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Lecture V



MCMC and Bayesian 
Inference

(Bayesian inference: Ch 9 in the online book.)

This is strictly based on Ch 10 of Wilkinson.

https://www.probabilitycourse.com/chapter9/9_1_0_bayesian_inference.php


MCMC & Bayesian Inference

Goal: Statistical inference for the (model) parameters on the 
basis of experimental data.

Definition: A Markov chain Monte Carlo (MCMC) method 
for the simulation of a distribution 𝑓 is any method producing 

an ergodic Markov chain 𝑋(𝑡)  whose stationary distribution is 
𝑓. 

Pragmatic definition of ergodic: sample & time averages 
are equal  stationarity, equilibrium. (See next slide.)



Ergodicity

∆𝐸

In equilibrium 
(or in an energy 
minimum) 
stationarity holds. 

In equilibrium also ergodicity holds: If in the vicinity of the 
energy minimum there are no traps (other deep energy 
minima), then trajectories can reach every state → Time 
average stays constant and equals ensemble average. 

Out of equilibrium, distribution is not stationary and 
ergodicity does not hold: Time average changes and for a 
long trajectory is different from ensemble average over 
many short trajectories (think of starting from a maximum 
and relaxing towards a minimum).
MC is used also in this case, but it is not MCMC. 

pdf/PMF → 
maximum
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Bayesian Inference

We have various hypotheses 𝐻𝑖 , 𝑖 = 1, 2, … , 𝑛 on the measured 
stochastic process 𝑋. 𝐻𝑖 form a partition of the sample space: 
𝑆 = 1=1ڂ

𝑛 𝐻𝑖, 𝐻𝑖 ∩ 𝐻𝑗 = ∅, ∀𝑖 ≠ 𝑗, and P 𝐻𝑖 > 0, ∀𝑖.

Discrete problems
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To update our prior beliefs about the hypotheses 𝑃 𝐻𝑖  we use 
Bayes theorem to compute our posterior beliefs based on the 
occurrence (conditional on the outcome) of 𝑋 = 𝑥:

𝑃 𝐻𝑖|𝑋 = 𝑥 =
𝑃(𝐻𝑖 , 𝑋 = 𝑥)

𝑃(𝑋 = 𝑥)
=

𝑃 𝑋 = 𝑥|𝐻𝑖 𝑃 𝐻𝑖

σ𝑗=1
𝑛 𝑃 𝑋 = 𝑥|𝐻𝑗 𝑃 𝐻𝑗

, 𝑖 = 1, … , 𝑛.

We observe some measurement outcome 𝑋 = 𝑥 and we are 
interested in the probabilities of the hypotheses conditional 
on the outcome, 𝑃 𝐻𝑖|𝑋 = 𝑥 . 

To compute these probabilities we need prior probabilities of 
the hypotheses, 𝑃 𝐻𝑖 .
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Probabilities 𝑃 𝑋 = 𝑥|𝐻𝑖  are known as likelihoods 𝐿(𝐻𝑖; 𝑥).  

They are used, because typically σ𝑗=1
𝑛 𝑃 𝑋 = 𝑥|𝐻𝑗 𝑃 𝐻𝑗  

cannot be determined. 

Likelihood 𝐿 𝐻𝑖; 𝑥 = 𝑃 𝑋 = 𝑥|𝐻𝑖 ∝
𝑃 𝐻𝑖|𝑋=𝑥

𝑃(𝐻𝑖)
 is not a 

probability mass function PMF and does not sum to 1.

(In the notation of page 13 in Lecture 1: 𝐿 𝐻𝑖; 𝑥 = 𝐿(𝜃|𝑥), 
where 𝜃 = 𝜃1, 𝜃2, … , 𝜃𝑘  were the parameters of a 
hypothesized distribution – so, hypotheses 𝐻𝑖 in the present 
notation.)
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Continuous and mixed (= continuous + discrete) problems

Bayes Theorem 𝜋 𝜃 𝑋 = 𝑥 =
𝜋(𝜃)𝐿 𝜃; 𝑥

׬
𝜃

𝑃 𝑋 = 𝑥 𝜃′ 𝜋 𝜃′ 𝑑𝜃′

For discrete outcome, the likelihood 𝐿 𝜃; 𝑥 = 𝑃 𝑋 = 𝑥|𝜃  is a 
function of 𝜃 for given fixed 𝑥. (𝐿 𝜃; 𝑥  is not a probability 
density.)

