distribution with parameters 
𝑞 and 𝑀. What is the marginal distribution of 𝑋?

Pr 𝑋 = 𝑘 = 

𝑛=0

𝑀

𝑝𝑋|𝑁 𝑘 𝑛 𝑝𝑁 𝑛 = ⋯ =

=
𝑀!

𝑘! 𝑀 − 𝑘 !
𝑝𝑞 𝑘(1 − 𝑝𝑞)𝑀−𝑘 , 𝑘 = 0, 1, … ,𝑀.

𝑝𝑋|𝑁 𝑘 𝑛 =
𝑛

𝑘
𝑝𝑘(1 − 𝑝)𝑛−𝑘 , 𝑘 = 0, 1, … , 𝑛.

Conditional prob. mass function (given)

𝑝𝑁 𝑛 =
𝑀

𝑛
𝑞𝑛(1 − 𝑞)𝑀−𝑛, 𝑛 = 0, 1, … ,𝑀.

Marginal distribution of 𝑁 (given)

The marginal distribution of 𝑋 (the law of total probability)

→ “𝑋 has a binomial distribution with parameters 𝑀 and 𝑝𝑞.”

(see Introduction to 
Stochastic Modeling: 
Ch2)

Parameter 𝑛 taken 
from a distribution 
→ write a 
conditional PMF. 



Conditional Probability and Expectation
Example 2. Let 𝑋 have a binomial distribution with 
parameters 𝑝 and 𝑁, where 𝑁 has a Poisson distribution with 
mean λ. What is the marginal distribution of 𝑋?

Pr 𝑋 = 𝑘 = 

𝑛=0

∞

𝑝𝑋|𝑁 𝑘 𝑛 𝑝𝑁 𝑛 =

= 

𝑛=0

∞
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝𝑘(1 − 𝑝)𝑛−𝑘

𝜆𝑛𝑒−𝜆

𝑛!
= ⋯ =

𝜆𝑝 𝑘𝑒−𝜆𝑝

𝑘!

𝑝𝑋|𝑁 𝑘 𝑛 =
𝑛

𝑘
𝑝𝑘(1 − 𝑝)𝑛−𝑘 , 𝑘 = 0, 1, … , 𝑛.

Conditional probability mass function

𝑝𝑁 𝑛 =
𝜆𝑛𝑒−𝜆

𝑛!
, 𝑛 = 0,1, …

Marginal distribution of 𝑁

The marginal distribution of 𝑋 (the law of total probability)

→ “𝑋 has a Poisson distribution with mean 𝜆𝑝.”

for 𝑘 = 0, 1,…



Conditional Probability and Expectation

Let 𝑔(𝑥) be a function for which the expectation of 𝑔(𝑋) is finite.

Then the conditional expected value of 𝑔(𝑋) given 𝑌 = 𝑦 is

𝐸 𝑔 𝑋 𝑌 = 𝑦 =

𝑥

𝑔(𝑥)𝑝𝑋|𝑌(𝑥|𝑦) if 𝑝𝑌 𝑦 > 0

(This conditional mean is not defined at 𝑦 for which 𝑝𝑌 𝑦 = 0.)

The law of total probability → the expected value of 𝑔(𝑋) 

𝐸 𝑔 𝑋 = 𝐸{𝐸 𝑔 𝑋 𝑌 }

2. Summing over the “outcome” variate  → expectation

(Summing over both variates; so, at this last stage over 𝑌.)



Conditional Probability and Expectation

Discrete and continuous variables

Let 𝑋 and 𝑁 be jointly distributed random variables, where 𝑿 
is continuous and 𝑵 has the discrete set of values 𝑛 =
0, 1, 2, …  
The conditional distribution function 𝐹𝑋|𝑁(𝑥|𝑛) of the random 

variable 𝑋, given that 𝑁 = 𝑛:

𝐹𝑋|𝑁 𝑥 𝑛 =
Pr{𝑋 ≤ 𝑥 and 𝑁 = 𝑛}

Pr{𝑁 = 𝑛}
if Pr 𝑁 = 𝑛 > 0.

𝐹𝑋|𝑁(𝑥|𝑛) is not defined at values of 𝑛 for which Pr 𝑁 = 𝑛 = 0.

