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Markov Chains and Stochastic Models

In what follows, the basis for doing Markov chain Monte 
Carlo simulations (MCMC) is given.  

We introduce the notation used by Wilkinson, which is better 
suited for continuous state spaces (at the end of this lecture). 
Accordingly, some stuff is restated in this notation.

The concepts of the following Markov chain part are necessary 
for understanding and justifying e.g. Hamiltonian MC 
method.

In what follows, Markov processes and stochastic models are 
dealt with in (i) discrete time and discrete state-space (ii) 
discrete time and continuous state-space (iii) continuous 
time and discrete state-space.



Markov Processes and 
Stochastic Models in 

Discrete Time and 
Discrete State-space



Markov Chains

Stationary distributions

A distribution is said to be a a stationary distribution of the 
homogeneous Markov chain governed by the matrix P if

𝑝 = 𝑝𝐏.

So, 𝑝 is a row eigenvector of the transition matrix with 
eigenvalue equal to 1.

If at some time 𝑛 we have 𝑝(𝑛) = 𝑝, then 𝑝(𝑛+1) = 𝑝(𝑛)𝐏 = 𝑝𝐏 = 𝑝.

Similarly, 𝑝(𝑛+𝑘) = 𝑝, ∀𝑘 ≥ 0. 

This is saying that, if a chain has a stationary distribution, it 
retains that distribution for all future time.
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Convergence

Convergence to a stationary distribution is a rather technical 
subject. We won’t go into that. Suffice it to say that one hopes to 
find the equilibrium distribution, i.e. a stationary distribution to 
which 𝑝 converges. Convincing oneself that a found stationary 
distribution is also the equilibrium distribution can be hard, to 
say the least.
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Finding a stationary state by MC means to a physicist or 
chemist finding an energy minimum and to a statistician finding 
maximum likelihood.

Detailed balance
At a stationary state the detailed balance holds:

𝑝𝑖𝑃𝑖𝑗 = 𝑝𝑗𝑃𝑗𝑖

If 𝒚 = 𝒇(𝒙) is 
proportional to 
the (potential) 
energy at 𝑥, then 
the likelihood for 
corresponding 
stationary 
distributions (of 
parameters) has 
maxima at the 
energy minima. 

In physics etc.:

𝑃𝑖𝑗 ∝ 𝑒−∆𝐸/𝑘𝐵𝑇  ← Boltzmann weight – everyone should know this.

∆𝐸
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In equilibrium there’s a stationary distribution: 

∆𝐸 𝐱A, 𝐱B  between certain states 𝐱A = 𝑥1
A, 𝑥2

A, …  and 

𝐱B = 𝑥1
B, 𝑥2

B, … is constant. The system (Markov 
chain) has reached a steady state and we are typically 
sampling states from a stationary distribution 
corresponding to the global or a local maximum 
likelihood / minimum energy.

The Boltzmann weight 𝑒−∆𝐸/𝑘𝐵𝑇 holds for all, i.e. also
large, ∆𝐸 (see the pic on the previous slide). The 
distributions in the two states can be very different and 
changing in time.
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Notation in Wilkinson’s book:

The set {𝜃 𝑡 |𝑡 = 0, 1, 2, … } is a discrete time stochastic 
process. The state space is such that 𝜃(𝑡) ∈ 𝑆, ∀𝑡, and may be 
discrete or continuous. (In lecture 3 and the other book 𝜃 
were parameters and 𝑋𝑛 were states.)

A Markov chain: For 𝐴 ⊆ 𝑆, 𝑡 = 0, 1, 2, … ,

P(𝜃 𝑡+1 ∈ 𝐴| 𝜃 𝑡 = 𝑥, 𝜃 𝑡−1 = 𝑥𝑡−1, … , 𝜃 0 = 𝑥0

= P 𝜃 𝑡+1 ∈ 𝐴 𝜃 𝑡 = 𝑥 , ∀𝑥, 𝑥𝑡−1, … , 𝑥0 ∈ 𝑆

In the case of no t dependence, P 𝜃 𝑡+1 ∈ 𝐴 𝜃 𝑡 = 𝑥 = P 𝑥, 𝐴 , ∀𝑡, 
and the Markov chain is homogeneous; the transition kernel P 𝑥, 𝐴  

(previously one-step transition probability 𝑃𝑖𝑗
𝑛,𝑛+1 = 𝑃𝑖𝑗) 

determines the behaviour of the chain. 

←  Yes, it’s frustrating. 
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Writing 𝑃 𝑥, 𝑦 = 𝑃(𝜃 𝑡+1 = 𝑦|𝜃 𝑡 = 𝑥), the stochastic 
transfer matrix becomes

𝑃 =
P(𝑥1, 𝑥1) ⋯ P(𝑥1, 𝑥𝑟)

⋮ ⋱ ⋮
P(𝑥𝑟 , 𝑥1) ⋯ P(𝑥𝑟 , 𝑥𝑟)

The 𝑖th row is the probability distribution of the values of 

𝜃 𝑡+1 under the condition that 𝜃 𝑡 = 𝑥𝑖 (note that here the index 
𝑖 starts from 1 whereas it started from 0 in the previous strictly 
discrete notation).

We denote: P(𝜃 𝑡 = 𝑥1) = 𝜋 𝑡 (𝑥1)

P(𝜃 𝑡 = 𝑥2) = 𝜋 𝑡 (𝑥2)

P(𝜃 𝑡 = 𝑥𝑟) = 𝜋 𝑡 (𝑥𝑟)

⋮
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→ As an 𝑟-dimensional row vector

𝜋(𝑡) = 𝜋(𝑡) 𝑥1 , 𝜋(𝑡) 𝑥2 , … , 𝜋(𝑡) 𝑥𝑟 .

The probability density at time 𝑡 + 1 can be computed as a 
total probability (old notation: Pr{∙} = P(∙)):

P 𝜃(𝑡+1) = 𝑥1 = P 𝑥1, 𝑥1 𝜋(𝑡) 𝑥1 + P 𝑥2, 𝑥1 𝜋(𝑡) 𝑥2 + ⋯

+P 𝑥𝑟 , 𝑥1 𝜋(𝑡) 𝑥𝑟

Similarly for P 𝜃(𝑡+1) = 𝑥2  etc. →

𝜋(𝑡+1) 𝑥1 , 𝜋(𝑡+1) 𝑥2 , … , 𝜋(𝑡+1) 𝑥𝑟 =

= 𝜋(𝑡) 𝑥1 , 𝜋(𝑡) 𝑥2 , … , 𝜋(𝑡) 𝑥𝑟 ×
P(𝑥1, 𝑥1) ⋯ P(𝑥1, 𝑥𝑟)

⋮ ⋱ ⋮
P(𝑥𝑟 , 𝑥1) ⋯ P(𝑥𝑟 , 𝑥𝑟)

⟺ 𝜋 𝑡+1 = 𝜋(𝑡)𝑃
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The way an MC simulation would proceed:

𝜋(2) = 𝜋(1)𝑃 = 𝜋(0)𝑃𝑃 = 𝜋(0)𝑃2

𝜋(1) = 𝜋(0)𝑃

⋮

𝜋(𝑡) = 𝜋(0)𝑃𝑡

So, if the one-step transition matrix is 𝑃, then the 𝑚-step 
transition matrix is 𝑃𝑚. 