For a continuum of hypotheses the incalculable denominator

׬
𝜃

𝑃 𝑋 = 𝑥 𝜃′ 𝜋 𝜃′ 𝑑𝜃′ simply represents a constant of 

proportionality, and we write

𝜋 𝜃 𝑋 = 𝑥 ∝ 𝜋(𝜃)𝐿 𝜃; 𝑥 .

Slogan: 
“The posterior is proportional to the prior times the likelihood.”
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Example (discrete outcome). For a particular gene 
transcription, events occur according to a Poisson process at 
the rate 𝜃 per minute. Prior to carrying out an experiment, an 
expert specifies his opinion regarding 𝜽 as 𝜃 ~ 𝐺𝑎(𝑎, 𝑏) 
(gamma distribution) with 𝑎 = 2, 𝑏 = 1. Counts of the number 
of transcripts are gathered from 𝑛 separate one-minute 
intervals to get data 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛

𝑇.

The likelihood for 𝜃:

𝐿 𝜃; 𝑥 = 𝑃 𝑥 𝜃 = ς𝑖=1
𝑛 𝑃 𝑥𝑖|𝜃 = ς𝑖=1

𝑛 𝜃𝑥𝑖𝑒−𝜃

𝑥𝑖!
 

⇒ 𝐿 𝜃; 𝑥 ∝ ෑ

𝑖=1

𝑛

𝜃𝑥𝑖𝑒−𝜃 = 𝜃σ𝑖=1
𝑛 𝑥𝑖𝑒−𝑛𝜃

𝑳 is seen to depend on data only through 𝑛 and         
ҧ𝑥 = ( Τ1 𝑛) σ1=1

𝑛 𝑥𝑖, so 𝑛 and ҧ𝑥 are said to be sufficient statistics 
for the likelihood function.

Poisson
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The priori 𝜋 𝜃 ∝ 𝐺𝑎 𝑎, 𝑏 = 𝜃𝑎−1𝑒−𝑏𝜃.

𝜋(𝜃|𝑥) ∝ 𝜋 𝜃 𝐿(𝜃; 𝑥) ∝ 𝜃𝑎+σ𝑖=1
𝑛 𝑥𝑖−1𝑒−(𝑏+𝑛)𝜃

⇒ 𝜃 ~ 𝐺𝑎 𝑎 + ෍

𝑖=1

𝑛

𝑥𝑖 , 𝑏 + 𝑛 .

Starting with a gamma prior results in a gamma posteriori; 
such problems are said to be conjugate. Gamma is conjugate 
for the Poisson likelihood.

The posteriori
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For example, observation 𝑥 = 4, 2, 3 ⇒ 𝜃 ~ 𝐺𝑎(11, 4) posteriori.

Note: In statistical inference we are interested in the distribution 
of the parameters 𝜃 (e.g. mean and variance) describing the 
distribution of the data.

(For continuous 𝑋, in the likelihood PMF → PDF.)
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Bayesian computation

The previous example includes in principle everything within 
Bayesian inference: the posterior is the conditional 
distribution for the parameters given the data. In nontrivial 
problems, computational effort is quite a bit more substantial.

Problem 1: Choosing the constant of proportionality such that 
the density integrates to 1.
- for non-standard densities, one needs to integrate the 

product of the likelihood and the prior (the kernel of the 
posterior) over the support of 𝜃, which may be infinite 
and/or multidimensional.