The conditional probability density function:

𝑓𝑋|𝑁 𝑥 𝑛 =
𝑑

𝑑𝑥
𝐹𝑋|𝑁 𝑥 𝑛 if Pr 𝑁 = 𝑛 > 0.

Compare to PMF on p. 5.



Conditional Probability and Expectation

⟹ Pr 𝑎 ≤ 𝑋 < 𝑏,𝑁 = 𝑛 = න

𝑎

𝑏

𝑓𝑋|𝑁 𝑥 𝑛 𝑝𝑁 𝑛 𝑑𝑥

for 𝑎 < 𝑏 and where 𝑝𝑁 𝑛 = Pr{𝑁 = 𝑛}.

The law of total probability → 𝑓𝑋 𝑥 = 

𝑛=0

∞

𝑓𝑋|𝑁 𝑥 𝑛 𝑝𝑁 𝑛

For the function 𝑔 such that 𝐸 𝑔 𝑋 < ∞, the conditional 
expectation of 𝑔(𝑋) given that 𝑁 = 𝑛:

𝐸 𝑔 𝑋 𝑁 = 𝑛 = න𝑔 𝑥 𝑓𝑋|𝑁 𝑥 𝑛 𝑑𝑥

The law of total probability:

𝐸 𝑔 𝑋 = 

𝑛=0

∞

𝐸 𝑔 𝑋 𝑁 = 𝑛 𝑝𝑁 𝑛 = 𝐸{𝐸 𝑔 𝑋 𝑁 }



Conditional Probability and Expectation

The previous derivations show that the same rules apply for 
discrete and continuous variables, one only needs to use σ… 
or … , respectively. This is the basic interpretation of the 

Lebesque-Stieltjes integral 𝐼 = 𝑔 𝑥 𝑑𝑓(𝑥), where f 𝑥  is of 

bounded variation within the integration interval (see Lecture 
I: Random Variables). Remember, in computation you draw 
samples from 𝒇 to compute 𝑰; 𝒅𝒇 defines your (probability) 
measure. (Lecture II, p. 3.)

So, on the previous slide 𝑓𝑋|𝑁 𝑥 𝑛 𝑑𝑥 ≡ 𝑑𝑓𝑋|𝑁 is the 

probability measure for computing 𝐸 𝑔 𝑋 𝑁 = 𝑛 .



Suppose 𝑋1, … , 𝑋𝑛 are i.i.d. observations from the joint density 
𝑓(𝑥|𝜃1, … , 𝜃𝑘). The likelihood function is

𝐿 𝜃 𝒙 = 𝐿(𝜃1, … , 𝜃𝑘| 𝑥1, … , 𝑥𝑛) = ς𝑖=1
𝑛 𝑓 𝑥𝑖 𝜃1, … , 𝜃𝑘 .

More generally, when the 𝑋𝑖’s are not i.i.d., the likelihood is 
defined as the joint density 𝑓(𝑥1, … , 𝑥𝑛|𝜃). The value of 𝜃 = 𝜃 
at which 𝐿 𝜃 𝒙  attains its maximum with 𝒙 held fixed is the 
maximum likelihood estimator (MLE).

Likelihood

For the layman: 𝐿 𝜃 𝒙  gives the likelihood of parameter values 
𝜃 (of a hypothesised distribution) given the data 𝒙.
So, it is used when finding the optimal distribution for 
describing the data.



Likelihood

The log likelihood:

log 𝐿(𝛼 , 𝛽 𝑥1, … , 𝑥𝑛 = logෑ

𝑖=1

𝑛

𝑓 𝑥𝑖 𝛼, 𝛽 =

= −𝑛 log Γ 𝛼 − 𝑛𝛼 log𝛽 + (𝛼 − 1)

𝑖=1

𝑛

log 𝑥𝑖 −

𝑖=1

𝑛

Τ𝑥𝑖 𝛽 .

Solving for 
𝜕

𝜕𝛽
log 𝐿(𝛼 , 𝛽 𝑥1, … , 𝑥𝑛 = 0 yields the MLE of 𝛽,

መ𝛽 =

𝑖=1

𝑛
𝑥𝑖
𝑛𝛼

.

𝑓 𝑥 𝛼, 𝛽 =
1

Γ(𝛼)𝛽𝛼
𝑥𝛼−1𝑒−𝑥/𝛽 , where 𝛼 is known.