Also,  the (m + n)-step transition matrix is 𝑃𝑚𝑃𝑛 = 𝑃𝑚+𝑛.

The set of linear equations corresponding to the above 
statement are called the Chapman-Kolmogorov equations.
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Derivation of Chapman-Kolmogorov equations 

Define 𝑃(𝑛) to be the 𝑛-step transition matrix with elements 𝑝𝑖𝑗(𝑛).

Due to the theorem of total probability,

𝑝𝑖𝑗 𝑚 + 𝑛 = P 𝜃(𝑚+𝑛) = 𝑗|𝜃 0 = 𝑖

= 

𝑘=1

𝑟

P 𝜃(𝑚+𝑛) = 𝑗|𝜃 𝑚 = 𝑘 P 𝜃(𝑚) = 𝑘|𝜃 0 = 𝑖

⟺ 𝑝𝑖𝑗 𝑚 + 𝑛 = 

𝑘=1

𝑟

𝑝𝑘𝑗 𝑛 𝑝𝑖𝑘 𝑚 .

Chapman-Kolmogorov equations

Typically in the literature, Einstein’s convention is used:

⟺ 𝑝𝑖𝑗 𝑚 + 𝑛 = 

𝑘=1

𝑟

𝑝𝑖𝑘 𝑚 𝑝𝑘𝑗 𝑛 = 𝑝𝑖𝑘 𝑚 𝑝𝑘𝑗 𝑛 .

Two identical indices 
are always summed 
over. 
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Stationary distributions

𝜋 = 𝜋𝑃 is a row eigenvector of 𝑃 with corresponding 
eigenvalue 𝜆 = 1 (and a fixed point of the linear map induced 
by 𝑃).

𝜋(𝑛+1) = 𝜋(𝑛)𝑃 = 𝜋𝑃 = 𝜋, or 𝜋(𝑛+𝑘) = 𝜋, ∀𝑘.

Since, 𝜋 = 𝜋𝑃 ⟺ 𝜋 − 𝜋𝑃 = 0,

the stationary distribution can be solved from 𝜋 𝐼 − 𝑃 = 0.
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Convergence

… in this notation: lim
𝑡→∞

𝜋(𝑡) = 𝜋 (for 𝑡 discrete or continuous).

Since 𝜋 = 𝜋𝑃 is a row eigenvector of 𝑃, there is a corresponding 
eigenvalue 𝜆: 𝜋𝑃 = 𝜆𝜋 ⇒ 𝜋𝑃𝑡 = 𝜆𝑡𝜋.

For a stochastic matrix 𝑃, 𝜆 ≤ 1 (row elements sum to 1). → 
Distributions 𝜋(𝑡) converge as 𝑡 grows (exponential 
propagation ~𝑒|𝜆|𝑡).
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Some Important Properties and Special Cases

Reversibility and Detailed Balance

If 𝜃(0), 𝜃(1), … , 𝜃(𝑁) is a Markov chain, then so is 

𝜃(𝑁), 𝜃(𝑁−1), … , 𝜃 0 . (For proof, see Wilkinson, 
5.2.5.)

The transition kernel for the reversed chain:

P𝑡
∗ 𝑥, 𝑦 = P 𝜃(𝑡) = 𝑦|𝜃 𝑡+1 = 𝑥

=
P 𝜃(𝑡+1) = 𝑥|𝜃 𝑡 = 𝑦 P 𝜃(𝑡) = 𝑦

P 𝜃(𝑡+1) = 𝑥

=
P 𝑦, 𝑥 𝜋(𝑡)(𝑦)

𝜋(𝑡+1)(𝑥)
.

(Bayes Theorem)

→ The reversed chain is, in general,
not homogeneous, that is, transition 
probabilities depend on time.
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P∗ 𝑥, 𝑦 =
P 𝑦, 𝑥 𝜋(𝑦)

𝜋(𝑥)
.

However, in equilibrium 𝜋 𝑡+1 𝑥 = 𝜋 𝑡 𝑥 = 𝜋, so

→ In equilibrium (the distribution has reached 
equilibrium) the reversed chain is homogeneous.

If 𝑷∗ 𝒙, 𝒚 = 𝑷 𝒙, 𝒚 , ∀𝒙, 𝒚, then the chain is said to be (time) 
reversible. In equilibrium (stationarity), for reversible chains 
detailed balance holds:

𝜋 𝑥 P 𝑥, 𝑦 = 𝜋 𝑦 P 𝑦, 𝑥 , ∀𝑥, 𝑦.

Detailed balance states the symmetry in the flow of 
probability between two states: Probability of a transition from 
𝑥 to 𝑦 = probability of a transition from 𝑦 to 𝑥 ∀(𝑥, 𝑦).
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If detailed balance holds, then stationarity and reversibility hold 
for the Markov chain.

Proof.

𝜋 𝑥 P 𝑥, 𝑦 = 𝜋 𝑦 P 𝑦, 𝑥 , ∀𝑥, 𝑦.

Summing over 𝑥,



𝑥

𝜋 𝑥 P 𝑥, 𝑦 = 

𝑥

𝜋 𝑦 P 𝑦, 𝑥 = 𝜋 𝑦 

𝑥

P 𝑦, 𝑥 = 𝜋 𝑦 , ∀𝑦

⟺ 𝜋P = 𝜋. (The chain has a stationary distribution.)

Then as 𝜋 𝑥 = 𝜋 𝑦 : 𝜋 𝑥 P 𝑥, 𝑦 = 𝜋 𝑦 P 𝑦, 𝑥
⟺ P 𝑥, 𝑦 = P 𝑦, 𝑥 , ∀𝑥, 𝑦. (The chain is reversible.)
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So, summing up the things stated of the relation between the 
three properties of a Markov chain:

detailed balance  stationarity & reversibility.

Think about these conditions a bit: for example, the order 
of strictness.
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Stochastic simulation and analysis

An MC simulation of a Markov chain proceeds as:

1. A transition matrix is given or deduced for the system.

Simulation of a Markov chain = simulation of a new state 
randomly, when probabilities are given by a probability vector 
𝑝. 

2. The initial distribution 𝜋(0) = 𝜋(0) 𝑥1 , 𝜋(0) 𝑥2 , … , 𝜋(0) 𝑥𝑟  

is given.

3. Sample an initial state 𝜃(0) from 𝜋(0) using a lookup method. 

4. Sample the state for 𝜃(𝑡) using the set of probabilities 
from the 𝜃(𝑡−1)th row of 𝑃 for 𝑡 = 1, 2, …                   

(P 𝜃(𝑡) = 𝑥𝑖 = 𝜋(𝑡) 𝑥𝑖 , 𝑖 ∈ [1, 𝑟], and 𝜋(𝑡) = 𝜋(𝑡−1)𝑃).
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A layman’s statement on simulations of a Markov process:

When the distribution changes in time, which means the system 
is out of equilibrium and the states are non-stationary, one can 

simulate starting from an initial distribution 𝜋(0) simply using 
𝜋(𝑡) = 𝜋(𝑡−1)𝑃 to explore how (and if) the system approaches 
equilibrium. In some cases there may be several equilibrium 
states and where one ends up depends on 𝜋(0). This is the 
“dynamical aspect”.