Problem 2: In a multi-dimensional parameter space we want to 
know what the marginal distribution of each component looks 
like. → A hard numerical integration problem. 
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Example (see the detailed derivations in SMSB, Section 9.1.2 – 
the first edition; 10.1.2 the new edition)

We have a collection of observations, 𝑋𝑖, which we believe to 
be iid (independent identically distributed) normal with 
unknown mean and precision 𝜏 (= 1/𝜎2): 𝑋𝑖|𝜇, 𝜏 ~ 𝑁(𝜇, Τ1 𝜏). 
(Pay attention to the new notation here: just A|B.)

The likelihood for a single observation:

𝐿 𝜇, 𝜏; 𝑥𝑖 = 𝑓 𝑥𝑖|𝜇, 𝜏 =
𝜏

2𝜋
exp −

𝜏

2
𝑥𝑖 − 𝜇 2 .

→ the likelihood for 𝑛 independent observations 𝑥 = 𝑥1, … , 𝑥𝑛
T:

𝐿 𝜇, 𝜏; 𝑥 = 𝑓 𝑥|𝜇, 𝜏 = ෑ

𝑖=1

𝑛
𝜏

2𝜋
exp −

𝜏

2
𝑥𝑖 − 𝜇 2 .
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⇒ 𝐿 𝜇, 𝜏; 𝑥 ∝ 𝜏 Τ𝑛 2exp −
𝜏

2
𝑛 − 1 𝑠2 + 𝑛 ҧ𝑥 − 𝜇 2 ,

where

ҧ𝑥 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 and 𝑠2 =
1

𝑛 − 1
෍

𝑖=1

𝑛

𝑥𝑖 − ҧ𝑥 2.

To proceed with the Bayesian analysis we need prior 
distributions for the parameters 𝜃: 𝜇, 𝜏 . 

There exists a conjugate analysis based on the specifications 

𝜏 ~ 𝐺𝑎(𝑎, 𝑏) and 𝜇|𝜏 ~ 𝑁 𝑐,
1

𝑑𝜏
, but in this 𝜇 and 𝜏 are not 

independent.

(Conjugacy: The property where the posterior distribution 
comes from the same family as the prior distribution.)
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Alternatively, one may specify 𝜏 ~ 𝐺𝑎(𝑎, 𝑏) and 𝜇|𝜏 ~ 𝑁 𝑐,

1

𝑑
, 

but then conjugacy is lost and the analysis becomes intractable. 

Consequently, we need a way to understand posterior 
densities without being able to analytically integrate the 
posterior density.

This is where Markov Chain Monte Carlo (MCMC) 
algorithms like the Gibbs sampler and Metropolis- Hastings 
method come into play.

In other words, the posterior 𝜋(𝜇, 𝜏|𝑥) will not factorise, 
because in it 𝜇 and 𝜏 are not independent (“are not 
independent a posteriori”). → There’s no way of working out 
the marginal posterior distributions for 𝜇 and 𝜏.

𝜋 𝜇, 𝜏 𝑥

∝ 𝜏𝑎+
𝑛
2

−1exp −
𝜏

2
𝑛 − 1 𝑠2 + 𝑛 ҧ𝑥 − 𝜇 2 −

𝑑

2
𝜇 − 𝑐 2 − 𝑏𝜏
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The Gibbs Sampler

The Gibbs sampler can be used for simulating from 
multivariate distributions when one is able to simulate from 
conditional distributions.

In the previous example of a normally distributed random 
sample the posterior was found to be

𝜋 𝜇, 𝜏 𝑥

∝ 𝜏𝑎+
𝑛
2

−1exp −
𝜏

2
𝑛 − 1 𝑠2 + 𝑛 ҧ𝑥 − 𝜇 2 −

𝑑

2
𝜇 − 𝑐 2 − 𝑏𝜏

This problem is said to be semi-conjugate, because by picking 
out terms in the variable of interest and regarding everything 
else as a constant of proportionality we get 𝜋 𝜇, 𝜏 𝑥  and 
𝜋 𝜏 𝜇, 𝑥  in standard forms.
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𝜏|𝜇, 𝑥~ 𝐺𝑎 𝑎 +
𝑛

2
, 𝑏 +

1

2
𝑛 − 1 𝑠2 + 𝑛 ҧ𝑥 − 𝜇 2 ,

𝜇|𝜏, 𝑥 ~ 𝑁
𝑐𝑑 + 𝑛𝜏 ҧ𝑥

𝑛𝜏 + 𝑑
,

1

𝑛𝜏 + 𝑑
.