Example. Gamma MLE. i.i.d. observations 𝑋1, … , 𝑋𝑛 from the 
gamma density

For the layman: The most likely value for 
𝛽 given the data 𝒙.



Random Sums

In random sums the number of summands varies randomly.

𝑋 = 𝜉1 +⋯+ 𝜉𝑁 ,

where 𝑁 is random and 𝜉1, 𝜉2, … is a sequence of independent 
and identically distributed (i.i.d.) random variables. 𝑋 is 
taken as 0 when 𝑁 = 0.

Random sums arise frequently within stochastic processes 
(e.g. in queuing-type processes).

One often encounters conditional distributions of discrete (i.e. 
the random number of summands) and continuous variables in 
connection with random sums. 



Martingales
(Just for you to know…) An important class of stochastic 
processes is determined by them having the Martingale 
property. (These are dealt with  in MS-C2111 Stochastic 
Processes.)

Definition.
A stochastic process {𝑋𝑛; 𝑛 = 0,1, … } is a martingale if for 𝑛 = 0,1, …

and

(a) 𝐸[ 𝑋𝑛 ] < ∞

(b) 𝐸 𝑋𝑛+1 𝑋0, … , 𝑋𝑛 = 𝑋𝑛.

⟹ 𝐸{E 𝑋𝑛+1 𝑋0, … , 𝑋𝑛 } = E 𝑋𝑛 .

Using the total probability in the form

𝐸{E 𝑋𝑛+1 𝑋0, … , 𝑋𝑛 } = E 𝑋𝑛+1 ,

gives E[𝑋𝑛+1] = E[𝑋𝑛].

https://mycourses.aalto.fi/course/view.php?id=29635


Martingales
A martingale has constant mean

E 𝑋0 = E 𝑋𝑘 = E 𝑋𝑛 , for 𝑚 ≥ 𝑛.

The martingale equality (b) extends to future times:

𝐸 𝑋𝑚 𝑋0, … , 𝑋𝑛 = 𝑋𝑛 for 𝑚 ≥ 𝑛

Many important stochastic properties have the Martingale 
property, e.g. unbiased diffusion or random walk and 
gambler’s fortune (a concept of importance in the stock 
market). In “a game” (like finance) the property is related to 
“fairness” – unpredictability; chances are the same regardless 
of the past. 

“The conditional expectation of the next value in the sequence 
is equal to the present value, regardless of all prior values.“ 
(closely related to Markov property)



Markov Processes and 
Stochastic Models



Markov Chains

Some definitions
Stochastic process

A stochastic process is a random variable, which evolves 
through time.

Markov process

A Markov process {𝑋𝑡} is a stochastic process with the property 
that, given the value of 𝑋𝑡, the values of 𝑋𝑠 for 𝑠 > 𝑡 are not 
influenced by the values of 𝑋𝜇 for 𝜇 < 𝑡.

Online book, Ch 11.2.

In words, the probability of any particular future behaviour 
of the process, when its current state is known exactly, is not 
altered by additional knowledge concerning its past 
behaviour. So, Markov process is a memoryless process (see 
Lecture 1, p. 40).

https://www.probabilitycourse.com/chapter11/11_2_1_introduction.php


Markov Chains
To make the transition matrix notation as clear as possible, we first adapt 
the notation in ‘An Introduction to Stochastic Modeling’. Later, the notation 
varies slightly depending on the system, but we’ll make a due note of that.

Markov property:

Pr 𝑋𝑛+1 = 𝑗 𝑋0 = 𝑖0, … , 𝑋𝑛−1 = 𝑖𝑛−1, 𝑋𝑛 = 𝑖 = Pr{𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖}

for all time points 𝑛 and all states 𝑖0, … , 𝑖𝑛−1, 𝑖, 𝑗.

Common convention: label the Markov chain by the non-
negative integers {0, 1, 2, … }. “𝑋𝑛 is in state 𝒊”: 𝑋𝑛 = 𝑖, 𝑖 ∈
ℤ∗(={0}∪ ℤ+).

One-step transition probability = the probability of 𝑋𝑛+1 to be in 
state 𝑗 given that 𝑋𝑛 is in state 𝑖:

𝑃𝑖𝑗
𝑛,𝑛+1 = Pr{𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖}.