When we are in the stationary (that may be an equilibrium) 
state, we are interested in sampling different realisations of the 
distribution in that state. Then we apply the method outlined on 
the previous slide. In order to reach the stationary state, we may 
first do the above procedure sufficiently long so that 𝜋(𝑡) → 𝜋. 
Then we can use 𝜋(0) = 𝜋 to start sampling 𝜃(𝑡). (Continues →)
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Sampling 𝜃(𝑡) for a Markov process means doing Monte Carlo 
using the probabilities in the 𝜃(𝑡−1)th row of 𝑃. (This means the 

row corresponding the value 𝜃 𝑡−1 = 𝑥; the 𝑥th row includes 

transition probabilities from 𝑥 to all states (P 𝑥, 𝑦 = P൫

൯

𝜃(𝑡) =

𝑦|𝜃 𝑡−1 = 𝑥 ). 



Markov Processes and 
Stochastic Models in 

Discrete Time and 
Continuous State-space
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Markov chains with continuous state-spaces
(still discrete time)

When, for example, sampling from continuous distributions 
using a Markov chain (MCMC), one is working with a 
continuous state-space.

A commonly used model for such simulations in time-series 
analysis is the first-order auto-regressive model, AR(1).

The model for an AR(1) process 𝑍𝑡|𝑡 = 1, 2, … can be 
summarised as

𝑍𝑡 = 𝛼𝑍𝑡−1 + 𝜖𝑡 , 𝜖𝑡~ 𝑁 0, 𝜎2 .

This means: The value of the stochastic process at time 𝑡, 𝑍𝑡, 
depends on the value of the the stochastic process at time 𝑡 − 1. 
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The non-deterministic part of the AR(1) process is given by 
the noise term 𝜀𝑡. The noise process 𝜖𝑡|𝑡 = 1, 2, …  is assumed 
to be independent: the pair of random quantities 𝜀𝑖 and 𝜀𝑗 are 

independent of one another ∀𝑖 ≠ 𝑗. 

(Higher-order AR-models are not Markov chains, e.g. AR(2):
𝑍𝑡 = 𝛼𝑍𝑡−1 + 𝛽𝑍𝑡−2 + 𝜖𝑡 , 𝜖𝑡~ 𝑁 0, 𝜎2 . )

The conditional distribution of 𝑍𝑡 given 𝑍𝑡−1 = 𝑧𝑡−1:

𝑍𝑡| 𝑍𝑡−1 = 𝑧𝑡−1 ~ 𝑁 𝛼𝑧𝑡−1, 𝜎2

AR(1) is a Markov chain and its state-space 𝑆 = ℝ (continuous).

(The mean of the 
Gaussian changes.)
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Transition kernels

For a homogeneous chain, define P 𝑥, 𝐴 = P 𝜃(𝑡+1) ∈ 𝐴|𝜃 𝑡 = 𝑥 .

P 𝑥, 𝑦 = 0 for continuous state-spaces → define

P 𝑥, 𝑦 = P 𝜃(𝑡+1) ≤ 𝑦|𝜃 𝑡 = 𝑥

= P 𝜃(1) ≤ 𝑦|𝜃 0 = 𝑥 ,  ∀𝑥, 𝑦 ∈ 𝑆.

This is a conditional cumulative distribution function (CDF) 
and distributional form of the transition kernel.

The corresponding conditional density defines the density form 
of the transition kernel (useful in cases of multiple dimensions, 
e.g. 𝑆 ⊆ ℝ𝑛):

𝑝 𝑥, 𝑦 =
𝜕

𝜕𝑦
P 𝑥, 𝑦 = 𝑝(𝑦|𝑥), 𝑥, 𝑦 ∈ 𝑆.
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Example

AR(1): 𝜃(𝑡+1) = 𝛼𝜃(𝑡) + 𝜖𝑡 , 𝜖𝑡 ~ 𝑁 0, 𝜎2

⇒ 𝜃 𝑡+1 |𝜃 𝑡 = 𝑥 ~ 𝑁 𝛼𝑥, 𝜎2

⇒ 𝑝 𝑥, 𝑦 =
1

𝜎 2𝜋
exp −

1

2

𝑦 − 𝛼𝑥

𝜎

2

Transition kernel

(density for 𝑦 for a given fixed value of 𝑥)
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Stationarity and reversibility

The state 𝜃(𝑡) is a realisation from the probability density 

function 𝜋 𝑡 𝑥 , 𝑥 ∈ 𝑆. Total probability:

𝜋 𝑡+1 𝑦 = න
𝑆

𝑝 𝑥, 𝑦 𝜋 𝑡 𝑥 𝑑𝑥

For the stationary distribution,

𝜋 𝑦 = න
𝑆

𝑝 𝑥, 𝑦 𝜋 𝑥 𝑑𝑥

The transition density for the reversed chain (from Bayes)

𝑝𝑡
∗ 𝑥, 𝑦 =

𝑝(𝑦, 𝑥)𝜋 𝑡 (𝑦)

𝜋 𝑡+1 (𝑥)

referring back to Lecture 2,
here 𝑥 is the given variable 
over which we integrate to 
get marginal 𝜋(𝑦)

←
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… homogenises in the stationary limit

𝑝∗ 𝑥, 𝑦 =
𝑝 𝑦, 𝑥 𝜋(𝑦)

𝜋(𝑥)
.

→ Again, for a (time) reversible chain, (the continuous form) of 
the detailed balance equations hold:

𝜋 𝑥 𝑝 𝑥, 𝑦 = 𝜋 𝑦 𝑝 𝑦, 𝑥 , ∀𝑥, 𝑦 ∈ 𝑆.

Integrating both sides of the detailed balance condition gives 
𝜋 𝑦 = 

𝑆
𝑝 𝑥, 𝑦 𝜋 𝑥 𝑑𝑥 → Any homogeneous Markov chain 

satisfying detailed balance is reversible with stationary 
distribution 𝝅 ∙ .
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Stochastic simulation and analysis

1. Sample 𝜃(0) from 𝜋 0 (∙) using an appropriate method.

2. Simulate (the realisation) 𝜃(𝑡+1) from 𝑝 𝜃(𝑡),∙  for 𝑡 = 1, 2, … 

using one of the standard techniques. (So, accept 𝜃(𝑡+1) 

according to P 𝑥, 𝑦 = 𝑃 𝜃(𝑡+1) ≤ 𝑦|𝜃 𝑡 = 𝑥 .)

Computing P 𝑥, 𝑦  is not trivial. For the normal distribution, 
Python has in the library scipy.stats norm.cdf(𝑥) that computes 
the value of CDF for the value 𝑥 for the standard normal 
distribution 𝑁(0, 1). CDF for 𝑁(𝜇, 𝜎2) can then be computed 

using 𝐹 𝑥 = Φ
𝑥−𝜇

𝜎
, where 𝐹(∙) is CDF of 𝑁(𝜇, 𝜎2) and Φ(∙) 

is CDF of 𝑁(0, 1).