If we can simulate normal and gamma quantities, we can 
simulate from the full conditionals. → We need a way to 
simulate from the joint density - and marginals – based 
only on the ability to sample from the full conditionals.

So, in Gibbs sampling these then would be the two 
conditional densities from which you sample in turns to get 
the marginal densities for 𝜏 and 𝜇.

After some tedious calculation (not our concern here):
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Sampling from bivariate densities (prelude to the Gibbs algorithm)

For a bivariate density,

A.   𝜋 𝑥, 𝑦 = 𝜋 𝑥 𝜋(𝑦|𝑥)

B.   𝜋 𝑥, 𝑦 = 𝜋 𝑦 𝜋(𝑥|𝑦)

A: Simulate 𝑋 = 𝑥 from 𝜋(𝑥), then simulate 𝑌 = 𝑦 from 𝜋(𝑦|𝑥).

B: Simulate 𝑌 = 𝑦 from 𝜋(𝑦), then simulate 𝑋 = 𝑥 from 𝜋(𝑥|𝑦).

To simulate from 𝜋 𝑥, 𝑦 : 

The scheme is:
1. Get 𝑥, 𝑦 from the bivariate density by first simulating

𝑋 = 𝑥 from 𝜋(𝑥), then 𝑌 = 𝑦 from 𝜋(𝑦|𝑥). We have 𝑥, 𝑦 .
2. 𝑌 = 𝑦 must be from 𝜋 𝑦  → get 𝑥′ from 𝜋(𝑥′|𝑦). We have 

𝑥′, 𝑦 .
3. 𝑥′ is from 𝜋(𝑥) → get 𝑦′ from 𝜋(𝑦|𝑥′). We have 𝑥′, 𝑦′ .
4. Keep going…

Note: Need to be able to 
simulate from the marginal
𝜋 ∙ .
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The Gibbs sampling algorithm

The density of interest: 𝜋 𝜃 , where 𝜃 = 𝜃1, … , 𝜃𝑑
T.

The full conditionals:

𝜋 𝜃𝑖|𝜃1, … , 𝜃𝑖−1, 𝜃𝑖+1, … , 𝜃𝑑 = 𝜋 𝜃𝑖|𝜃−𝑖 = 𝜋𝑖 𝜃𝑖 , 𝑖 = 1, … , 𝑑

The Gibbs sampler:

1. Initialise the counter to 𝑗 = 1 and the state to 

 𝜃(0) = 𝜃1
(0)

, … , 𝜃𝑑
(0) T

.

2. Obtain a new value 𝜃(𝑗) from 𝜃(𝑗−1) by

𝜃1
(𝑗)

~ 𝜋 𝜃1|𝜃2
𝑗−1

, … , 𝜃𝑑
𝑗−1

𝜃2
(𝑗)

~ 𝜋 𝜃2|𝜃1
𝑗

, 𝜃3
𝑗−1

, … , 𝜃𝑑
𝑗−1

𝜃𝑑
(𝑗)

~ 𝜋 𝜃𝑑|𝜃1
𝑗

, … , 𝜃𝑑−1
𝑗

.

⋮

3. Change 𝑗 to 𝑗 + 1 and return to step 2.

(notation, 𝜃−𝑖 : all but 𝜃𝑖)
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Please note that the notation is a bit misleading.