A discrete-time Markov chain: a Markov process whose state 
space is a finite or countable set and whose time index set is 𝑇 =
(0,1, 2, … ).



Markov Chains

In general, any transition probability may vary as a function 
of the time of the transition. To keep things clear, in what 
follows we deal with stationary transition probabilities 

(independent of the time variable 𝑛): 𝑃𝑖𝑗
𝑛,𝑛+1 = 𝑃𝑖𝑗 .

The Markov matrix or transition probability matrix of the process:

The 𝑖th row is the probability distribution of the states of 𝑋𝑛+1 
under the condition that 𝑋𝑛 = 𝑖. (Meaning, the probability of 
each available state at 𝑛 + 1, given that the state at 𝑛 is 𝑖.)



Markov Chains
Markov chains are visualised by state 
transition diagrams.

(Figure from the online book.)

Note that 
here the first 
state is 
labelled “1” –
instead of “0” 
that we’re 
using here.

https://www.probabilitycourse.com/chapter11/11_2_2_state_transition_matrix_and_diagram.php


Markov Chains

Clearly,
𝑃𝑖𝑗 ≥ 0 and σ𝑗=0

∞ 𝑃𝑖𝑗 = 1    for 𝑖 = 0, 1, 2, …

A Markov process is completely defined once its transition 
probability matrix and initial state 𝑋0 are specified.

These properties define the matrix as stochastic.

Note that σ𝑗=0
∞ 𝑃𝑖𝑗 = 1 is simply stating that the sum of 

probabilities of all transitions starting from any state 𝑖 equals 1. 
(This means that the rows of P sum to 1.)

If also the sum of probabilities of all transitions ending in any 
state 𝑗 equals 1, σ𝑖=0

∞ 𝑃𝑖𝑗 = 1 (the columns of P sum to 1), then 

the transition matrix P is said to be doubly stochastic. 



Markov Chains

Transition probability matrices of a Markov chain

The analysis of a Markov chain concerns mainly the 
calculation of the possible realisations of the process.

The n-step transition probability matrices: 𝐏(𝑛) = 𝑃𝑖𝑗
(𝑛)

.

𝑃𝑖𝑗
(𝑛)

= Pr{𝑋𝑚+𝑛 = 𝑗|𝑋𝑚 = 𝑖} 

= the probability the process goes from state 𝑖 to state 𝑗 in 𝑛 
transitions.

Theorem. The n-step transition probabilities of a Markov chain 

satisfy 𝑃𝑖𝑗
(𝑛)

= σ𝑘=0
∞ 𝑃𝑖𝑘𝑃𝑘𝑗

(𝑛−1)
, where we define 𝑃𝑖𝑗

(0)
= ቊ

1 if 𝑖 = 𝑗,
0 if 𝑖 ≠ 𝑗.

Note: A product of stochastic matrices is a stochastic matrix.



Markov Chains
This is matrix multiplication 𝐏(𝑛) = 𝐏 × 𝐏(𝑛−1).

By iteration, 𝐏(𝑛) = 𝐏 × 𝐏 ×⋯𝐏 = 𝐏𝑛.

So, the 𝑛-step transition probabilities 𝑃𝑖𝑗
(𝑛)

are the entries in the 

matrix 𝐏𝑛, the 𝑛th power of 𝐏.

Proof. The theorem can be proven via a first-step analysis, a 
breaking, or analysis, of the possible transitions on the first 
step, followed by an application of the Markov property:

𝑃𝑖𝑗
(𝑛)

= Pr 𝑋𝑛 = 𝑗 𝑋0 = 𝑖 = 

𝑘=0

∞

Pr{𝑋𝑛 = 𝑗, 𝑋1 = 𝑘|𝑋0 = 𝑖}

= 

𝑘=0

∞

Pr 𝑋1 = 𝑘 𝑋0 = 𝑖 Pr{𝑋𝑛 = 𝑗|𝑋0 = 𝑖, 𝑋1 = 𝑘}

= 

𝑘=0

∞

𝑃𝑖𝑘𝑃𝑘𝑗
(𝑛−1)

. ∎

Then, break the next step, 
and the next, and so on. 
Induction: that’s the proof.