Markov Chains in 
Continuous Time and 
Discrete State-space 

(the last variation of Markov chains)

A Markov Chain 
Gang clearly with 
no memory of how 
they got to the 
present state:
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Markov Chains in Continuous Time

Let’s state how the Markov chains are constructed in continuous 
time.

Markov process in continuous time:

P 𝑋 𝑡 + 𝑑𝑡 = 𝑥| 𝑋 𝑡 = 𝑥 𝑡 𝑡 ∈ 0, 𝑡 =
= P 𝑋 𝑡 + 𝑑𝑡 = 𝑥|𝑋 𝑡 = 𝑥(𝑡) , ∀𝑡 ∈ 0, ∞ , 𝑥 ∈ 𝑆.

Finite state-space

The process can take on one of 𝑟 states, 𝑆 = {1, 2, … , 𝑟}.

Online book, Ch 11.3

https://www.probabilitycourse.com/chapter11/11_3_1_introduction.php
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If at time 𝑡 the process is in state 𝑥 ∈ 𝑆, its future behaviour can 
be characterised by the transition kernel

𝑝 𝑥, 𝑡, 𝑥′, 𝑡′ ≡ 𝑃 𝑋 𝑡 + 𝑡′ = 𝑥′|𝑋 𝑡 = 𝑥 .

If this function does not depend explicitly on 𝑡, the process is 
said to be homogeneous and the kernel can be written 
𝑝 𝑥, 𝑥′, 𝑡′ . For each value of 𝑡′ this kernel can be expressed as 
an 𝑟 × 𝑟 transition matrix, 𝑃 𝑡′ . (𝑃 0 = 𝐼.)

Just as in the discrete time case

𝑃 𝑡 + 𝑡′ = 𝑃 𝑡 𝑃 𝑡′ = 𝑃 𝑡′ 𝑃 𝑡

Chapman-Kolmogorov equations:

𝑝 𝑖, 𝑗, 𝑡 + 𝑡′ = 

𝑘=1

𝑟

𝑝 𝑖, 𝑘, 𝑡 𝑝 𝑘, 𝑗, 𝑡′ , 𝑖, 𝑗 = 1, … , 𝑟.
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Define the transition rate matrix 𝑄 as a derivative of 𝑃 𝑡′  at 𝑡′

𝑄 =
𝑑

𝑑𝑡′
𝑃 𝑡′ |𝑡′=0 = lim

𝛿𝑡→0

𝑃 𝛿𝑡 − 𝑃(0)

𝛿𝑡
= lim

𝛿𝑡→0

𝑃 𝛿𝑡 − 𝐼

𝛿𝑡
.

The elements of 𝑄 give the “hazards” of moving to different states.

→ The infinitesimal transition matrix

𝑃 𝑑𝑡 = 𝐼 + 𝑄𝑑𝑡.

→ The stationary distribution 𝜋:

𝜋𝑃 𝑑𝑡 = 𝜋

𝜋 𝐼 + 𝑄𝑑𝑡 = 𝜋

𝜋𝑄 = 0.

⇒ 𝑃 𝑡 + 𝑑𝑡 = 𝑃 𝑑𝑡 𝑃 𝑡 = [𝐼 + 𝑄𝑑𝑡]𝑃(𝑡).
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𝑑

𝑑𝑡
𝑃 𝑡 =

𝑃 𝑡 + 𝑑𝑡 − 𝑃(𝑡)

𝑑𝑡
=

𝑃 𝑑𝑡 𝑃 𝑡 − 𝑃(𝑡)

𝑑𝑡

=
𝑃 𝑑𝑡 − 𝐼

𝑑𝑡
𝑃 𝑡 = 𝑄𝑃 𝑡 .

⇒
𝑑

𝑑𝑡
𝑃 𝑡 = 𝑄𝑃 𝑡 ; the initial condition 𝑃 0 = 𝐼.

⇒ 𝑃 𝑡 = exp 𝑄𝑡 = σ𝑘=0
∞ 1

𝑘!
(𝑄𝑡)𝑘, where (𝑄𝑡)0≡ 𝐼. (exp{∙} is 

the matrix exponential function, see e.g. Golub & van Loan: 
Matrix Computations. But forget about it, because...)

We can avoid working with differential equations in matrix 
form by writing in the component form Kolmogorov’s backward 
equations:

𝑑

𝑑𝑡
𝑝 𝑖, 𝑗, 𝑡 = 

𝑘=1

𝑟

𝑞𝑖𝑘𝑝 𝑘, 𝑗, 𝑡 , 𝑖, 𝑗 = 1, 2, … , 𝑟.
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Had we expanded 𝑃(𝑡 + 𝑑𝑡) as 𝑃 𝑡 𝑃(𝑑𝑡) rather than 
𝑃 𝑑𝑡 𝑃(𝑡), we would have ended up with

𝑑

𝑑𝑡
𝑃 𝑡 = P t Q

𝑑

𝑑𝑡
𝑝 𝑖, 𝑗, 𝑡 = 

𝑘=1

𝑟

𝑞𝑘𝑗𝑝 𝑖, 𝑘, 𝑡 , 𝑖, 𝑗 = 1, 2, … , 𝑟.

⟹ Kolmogorov’s forward equations:
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Example

A simple model for the activation of a single prokaryotic 
gene. The gene will be activated unless a repressor protein is 
bound to its regulatory region. Two states: state 0 (inactive) 
and state 1 (active). (→ The state vector is (0 1).)

In the inactive state there’s a a constant hazard of 𝛼 > 0 for 
activation.
In the active state there’s a a constant hazard of 𝛽 > 0 for 
inactivation.

The rows of 𝑄 must sum to zero → 𝑄 =
−𝛼 𝛼
𝛽 −𝛽

Solving 𝜋𝑄 = 0 gives the stationary distribution

𝜋 =
𝛽

𝛼 + 𝛽
,

𝛼

𝛼 + 𝛽
. (𝜋 is a PDF, so obviously σ𝑖 𝜋𝑖 = 1.)

hazards
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The infinitesimal transition matrix

𝑃 𝑑𝑡 = 𝐼 + 𝑄𝑑𝑡 =
1 − 𝛼𝑑𝑡 𝛼𝑑𝑡

𝛽𝑑𝑡 1 − 𝛽𝑑𝑡
.

This process is also known as the telegraph process that can 
form a basis for a simple model of ion channels.

In summary: When solving for stationary distribution, use 
𝜋𝑄 = 0, and σ𝑖 𝜋𝑖 = 1, and that elements on each row of 𝑄 
must sum to zero.
The last bit comes from the fact that the elements on row 𝑖 of 
𝑄 give all transition probabilities per time 𝒅𝒕 from state to 𝑖 
to all other states. In other words, the elements in 𝑄 are 
transition rates (velocities).
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To get the stationary distribution you need to also use 
Kolmogorov’s (backward) eqs. 
𝑑

𝑑𝑡
𝑃 𝑡 = 𝑄𝑃 𝑡 . Solving from this, e.g. , notation 𝑝 𝑖, 𝑗, 𝑡  = 

𝑃𝑖𝑗 𝑡 . 
𝑑

𝑑𝑡
𝑃00 𝑡 = −𝛼𝑃00 𝑡 + 𝛽𝑃01 𝑡  and 𝑃01 𝑡 = 1 − 𝑃00 𝑡

⇒
𝑑

𝑑𝑡
𝑃00 𝑡 = 𝛽 − (𝛼 + 𝛽)𝑃00 𝑡 . 