𝜋 𝜃𝑖|𝜃1, … , 𝜃𝑖−1, 𝜃𝑖+1, … , 𝜃𝑑 = 𝜋 𝜃𝑖|𝜃−𝑖 = 𝜋𝑖 𝜃𝑖 , 𝑖 = 1, … , 𝑑

is actually

𝜋 𝜃𝑖|𝜃1, … , 𝜃𝑖−1, 𝜃𝑖+1, … , 𝜃𝑑 , 𝑥 = 𝜋 𝜃𝑖|𝜃−𝑖 , 𝑥 = 𝜋𝑖 𝜃𝑖 , 𝑖 = 1, … , 𝑑

In other words, these are probabilities for a distribution 
parameter conditional on the value of other parameters and 
the data. However, the data is fixed, so one omits it from the 
notation and in Gibbs is represented by e.g. mean and variance. 
And once more: 𝜃𝑖 are parameters of the distribution 
describing the data, and we want to find the marginal 
distributions of these parameters. →
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The procedure defines a homogeneous Markov chain: each 
simulated value depends only on the previous simulated value 
and not the iteration counter 𝑗.

In the book the distribution of the chain is shown to be 
stationary, i.e. 𝜋 𝜙 = ׬

𝑆
𝑝 𝜃, 𝜙 𝜋 𝜃 𝑑𝜃, where 𝑝 𝜃, 𝜙 =

ς𝑖=1
𝑑 𝜋 𝜙𝑖|𝜙1, … , 𝜙𝑖−1, 𝜃𝑖+1, … , 𝜃𝑑  is the transition kernel. 

Note: 𝜙𝑖 is the updated value for the component 𝑖, that 
is, 𝜙𝑖 replaces 𝜃𝑖 in the update. (Never defined in the 
book.)

This fixed-sweep Gibbs sampler is not reversible, so detailed 
balance cannot be used to check for reversibility.
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Reversible Gibbs samplers

It is the fixed sweep that makes the previous Markov chain 
irreversible. Each component update is reversible. To remedy 
this, one can pick components at random or, even more simply, 
scan the components first in order and then in the reversed 
order. 

Since reversibility is not a requirement of a useful algorithm 
and  the fixed-sweep Gibbs has better convergence properties 
and is easiest to implement, fixed sweep is often used.
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The Metropolis-Hastings algorithm

When one cannot simulate full conditionals, i.e. the prior, one 
can propose an initial distribution. If 𝝅 𝜽  is the density of 
interest and 𝒒(𝜽, 𝝓) is the proposal distribution, we can 
construct the following algorithm:

1. Initialise the counter to 𝑗 = 1 and the state to 

 𝜃(0) = 𝜃1
(0)

, … , 𝜃𝑑
(0) T

.

2. Generate a proposal value 𝜙 using the kernel 𝑞(𝜃(𝑗−1), 𝜙).
3. Evaluate the acceptance probability 𝛼(𝜃(𝑗−1), 𝜙) of the 

proposed move, where 𝛼 𝜃 𝑗−1 , 𝜙 = min 1,
𝜋 𝜙 𝑞(𝜙,𝜃)

𝜋 𝜃 𝑞(𝜃,𝜙)
.

4. Put 𝜃(𝑗) = 𝜙 with probability 𝛼(𝜃(𝑗−1), 𝜙), else put             
𝜃(𝑗) = 𝜃(𝑗−1).

5. Change 𝑗 to 𝑗 + 1 and return to step 2.

The  Markov chain defined above is reversible.
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Any distribution 𝑞 ∙  can be used for simulating the proposals. 
Typically, 𝑁(𝜇, 1) is used, where the mean 𝜇 is chosen as the 
current state 𝜃. So, note that in this procedure 𝑞 ∙  changes at 
each step. When using 𝑞 ∙ = 𝑁(∙), the Metropolis-Hastings 
samples the distribution like a random walker: the distance 

covered grows as 𝑘, where 𝑘 = # of steps. There are ways to 
make the sampling more efficient, e.g. HMC (next lecture). 