Markov Chains

It follows that if the probability of the process initially being in 
state 𝑗 is 𝑝𝑗, i.e. the distribution law of 𝑋0 is Pr 𝑋0 = 𝑗 = 𝑝𝑗, 

then the probability of the process being in state 𝑘 at time 𝑛 is

𝑝𝑘
(𝑛)

=

𝑗=0

∞

𝑝𝑗𝑃𝑗𝑘
(𝑛)

= Pr 𝑋𝑛 = 𝑘 .

Note: Matrix P operates from the right, meaning that all vectors 
are row-vectors, not column-vectors like in almost any other 
field. This is the convention in stochastics.



Markov Chains

Just to make sure you understand how to do calculations with 
Markov matrices you might want to do a few exercises from 
Chapter 3 of ‘An Introduction to Stochastic Modeling’. (The 
answers are given at the end of the book.)
The online book serves this purpose just as well.

Note: You don’t need to write Markov chain algorithms 
using explicit matrices – although you may, of course. 
Just write the probabilities of states multiplied by 
transition probabilities (in a loop). This way you can 
also check that vectors in this context really need to be 
row vectors. 



Markov Chains

Markov Chain models

Markov chains are commonly used to model various stochastic 
processes in e.g. physics, biology, sociology and economics. 

‘An Introduction to Stochastic Modeling’ gives a few examples 
that are useful to go through. We do this for one:

An inventory model

A commodity is stocked. The replenishment of stock takes place 
at the end of periods labelled 𝑛 = 0, 1, 2, … . The total aggregate 
demand during period 𝑛 is a random variable 𝜉𝑛 whose 
distribution function is independent of 𝑛,

Pr 𝜉𝑛 = 𝑘 = 𝑎𝑘 for 𝑘 = 0, 1, 2, … ,where 𝑎𝑘 ≥ 0 and 

𝑘=0

∞

𝑎𝑘 = 1.



Markov Chains
Replenishment policy: If the end-of period stock quantity is not 
greater than 𝑠, an amount sufficient to increase the quantity of 
stock up to the level 𝑆 is procured. On the other hand, if the 
available stock is in excess of 𝑠, no replenishment is undertaken.  

𝑋𝑛 = the quantity on hand at the end of period 𝑛. 

The states of the process {𝑋𝑛}: 𝑆, 𝑆 − 1,… ,+1, 0, −1,−2,…, where 
negative values are interpreted as unfilled demand that will be 
satisfied immediately after restocking.

The inventory process {𝑋𝑛}:



Markov Chains

According to the inventory rules:

𝑋𝑛+1 = ቊ
𝑋𝑛 − 𝜉𝑛+1 if 𝑠 < 𝑋𝑛 ≤ 𝑆,
𝑆 − 𝜉𝑛+1 if 𝑋𝑛 ≤ 𝑠,

where 𝜉𝑛 is the quantity demanded in the 𝑛th period.

Assuming that the successive demands 𝜉1, 𝜉2, … are random 
variables, the stock values 𝑋0, 𝑋1, 𝑋2, … constitute a Markov 
chain whose transition probability matrix can be determined 
from

𝑃𝑖𝑗 = Pr 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖 = ቊ
Pr 𝜉𝑛+1 = 𝑖 − 𝑗 if 𝑠 < 𝑖 ≤ 𝑆,

Pr 𝜉𝑛+1 = 𝑆 − 𝑗 if 𝑖 ≤ 𝑠.

If they are  
independent, 
this an 
equilibrium 
assumption 
(no memory)



Markov Chains

To illustrate, consider a spare parts inventory in which either 
0, 1, or 2 repair parts are demanded and for which

Pr 𝜉𝑛 = 0 = 0.5, Pr 𝜉𝑛 = 1 = 0.4, Pr 𝜉𝑛 = 2 = 0.1, and 𝑠 =
0 and 𝑆 = 2. 

The possible values for 𝑋𝑛: 2, 1, 0, and − 1.

𝑃10 = Pr 𝑋𝑛+1 = 0 𝑋𝑛 = 1 :

When 𝑋𝑛 = 1, no replenishment ⇒ 𝑋𝑛+1 = 0, when 𝜉𝑛+1 = 1. 
This occurs with probability 𝑃10 = 0.4.