Then let 𝑄00 𝑡 = 𝑒 𝛼+𝛽 𝑡𝑃00 𝑡 …

The following drill is just to show you how tedious even 
simple exact calculations for MC models are.
If you don’t like it, put it in your pipe and smoke it (meaning, 
you can skip it).
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From the previous eqs, the stationary state: 

lim
𝑡→∞

𝑃11 𝑡 = 𝜋1 =
𝛼

𝛼 + 𝛽

lim
𝑡→∞

𝑃00 𝑡 = 𝜋0 =
𝛽

𝛼 + 𝛽

⇒ 𝜋 =
𝛽

𝛼 + 𝛽
,

𝛼

𝛼 + 𝛽

Conclusion: it makes sense to simulate & compute the 
expectation values numerically. 

By symmetry,

𝑃11 𝑡 =
𝛼

𝛼+𝛽
+

𝛽

𝛼+𝛽
 𝑒− 𝛼+𝛽 𝑡,

𝑃10 𝑡 =
𝛽

𝛼+𝛽
−

𝛽

𝛼+𝛽
 𝑒− 𝛼+𝛽 𝑡.

For details, see ISM, 
Chapter 6.3.3. – if 
interested.

Finally, 𝑄00 𝑡 =
𝛽

𝛼+𝛽
𝑒 𝛼+𝛽 𝑡 +

𝛼

𝛼+𝛽
, and

𝑃00 𝑡 =
𝛽

𝛼+𝛽
+

𝛼

𝛼+𝛽
 𝑒− 𝛼+𝛽 𝑡. 

𝑃01 𝑡 = 1 − 𝑃00 𝑡 =
𝛼

𝛼+𝛽
−

𝛼

𝛼+𝛽
 𝑒− 𝛼+𝛽 𝑡.
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Stochastic Simulation

Given the infinitesimal transition matrix 𝑃 𝑑𝑡 = 𝐼 + 𝑄𝑑𝑡, we 
have for small time steps ∆𝑡

     𝑃 ∆𝑡 ≈ 𝐼 + 𝑄∆𝑡.

𝑃(∆𝑡) is regarded as the transition matrix of a discrete time 
Markov chain → simulated sequence at times 
0, ∆𝑡, 2∆𝑡, 3∆𝑡, …

Precision can be improved by using the exact value

𝑃 ∆𝑡 = exp 𝑄Δ𝑡 .

Δ𝑡 must be chosen sufficiently small for not to miss 
interesting transitions.

(We started from 
𝑑

𝑑𝑡
𝑃 𝑡 = 𝑄𝑃 𝑡 ; 𝑃 0 = 𝐼.)
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Discrete event simulation

The process is currently in state 𝑥 → the 𝑥th row of 𝑄 gives the 
hazards for the transitions to other states. The row sums to 
zero → −𝑞𝑥𝑥 gives the combined hazard for moving away 
from the current state (𝑞𝑥𝑥 is non-positive) → the time to a 
transition event is exponential with rate −𝑞𝑥𝑥.  (−𝑞𝑥𝑥 = the 
sum of the off-diagonal elements of the 𝑥th row.) 

When this transition event occurs, the new state will be 
random with probabilities proportional to the 𝑥th row of 𝑄.

The examples to follow show the principles on constructing 
efficient algorithms for stochastic simulation (of systems in 
continuous time).
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Consider the probability that the next event will be in the time 
interval (𝑡 + 𝑡′, 𝑡 + 𝑡′ + 𝑑𝑡] and will consist of a move to state 
𝑗. Let  this probability divided by 𝑑𝑡 be 𝑓 𝑡′, 𝑗 𝑡, 𝑖 . The 
probability 𝑓 𝑡′, 𝑗 𝑡, 𝑖 𝑑𝑡:

𝑓 𝑡′, 𝑗 𝑡, 𝑖 𝑑𝑡 = P Next event in 𝑡 + 𝑡′, 𝑡 + 𝑡′ + 𝑑𝑡 𝑡, 𝑖
× P(𝑗|Next event in 𝑡 + 𝑡′, 𝑡 + 𝑡′ + 𝑑𝑡 , 𝑡, 𝑖)

The first term: the hazards for the individual transitions are 
given by the off-diagonal elements of the 𝑖th row of Q; the 
combined hazard is −𝑞𝑖𝑖. (The probability of two events 
occurring in the interval 𝑡, 𝑡 + 𝑑𝑡  is 𝑂 𝑑𝑡2 and can be 
neglected, 𝑑𝑡 ≪ 1. )
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The time to the next event is 𝐸𝑥𝑝 −𝑞𝑖𝑖  → the first term is 

−𝑞𝑖𝑖𝑒𝑞𝑖𝑖𝑡′
𝑑𝑡.

The second term is

𝑃 𝑋 𝑡 + 𝑡′ + 𝑑𝑡 = 𝑗|[𝑋 𝑡 + 𝑡′ = 𝑖] ∩ [𝑋 𝑡 + 𝑡′ + 𝑑𝑡 ≠ 𝑖]

=
𝑃 𝑋 𝑡 + 𝑡′ + 𝑑𝑡 = 𝑗|𝑋 𝑡 + 𝑡′ = 𝑖

𝑃 𝑋 𝑡 + 𝑡′ + 𝑑𝑡 ≠ 𝑖|𝑋 𝑡 + 𝑡′ = 𝑖
=

𝑞𝑖𝑗𝑑𝑡

σ𝑘≠𝑖 𝑞𝑖𝑘𝑑𝑡
=

𝑞𝑖𝑗

−𝑞𝑖𝑖
.

The first term times the second term:

𝑓 𝑡′, 𝑗|𝑡, 𝑖 = −𝑞𝑖𝑖𝑒𝑞𝑖𝑖𝑡′
×

𝑞𝑖𝑗

−𝑞𝑖𝑖

This is saying that 𝑗 ≠ 𝑖, so it has no 
redundancy with 𝑋 𝑡 + 𝑡′ + 𝑑𝑡 = 𝑗

      ↓
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𝒇 𝒕′, 𝒋|𝒕, 𝒊  factorises into the form of a probability density for 
the time to the next event and a probability mass function for 
the type of that event. → The next event can be simulated with 
the generation of two random variables. In addition the two 
random variates can be simulated independently. →

The standard discrete event simulation:
1. Initialise the process at 𝑡 = 0 with initial state 𝑖.
2. Call the current state 𝑖. Simulate the time to the next event, 

𝑡′, as an 𝐸𝑥𝑝 −𝑞𝑖𝑖  random quantity.
3. Put 𝑡 ≔ 𝑡 + 𝑡′.
4. Simulate new state 𝑗 as a discrete random quantity with 

PMF −𝑞𝑖𝑗/𝑞𝑖𝑖 , 𝑗 ≠ 𝑖.