Note: The goal may not be the same as previously in Gibbs - to 
obtain distributions for 𝜃𝑖. Instead, in this version of Metropolis-
Hastings the distribution 𝜋 𝜃  is simulated, which means that 
here 𝜃 are the samples from the distribution, 𝜃~ 𝜋(𝜃). The 
notation is confusing: previously 𝜃 was strictly interpreted as 
parameters of the target distribution, here this does not 
necessarily hold. (Of course Gibbs sampling could be used for 
direct sampling as well (meaning 𝑋 = 𝜃). And, of course, M-H is 
used such that 𝜃 are parameters of a distribution.)
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So, what use do we have for these distributions of 𝜃 then? One 
can, for example, “predict” future ෤𝑥: 𝑝 ෤𝑥 𝑥 = ׬ 𝑝 ෤𝑥, 𝜃 𝑑𝜃 .

In the case 𝜃 = 𝜇, 𝜏 :

𝜋 ෤𝑥 𝑥 = න 𝜋 ෤𝑥, 𝜇, 𝜏|𝑥 𝑑𝜇𝑑𝜏 = න 𝜋 ෤𝑥|𝜇, 𝜏, 𝑥 𝜋 𝜇, 𝜏|𝑥 𝑑𝜇𝑑𝜏 =

= ׬ 𝜋 ෤𝑥|𝜇, 𝜏 𝜋 𝜇, 𝜏|𝑥 𝑑𝜇𝑑𝜏.

So, use this for generating ෤𝑥.

What’s the use?

How does one choose the transition kernel? →
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The Metropolis method

This is the simplest case of Metropolis-Hastings, historically 
preceding it. Here the proposal is symmetric,               
𝑞 𝜃, 𝜙 = 𝑓( 𝜃 − 𝜙 ) = 𝑞 𝜙, 𝜃 .

The acceptance probability then simplifies to

𝛼 𝜃, 𝜙 = min 1,
𝜋(𝜙)

𝜋(𝜃)
.

Proposed moves that take the chain to a region of higher 
density are always accepted and moves that take the chain to 
a region of lower density are accepted with probability 
equalling the ratio of the density of the proposed state and the 
density of the present state.

(Here again 𝜃, 𝜙 are not parameters for distribution 𝜋.)
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Random walk chains

The proposed value 𝜙 at stage 𝑗 is 𝜙 = 𝜃(𝑗−1) + 𝑤𝑗, where 𝑤𝑗 

are iid random variables, independent of the state of the chain. 
Accept/reject according to 𝛼 𝜃, 𝜙 .

If the 𝑤𝑗 have density 𝑓(∙), from which it is easy to simulate, 

we can simulate an innovation 𝑤𝑗 and set the candidate point to 

𝜙 = 𝜃(𝑗−1) + 𝑤𝑗.

If the transition kernel 𝑞 𝜃, 𝜙 = 𝑓(𝜙 − 𝜃) is symmetric about 
zero, then we have a symmetric chain. → The acceptance 
probability does not depend on 𝑓(∙).

How should 𝑓(∙) be chosen?
Simple distribution: E.g. uniform or normal. Parameters (e.g. 
variance) of 𝑓(∙) should also be judiciously chosen to sample 
efficiently.
Rule of thumb: Acceptance rate of appr. 30 % works.
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The variation of the innovation must be selected appropriately 
for good mixing: Too small 𝜎2→ high acceptance but 
movement is small (“cold”). Too large 𝜎2 → moves about but 
low acceptance (“hot”).

Here, innovations 
from 𝑈(−𝛼, 𝛼). 
(So, 𝛼 in the 
caption is not the 
acceptance ratio.)

→

(ACF = autocorrelation 
function – of samples)



MCMC & Bayesian Inference
Independence chains

Here the transition kernel does not depend on previous state, 
i.e. 𝑞 𝜃, 𝜙 = 𝑓(𝜙) for some density 𝑓(∙).

The acceptance probability is

𝛼 𝜃, 𝜙 = min 1, ൘
𝜋(𝜙)

𝜋(𝜃)

𝑓(𝜙)

𝑓(𝜃)
= min 1,

Τ𝜋(𝜙) 𝑓(𝜙)

Τ𝜋(𝜃) 𝑓(𝜃)
.