When 𝑋𝑛 = 0, replenishment to 𝑆 = 2 takes place ⇒ 𝑋𝑛+1 =
0, when 𝜉𝑛+1 = 2. This occurs with probability 𝑃00 = 0.1.



Markov Chains
Analysing each probability in this way, results in

-1       0       +1     +2

-1
0
+1
+2

For the inventory model the important quantities are e.g. the 
long-term fraction of periods in which demand is not met 

(𝑋𝑛 < 0) and long-term average inventory level; using 𝑝𝑗
(𝑛)

=

Pr{𝑋𝑛 = 𝑗}, these quantities are given by lim
𝑛→∞

σ𝑗<0 𝑝𝑗
(𝑛)

 and 

lim
𝑛→∞

σ𝑗>0 𝑝𝑗
(𝑛)

, respectively.

Typically, determining conditions under which 𝑝𝑗
(𝑛)

 stabilise 

and the limiting probabilities 𝜋𝑗 = lim
𝑛→∞

 𝑝𝑗
(𝑛)

 is of importance.

Pr 𝜉𝑛 = 0 = 0.5,
Pr 𝜉𝑛 = 1 = 0.4 
Pr 𝜉𝑛 = 2 = 0.1

← Start states 𝑋𝑛.

← End states 𝑋𝑛+1.



Markov Chains

The simplest models can be solved analytically. To obtain 
limiting values for more complicated models one has to do 
stochastic simulation, that is, do many Monte Carlo runs 
starting from the given 𝑋0 and compute the probabilities of 
different outcomes (distribution) of 𝑋𝑛 as the number of 
times different values of 𝑆 are obtained normalised by the 
total number of outcomes, e.g.
 

Pr 𝑆𝑖 =
#(𝑆𝑖)

σ𝑘=1
𝑁 #(𝑆𝑘)



Simple Stochastic Kinetics

As an example of a general process that is Markovian, let’s look 
at a process where objects (people, cars, particles) arrive at a 
point randomly. 

Here event times (arrival times) are governed by a stochastic 
process. 



Simple Stochastic Kinetics

Poisson Process

In a Poisson process with rate 𝜆 defined on interval 0, 𝑇
the inter-event times are 𝐸𝑥𝑝 𝜆 . To simulate: Initialise the 
process at time zero 𝑋0 = 𝑡0 = 0. Simulate 𝑡𝑘 ~ 𝐸𝑥𝑝 𝜆  and 
put 𝑋𝑘 = 𝑋𝑘−1 + 𝑡𝑘, where 𝑘 ∈ 1, 2, 3, … . Here 𝑡𝑘 is the 
time from the 𝑘 − 1 to the 𝑘th event. Stop when 𝑋𝑘 > 𝑇 and 
keep the 𝑋1, 𝑋2, … as the realisation of the process.

Online book, Ch 11.1.

https://www.probabilitycourse.com/chapter11/11_0_0_intro.php


Arrival Processes

The basic Poisson process is stationary. If events occur at a 
varying rate over time we have a … 

Nonstationary Poisson Process

For example, events in traffic depend on the time of day and 
the week day: rush hours, weekends, etc.

Definition: Let 𝑁(𝑎, 𝑏) be the number of events in the time 

interval 𝑎, 𝑏 , 𝑎 < 𝑏. Then 𝑁 𝑎, 𝑏 ~ 𝑃𝑜 
𝑎

𝑏
𝜆 𝑡 𝑑𝑡



Arrival Processes



Simple Stochastic Kinetics
The Poisson process is a point process. It is directly related to 
the corresponding counting process, where the process is 
defined via the number of events in a given time interval 
(0, 𝑡] as 𝑁𝑡 ~ 𝑃𝑜(𝜆𝑡) (𝜆 is the rate).

Stochastic simulations are often constructed by directly 
regarding them as counting processes rather than point 
processes.

Viewing Poisson as counting process, one needs to specify 
the smallest time interval ∆𝑡, or the resolution of time, at 
which the system is observed. So, in a simulation make 
trials for the event, accept with appropriate  probability 
(Poisson process), and increase time by ∆𝑡  after each 
attempt. Typically, one is interested in the mean and 
variance of inter-event times or times for a certain number 
of events to occur.
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