5. Output the time 𝑡 and state 𝑗.
6. If 𝑡 < 𝑇𝑚𝑎𝑥, return to step 2.
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(In the figure, 1 corresponds to state 0 and 2 corresponds to state
1.)
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Countable state-space; immigration-death process

The model: Individuals arrive into the population with 
constant hazard 𝜆. Each individual dies independently with 
constant hazard 𝜇. There is no reproduction.
The key transition equations:
(write down all possible transitions)

𝑃 𝑋 𝑡 + 𝑑𝑡 = 𝑥 + 1|𝑋 𝑡 = 𝑥 = 𝜆𝑑𝑡

𝑃 𝑋 𝑡 + 𝑑𝑡 = 𝑥 − 1|𝑋 𝑡 = 𝑥 = 𝑥𝜇𝑑𝑡

𝑃 𝑋 𝑡 + 𝑑𝑡 = 𝑥|𝑋 𝑡 = 𝑥 = 1 − (𝜆 + 𝑥𝜇)𝑑𝑡

𝑃 𝑋 𝑡 + 𝑑𝑡 = 𝑦|𝑋 𝑡 = 𝑥 = 0, ∀𝑦 ∉ 𝑥 − 1, 𝑥, 𝑥 + 1 .

These equations define a homogeneous Markov process 
with infinite state-space 𝑆 = 0, 1, 2, …

(To make sense, it 
must be that 𝜇 = 𝑐/𝑥, 
where c is a constant. 
Only then is this a 
homogeneous 
Markov process.)
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It is straightforward to write down the infinite-dimensional 𝑄 
matrix (tridiagonal form):

The (infinite dimensional) stationary distribution 𝜋 =
𝜋0, 𝜋1, 𝜋2, … :

𝜋𝑄 = 0 ⇒ 𝜋𝑘 =
𝜆𝑘

𝑘! 𝜇𝑘
𝜋0, 𝑘 = 1, 2, …
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The terms are of the expansion 𝜋0𝑒𝜆/𝜇 . Imposing the unit-sum 
constraint, 𝜋0 = 𝑒−𝜆/𝜇, so

𝜋𝑘 =
( Τ𝜆 𝜇)𝑘

𝑘!
𝑒−𝜆/𝜇 , 𝑘 = 1, 2, …

So, the stationary distribution of this process is a Poisson 
random quantity with mean Τ𝜆 𝜇.

The process can be simulated by discrete event simulation.
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Inhomogeneous Poisson process

In the previous homogeneous (stationary) Poisson process 
the event hazard 𝝀 is constant.

Previously, 𝑁𝑡 was defined as the number of events of the 
Poisson process in the interval (0, 𝑡]; 𝑁𝑡~𝑃𝑜(𝜆𝑡). 

This counting process is a Markov process governed by the 
homogeneous Markovian transition equations 

𝑃 𝑁𝑡+𝑑𝑡 = 𝑥 + 1 𝑁𝑡 = 𝑥 = 𝜆𝑑𝑡

𝑃 𝑁𝑡+𝑑𝑡 = 𝑥 𝑁𝑡 = 𝑥 = 1 − 𝜆𝑑𝑡

𝑃 𝑁𝑡+𝑑𝑡 = 𝑦 𝑁𝑡 = 𝑥 = 0, ∀𝑦 ∉ 𝑥, 𝑥 + 1 .

→ The process 𝑁𝑡 is a counting process.
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Poisson process can be generalised such that the event hazard 
is not a constant but a function 𝜆(𝑡). → The probability of an 
event in the interval (𝑡, 𝑡 + 𝑑𝑡] is 𝜆 𝑡 𝑑𝑡.

The inhomogeneous Markovian transition equations for the 
associated counting process 𝑁𝑡 are

𝑃 𝑁𝑡+𝑑𝑡 = 𝑥 + 1 𝑁𝑡 = 𝑥 = 𝜆(𝑡)𝑑𝑡

𝑃 𝑁𝑡+𝑑𝑡 = 𝑥 𝑁𝑡 = 𝑥 = 1 − 𝜆(𝑡)𝑑𝑡

𝑃 𝑁𝑡+𝑑𝑡 = 𝑦 𝑁𝑡 = 𝑥 = 0, ∀𝑦 ∉ 𝑥, 𝑥 + 1 .
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Since for a sufficiently small interval (𝑡, 𝑡 + 𝑑𝑡] 𝝀 𝒕  is 
constant, the number of events in that interval is 
approximately Poisson ~𝑃𝑜(𝜆 𝑡 𝑑𝑡), independent of all 
other intervals.

→ The number of events in the interval 0, 𝑡 , 𝑁𝑡 is the sum 
(integral) over all intervals.

The sum of independent Poisson processes is a Poisson 
process: 

𝑁𝑡 ~ 𝑃𝑜 න
0

𝑡

𝜆 𝑠 𝑑𝑠 = 𝑃𝑜 Λ(𝑡) ,

where Λ 𝑡 = 
0

𝑡
𝜆 𝑠 𝑑𝑠 is the cumulative hazard.

The number of events in the interval 𝑠, 𝑡 , 0 < 𝑠 < 𝑡 is 

𝑃𝑜 Λ 𝑡 − Λ 𝑠 .
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Time-change of a Poisson process

To illustrate, take a unit Poisson process (whose rate is 1) 
having a counting process 𝑀(𝑡). Then define a new process 
that speeds up time by a factor of 𝜆: 𝑁 𝑡 = 𝑀(𝜆𝑡).

Obviously, 𝑁 𝑡  is - and so the time-change 𝑡′ = 𝜆𝑡 gives - 
the counting process of a homogeneous Poisson process of 
rate 𝜆. This generalises to non-linear time-changes.

Time-changes must be monotonic; to ensure this we write

𝑡′ = න

0

𝑡

𝜆 𝑠 𝑑𝑠, where 𝜆 𝑡 > 0, ∀𝑡 > 0.
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Again starting with a unit process 𝑀(𝑡), define

𝑁 𝑡 = 𝑀 𝑡′ = 𝑀 න

0

𝑡

𝜆 𝑠 𝑑𝑠 ~𝑃𝑜 න

0

𝑡

𝜆 𝑠 𝑑𝑠 .

𝑁 𝑡  is an inhomogeneous Poisson process with rate 𝜆 𝑡 .

Slogan: A unit Poisson process can be transformed to an 
arbitrary Poisson process by distorting the time 
appropriately.
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Proposition. For the inhomogeneous Poisson process with 
rate function 𝜆(𝑡) the time 𝑻 to the first event has distribution 
function

𝐹 𝑡 = 1 − exp −Λ 𝑡 ,      and hence the density function

𝑓 𝑡 = 𝜆 𝑡 exp −Λ 𝑡 , 𝑡 > 0.

Proof.

𝐹 𝑡 = 𝑃 𝑇 ≤ 𝑡 = 1 − 𝑃 𝑇 > 𝑡 = 1 − 𝑃 𝑁𝑡 = 0

= 1 −
Λ 𝑡 0 exp −Λ 𝑡

0!
= 1 − exp −Λ 𝑡

No events before
time 𝑡 < 𝑇.
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In stochastic simulation the motivation often is to simulate the 
first/next event of an inhomogeneous process. One way to 
do this is to use the transformation method. We can 
simulate 𝑢 ~ 𝑈(0,1) and solve 𝐹 𝑡 = 𝑢. Rearranging gives 
Λ 𝑡 = −log(1 − 𝑢). Since 𝑢 and 1 − 𝑢 have the same 
distribution, we can solve Λ 𝑡 = −log 𝑢 for 𝑡.