So, the more similar 𝑓(∙) is to 𝜋(∙), the larger is 𝛼. Here we 
want to maximise 𝛼, because the sampling is “direct”.
In the context of Bayesian inference, choosing the prior 
density as the proposal density:

𝛼 𝜃, 𝜙 = min 1,
𝐿(𝜙; 𝑥)

𝐿(𝜃; 𝑥)
.

Note that there is dependence between 𝜃 and 𝜙 via 𝛼 𝜃, 𝜙 .

move towards larger Τ𝜋(∙) 𝑓(∙)
    ↓
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𝜋 𝜃, 𝑥 = 𝜋 𝑥 𝜃 𝜋(𝜃)

When using the Metropolis-Hastings sampler in a “real” 
Bayesian inference problem, meaning you infer for a parameter 
vector 𝜃 given some data 𝑥 generated from a probability 
model of the form 𝜋(𝑥|𝜃), you factorise the joint distribution as

We compute the posterior distribution 𝜋(𝜃|𝑥) ∝ 𝜋 𝜃, 𝑥 . We 
need not care about the proportionality (normalisation 
constant), because in Metropolis-Hastings only ratios 
𝜋(𝜙)/𝜋(𝜃) appear.

𝜋(𝑥|𝜃) is something you use your understanding (oftentimes 
called ‘domain expertise’) to come up with.

Bayesian inference
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𝐴 =
𝜋 𝜃∗ 𝜋 𝑥|𝜃∗ 𝑞 𝜃∗, 𝜃

𝜋 𝜃 𝜋 𝑥 𝜃 𝑞 𝜃, 𝜃∗
.

(Compare this with the previous 𝐴 =
𝜋 𝜙 𝑞(𝜙,𝜃)

𝜋 𝜃 𝑞(𝜃,𝜙)
 .)

“Missing data is parameters in Bayesian: anything you want 
to infer.” (This is the latent variable stuff.)

In stan you can either type distributions in or use library 
distributions.

Then we construct a Metropolis-Hastings scheme that targets 
𝜋(𝜃|𝑥). We need a proposal kernel 𝑞 𝜃, 𝜃∗ , which can be 
arbitrary: This proposes a move from 𝜃 to 𝜃∗, which we either 
accept or reject with probability 𝛼 𝜃, 𝜃∗ = min{1, 𝐴}, where…
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We may infer missing data (called “data augmentation”) by 
using actual observations. Denoting the actual data by 𝑦 and 
supposing we can deduce missing data 𝑥 indirectly, we write

𝜋 𝜃, 𝑥, 𝑦 = 𝜋 𝜃 𝜋 𝑥 𝜃 𝜋 𝑦 𝑥, 𝜃 .

In Metropolis-Hastings we have

Now we use this joint distribution as the basis of inference.

𝐴 =
𝜋 𝜃∗ 𝜋 𝑦|𝜃∗ 𝑞 𝜃∗, 𝜃

𝜋 𝜃 𝜋 𝑦 𝜃 𝑞 𝜃, 𝜃∗
, where 𝜋 𝑦 𝜃 = ׬

𝑋
𝜋 𝑦 𝑥, 𝜃 𝜋 𝑥 𝜃 𝑑𝑥.

Marginalising over 𝑥 is impossible → there are techniques to 
tackle this, but this is way beyond the scope here.

Bayesian inference for latent variable models
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Epilogue

As you can see, Metropolis-Hastings has much in common 
the envelope method. In the envelope method the proposal 
distribution should satisfy 𝑓(∙) ≥ 𝜋(∙) over the relevant 
range. In M-H it in principal suffices that the support of 𝑓(∙) 
covers the support of 𝜋(∙).
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Epilogue

In comparison to envelope sampling, the acceptance ratio of 
independence Metropolis-Hastings is better. For proof see 
e.g. Robert, Casella: Monte Carlo Statistical methods 
(Springer). This book contains more proofs and details you 
ever care to know, but is formal and presents 
straightforward stuff in a complicated manner.

Note: In the previous stuff, the notation may cause confusion.  
𝑝(𝑥, 𝑦) may denote transfer kernel and 𝜋 𝑥, 𝑦  a joint 
probability density.
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