If Λ 𝑡  is analytically invertible, then 𝑡 = Λ−1(− log 𝑢).

Since Λ 𝑡  is by construction monotonically increasing, 
Λ 𝑡 = −log 𝑢 will have at most one solution for 𝑢 ∈ (0, 1). If 
Λ 𝑡  does not tend to infinity as 𝑡 → ∞, there may not be a 
solution; in other words, the first event may not happen at 
all. To avoid this, in practise the event hazard 𝜆 𝑡 is not 
allowed to decay faster than 1/𝑡.
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Example

Consider the inhomogeneous Poisson process with rate function 
𝜆 𝑡 = 𝜆𝑡 for some constant 𝜆 > 0.

The cumulative hazard Λ 𝑡 = 𝜆𝑡2/2.

⇒ 𝑁𝑡 ~ 𝑃𝑜( Τ𝜆𝑡2 2) ⇒ the number of events in the interval 
(𝑠, 𝑡] is 𝑃𝑜( Τ𝜆(𝑡2−𝑠2) 2).

The PDF for the time to the first event

𝑓 𝑡 = 𝜆𝑡 exp −
𝜆𝑡2

2
, 𝑡 > 0.

To simulate:
1. Sample 𝑢 ~ 𝑈(0,1).

2. Obtain the time to the first event as 𝑡 = −
2 log 𝑢

𝜆
. Return to 1.

Solve 
Τ𝜆𝑡2 2 = − log 𝑢 for 𝑡.

  ↓
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In the previous example, where transformation could be 
made analytically, simulation is effective: no wasted random 
numbers.

When 𝜆(𝑡) is not this nice we need to do rejection-type 
simulation. The derivation of this method is typical in 
stochastics/statistics: Theoretically the justification of the 
method is not that straightforward, but intuitively – as an 
algorithm – it seems obvious.

Simulation of inhomogeneous Poisson processes

An inhomogeneous Poisson process can be simulated by first 
simulating from a unit homogeneous Poisson process 
defined on particular region ℝ2.
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The 2d Poisson process is defined on a set Ω ⊆ ℝ2 and has the 
property that for any measurable subset 𝐴 ⊆ Ω with area 𝜇(𝐴) 
the number of events in 𝐴 will have a 𝑃𝑜(𝜇 𝐴 ) distribution.

→ The number of events in an infinitesimal square (𝑥, 𝑥 +
𝑑𝑥] × (𝑦, 𝑦 + 𝑑𝑦] will have a 𝑃𝑜(𝑑𝑥𝑑𝑦) distribution; the 
probability of an event in this region will be 𝑑𝑥𝑑𝑦, 
independently of all other regions.

The uniformity property of the (2d) homogeneous Poisson process:
Conditional on the number of points in a region Ω, those points 
are uniformly distributed over that region.

To simulate a 2d Poisson process on a finite region Ω: 
1. Sample the number of points from 𝑃𝑜(𝜇 Ω ).
2. Scatter these points uniformly over Ω.
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If it is possible to simulate a unit Poisson process on a region 
ഥΩ ⊇ Ω, then the points of the originally sampled Poisson 
process that lie within Ω form a Poisson process on Ω. → 
Rejection sampling can be applied on the bounding region ഥΩ.

1d inhomogeneous Poisson process out of 2d (unit) Poisson 
process:

Consider an inhomogeneous Poisson process with bounded, 
non-negative hazard function 𝜆 𝑡  satisfying 0 ≤ 𝜆 𝑡 ≤ 𝑈𝜆 for 
some upper-bound 𝑈𝜆. We wish to simulate from this process 
on (0, 𝑇] for some 𝑇 > 0.
Let Ω be the region of ℝ2 bounded by 𝑥 = 0, 𝑥 = 𝑇, 𝑦 = 0, and 
𝑦 = 𝜆 𝑥  and let ഥΩ be the rectangle 0, 𝑇 × [0, 𝑈𝜆]. → By 
construction, Ω ⊆ ഥΩ ⊆ ℝ2.
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To sample an inhomogeneous 1d Poisson process with 𝜆(𝑡):
- sample a Poisson process on ഥΩ by first simulating the 

number of points 𝑚 ~ 𝑃𝑜(𝑈𝜆𝑇)
- for 𝑖 = 1, … , 𝑚 independently sample an 𝑥-coordinate from 

𝑈(0, 𝑇) and 𝑦-coordinate from 𝑈 0, 𝑈𝜆

- keep only the points in Ω, i.e. the points (𝑥, 𝑦) satisfying 𝑦 ≤
𝜆(𝑥)

- from the above-obtained Poisson process on Ω marginally 
the 𝑥-coordinates give the event times of the 1d 
inhomogeneous Poisson process
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The algorithm for sampling event times from an 
inhomogeneous Poisson process:

1. Sample 𝑚 ~ 𝑃𝑜(𝑈𝜆𝑇)
2. For i ≔ 1, … , 𝑚
 (a) Sample 𝑥 ~ 𝑈(0, 𝑇)
 (b) Sample 𝑦 ~ 𝑈 0, 𝑈𝜆

 (c) If 𝑦 ≤ 𝜆(𝑥), print 𝑥

The printed  𝑥 (𝑚 of them) represent a single realisation of the 
inhomogeneous Poisson process on the time interval (0, 𝑇] in 
any order, i.e. not chronologically. 
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0

𝑈𝜆
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So, the point of drawing 𝑚 from the Poisson distribution is this: If one does not 
do it in the beginning, the number of simulated events in the interval 𝑇 is not 
Poissonian. So, one needs to do it. After the simulation we will have a number of 

events at different x proportional to 
𝜆(𝑥)

𝑈𝜆
∗ 𝑃𝑜(𝑈𝜆𝑇) as we should. In the basic 

rejection without this part the number of events would not have any relation to 
Poissonian.

So, 𝑚 drawn from Poissonian for the time interval makes sure this is a realisation 
of a Poisson process. In order to get complete statistics, in fact, several batches 
over different numbers 𝑚 of runs drawn from 𝑚 ~ 𝑃𝑜(𝑈𝜆𝑇) should be done and 
results averaged over them. Only this way we can obtain statistics for the 
process.
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If we are looking for the time of the first event, the previous 
algorithm is inefficient: multiple realisations have to be run 
until the end, find the minimum times and average over 
them.
One approach to sample the event times in order is to use 
properties of uniform order statistics: Denoting the sorted 
values 𝑋(𝑖) for 𝑋𝑖 ~ 𝑈 0, 𝑇 , 𝑖 = 1, … , 𝑚, so that 𝑋(1) ≤ 𝑋 2 ≤

⋯ ≤ 𝑋(𝑚),
𝑋(1) = min{𝑋𝑖},

THIS IS AN ERROR MADE IN THE BOOK: 

which has a CDF 𝐹 1 𝑥 = ( Τ𝑥 𝑇)
𝑚

; simulate it by sampling 

𝑢 ~ 𝑈(0, 1) and setting 𝑥(1) = 𝑇𝑢1/𝑚.  This part is correct:

→ Conditional on 𝑥(𝑖−1), 𝑋(𝑖) is the minimum of 𝑚 − 𝑖 + 1 

uniforms on [𝑥 𝑖−1 , 𝑇]. This can be simulated by sampling 

𝑢 ~ 𝑈(0, 1) and setting 𝑥(𝑖) = 𝑇 − 𝑥 𝑖−1 𝑢 Τ1 (𝑚−𝑖+1).
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DO NOT USE!
This revised algorithm for sampling events in order as in the 
book by Wilkinson. THIS IS WRONG:
1. Set 𝑥(0) ≔ 0

2. Sample 𝑚 ~ 𝑃𝑜 𝑈𝜆𝑇
3. For 𝑖 ≔ 1, … , 𝑚
 (a) Sample 𝑢 ~ 𝑈(0, 1)

 (b) Set 𝑥(𝑖) ≔ 𝑇 − 𝑥 𝑖−1 𝑢 Τ1 (𝑚−𝑖+1)

 (c) Sample 𝑦 ~ 𝑈 0, 𝑈𝜆

 (d) If 𝑦 ≤ 𝜆 𝑥(𝑖) , print 𝑥(𝑖)
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THE PREVIOUS DERIVATION of the revised algorithm 
from the Wilkinson book IS COMPLETELY WRONG! 

In Wilkinson’s derivation there are two errors, which happily 
rectify each other so that every other sample appears in 
order and the whole range (0, 𝑇] is sampled.
The first mistake: Wilkinson used CDF for maximum values 
instead of minimum values.
The second mistake: Wilkinson did not take into account the 
fact that for each recursive interval (𝑥 𝑖−1 , 𝑥 𝑖 ], the starting 

point 𝑥 𝑖−1  needs to be taken into account.

As a result, some ordering was obtained due to the correct 
condition 𝑋(1) ≤ 𝑋 2 ≤ ⋯ ≤ 𝑋(𝑚). However, this condition is 

not completely fulfilled due to the first mistake. Due to the 
second mistake the whole range (0, 𝑇] is sampled despite the 
first mistake.
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THE FOLLOWING IS CORRECT. 

Online Statistics Course

The CDF’s for the first (and for reference, the last) event (see 
Online Statistics Course); here, 𝑛 = 𝑚:

https://www2.stat.duke.edu/courses/Spring12/sta104.1/Lectures/Lec15.pdf
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In the book, CDF for the last event was picked by mistake. 
When we take the first-event CDF:

𝐹(1) 𝑥 = 1 − 1 − 𝐹𝑈(0,𝑇] 𝑥
𝑚

= 1 − 1 −
𝑥

𝑇

𝑚

Calculate the inverse for the first event in the interval (0, 𝑇]:

𝑢 = 1 − 1 −
𝑥

𝑇

𝑚
⇔ 𝑥 = 1 − (1 − 𝑢)1/𝑚 𝑇 ≡ 𝑥(1)

(the 1st event)

Then we calculate the time for the 𝒊th event 𝑥(𝑖) conditional 

on 𝑥(𝑖−1) - meaning that 𝑖 − 1 events have occurred before.

Clearly, 𝑥𝑖~𝑈(𝑥 𝑖−1 , 𝑇], and there will be 𝑚 − 𝑖 + 1 events in 

the interval (𝑥 𝑖−1 , 𝑇].
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Accordingly, CDF for 𝑋(𝑖):

𝐹𝑋(𝑖) = 1 − 1 − 𝐹𝑈 𝑥 𝑖−1 ,𝑇

𝑚−𝑖+1
= 1 − 1 −

𝑥(𝑖)−𝑥(𝑖−1)

𝑇−𝑥(𝑖−1)

𝑚−𝑖+1

The inverse transformation:

𝑢 = 1 − 1 −
𝑥 𝑖 −𝑥 𝑖−1

𝑇−𝑥 𝑖−1

𝑚−𝑖+1

⟺

𝑥 𝑖 = 𝑥(𝑖−1) + 1 − 1 − 𝑢
1

𝑚−𝑖+1 𝑇 − 𝑥 𝑖−1 =

             = 𝑥(𝑖−1) + 1 − 𝑢
1

𝑚−𝑖+1 𝑇 − 𝑥 𝑖−1

CDF for 𝑈(𝑥 𝑖−1 , 𝑇]:  𝐹𝑈 𝑥 𝑖−1 ,𝑇 =
𝑥(𝑖)−𝑥(𝑖−1)

𝑇−𝑥(𝑖−1)
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From the previous derivation, the revised algorithm for 
sampling events in order reads as:

1. Set 𝑥(0) ≔ 0

2. Sample 𝑚 ~ 𝑃𝑜 𝑈𝜆𝑇
3. For 𝑖 ≔ 1, … , 𝑚
 (a) Sample 𝑢 ~ 𝑈(0, 1)

 (b) Set 𝑥(𝑖) ≔ 𝑥 𝑖−1 + 𝑇 − 𝑥 𝑖−1 1 − 𝑢 Τ1 (𝑚−𝑖+1)

 (c) Sample 𝑦 ~ 𝑈 0, 𝑈𝜆

 (d) If 𝑦 ≤ 𝜆 𝑥(𝑖) , print 𝑥(𝑖)

This algorithm gives all events in order. 

← This makes the thing Poissonian.
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Thinning approach to jump time simulation

In simulating the process described above one can sample the 
inter-event times from an 𝐸𝑥𝑝(𝑈𝜆) distribution to get the 𝑥-
coordinates, then sample the corresponding 𝑦-coordinates from 
a 𝑈 0, 𝑈𝜆  distribution and reject the points outside Ω.

The thinning algorithm:
1. Set 𝑡0 ≔ 0
2. Set 𝑖 ≔ 1
3. Repeat
 (a) Sample 𝑡 ~ 𝐸𝑥𝑝 𝑈𝜆

 (b) Set 𝑡𝑖: = 𝑡𝑖−1 + 𝑡
 (c) If 𝑡𝑖 > 𝑇, stop
 (d) Sample 𝑢 ~ 𝑈(0, 1)
 (e) If 𝑢 ≤ Τ𝜆 𝑡𝑖 𝑈𝜆, print 𝑡𝑖

 (f) Set 𝑖 ≔ 𝑖 + 1

← This makes the thing Poissonian.
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The thinning algorithm only requires knowledge of the function 
𝜆(𝑡) – and only at a finite number of times (although time is 
continuous here) – and not on its integral or inverse.

Hence, the algorithm can be used when a hazard function is not 
analytically convenient or even deterministic; for example 𝜆(𝑡) 
may be determined by a stochastic process. Only the upper 
bound has to be available.

The name comes from the fact that we are using rejection to 
thin a homogeneous Poisson process to give a target 
inhomogeneous process.

The algorithm can be modified to use any inhomogeneous 
Poisson process with a rate function 𝜈(𝑡) such that 𝜈 𝑡 ≥
𝜆 𝑡 ∀∈ [0, 𝑇] and which can be directly simulated. Often 
linear and quadratic forms for 𝜈(𝑡) are used. This is 
analogous to envelope rejection.



     A lot to take in - learn the basic principles. For now,    
the methods (implementations) are important.
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