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Hamiltonian Monte Carlo
(Also called Hybrid Monte 

Carlo)
HMC



The Basic HMC Scheme
Hamiltonian dynamics (from mechanics) is used in 
combination with Metropolis sampling to construct a MCMC 
method. (Note that the method runs as a Markov chain, the 
simulated system is not necessarily one.)

The motivation for HMC is to sample the state space more 
efficiently, so that larger movements from the current state 
could be made in one step than what is possible in Metropolis-
Hastings (M-H) sampling. This comes at the price of increased 
computation per time step. Despite this, HMC typically 
samples states much faster than M-H.

When reading this, 
1. first have a look at this site.
2. Refer to it when reading.
3. After having stumbled this through, (I suggest you) play 

around with the graphical models on the site.

http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html


The Basic HMC Scheme

Hamiltonian function 𝐻(𝑞, 𝑝) is determined in terms of the 
probability distribution we want to sample from.

The “position” variables 𝑞 are the ones we are interested in.

The ”momentum” variables 𝑝 are auxiliary that we need in 
order to move within the distribution and so to do the 
sampling. These momentum (𝑝) – or velocity (𝑣 = 𝑝/𝑚) – 
variables provide the more efficient sampling.

Simple updates of these variables alternate with Metropolis 
updates.

Gain: Proposed states can be distant from the current states 
and still have a high probability of acceptance.



Hamiltonian Dynamics

Hamiltonian (function) gives the total - here constant - energy 
of a (deterministic) dynamical system.

𝐻 𝑞, 𝑝 = 𝑈 𝑞 + 𝐾 𝑝 = 𝐸𝑡𝑜𝑡,

where 𝑈(𝑞) is the potential energy and 𝐾(𝑝) is the kinetic energy.

The dynamical system is completely described when we know 
how 𝑞 and 𝑝 change over time 𝑡. This is stated by equations of 
motion, here Hamilton’s equations

𝑑𝑞𝑖
𝑑𝑡

=
𝜕𝐻

𝜕𝑝𝑖
,

𝑑𝑝𝑖
𝑑𝑡

= −
𝜕𝐻

𝜕𝑞𝑖
.

𝑖 = 1,… , 𝑑 ; (𝑑 is dimension)



Hamiltonian Dynamics

Combining vectors 𝑞 and 𝑝 into the vector 𝑧 = (𝑞, 𝑝) we get

𝑑𝑧

𝑑𝑡
= 𝐽∇𝐻 𝑧 ,

where the gradient ∇𝐻 = ∇𝐻 𝑘 = Τ𝜕𝐻 𝜕𝑧𝑘, and 

𝐽 =
0𝑑×𝑑 𝐼𝑑×𝑑
−𝐼𝑑×𝑑 0𝑑×𝑑

.



Hamiltonian Dynamics

Potential and Kinetic Energy

In 𝑑 dimensions, the kinetic energy is

𝐾 𝑝 =
𝑝𝑇𝑀−1𝑝

2
.

𝑀 is a symmetric, positive-definite 
mass matrix. It is often diagonal 
and a scalar multiple of the 
identity matrix; this latter part 
means that all “particles” have the 
same mass 𝑚.

Note that 𝑝 = 𝑀𝑣, where 𝑣 = ሶ𝑞, so 

𝐾 𝑣 =
𝑣𝑇𝑀𝑣

2
.



Hamiltonian Dynamics

This form of 𝐾(𝑝) corresponds to − log 𝑝𝑃 𝑝 + Const. Here, 
𝑝𝑃 𝑝 = 𝑁 0, Σ = 𝑀  (zero-mean Gaussian with covariance 
matrix 𝑀).

With these forms, Hamilton’s equations become

𝑑𝑞𝑖
𝑑𝑡

= 𝑀−1𝑝 𝑖 ,

𝑑𝑝𝑖
𝑑𝑡

= −
𝜕𝑈

𝜕𝑞𝑖
. (Force.)

(Velocity.)

𝑝𝑃 𝑝 =
1

𝑍
exp

−𝐾 𝑝

𝑇
=

1

𝑍
exp −

𝑝𝑇𝑀−1𝑝

2
. (𝑇 = 1) 



Hamiltonian Dynamics

Solution (𝑎 and 𝑟 are constants determined by initial conditions):

Example: One-dimensional harmonic oscillator

𝐻 𝑞, 𝑝 = 𝑈 𝑞 + 𝐾 𝑝 , 𝑈 𝑞 =
𝑞2

2
, 𝐾 𝑝 =

𝑝2

2𝑚
=
𝑝2

2
.

Here, we choose 𝑚 = 1.

So, distributions for both 𝑞 and 𝑝 are 𝑁(0, 1).
Here, Boltzmann factor “transforms” potentials to distributions.

The dynamics: 𝑑𝑞𝑖
𝑑𝑡

= 𝑝,

𝑑𝑝𝑖
𝑑𝑡

= −𝑞.

𝑞 𝑡 = 𝑟 cos(𝑎 + 𝑡),      𝑝 𝑡 = −𝑟 sin(𝑎 + 𝑡)

(Hamilton’s equations)



Hamiltonian Dynamics
Properties of Hamiltonian dynamics

Reversibility (for deterministic dynamics – no stochastics)

The mapping from the state at time 𝑡, (𝑞 𝑡 , 𝑝 𝑡 ), to the state 
at time 𝑡 + 𝑠, (𝑞 𝑡 + 𝑠 , 𝑝 𝑡 + 𝑠 ), is one-to-one and so has an 
inverse, which is obtained by negating the time derivatives in 
Hamilton’s equations.

Conservation of the Hamiltonian (= Constant Energy)

The dynamics keeps the Hamiltonian invariant.

𝑑𝐻

𝑑𝑡
=෍

𝑖=1

𝑑
𝜕𝐻

𝜕𝑞𝑖

𝑑𝑞𝑖
𝑑𝑡

+
𝜕𝐻

𝜕𝑝𝑖

𝑑𝑝𝑖
𝑑𝑡

=෍

𝑖=1

𝑑
𝜕𝐻

𝜕𝑞𝑖

𝜕𝐻

𝜕𝑝𝑖
−
𝜕𝐻

𝜕𝑝𝑖

𝜕𝐻

𝜕𝑞𝑖
= 0

𝑑𝐻

𝑑𝑡
= 0: 𝐻 is a constant of motion.



Hamiltonian Dynamics
Volume Preservation

Any phase-space volume evolving in time may change its 
shape but the volume does not change

∇ ∙
𝑑𝒒

𝑑𝑡
,
𝑑𝒑

𝑑𝑡
=෍

𝑖=1

𝑑
𝜕

𝜕𝑞𝑖

𝑑𝑞𝑖
𝑑𝑡

+
𝜕

𝜕𝑝𝑖

𝑑𝑝𝑖
𝑑𝑡

=෍

𝑖=1

𝑑
𝜕

𝜕𝑞𝑖

𝜕𝐻

𝜕𝑝𝑖
−

𝜕

𝜕𝑝𝑖

𝜕𝐻

𝜕𝑞𝑖
=

=෍

𝑖=1

𝑑
𝜕2𝐻

𝜕𝑞𝑖𝜕𝑝𝑖
−

𝜕2𝐻

𝜕𝑝𝑖𝜕𝑞𝑖
= 0.

(A vector field with zero divergence preserves volume.)

In the present context this means that probability measure is 
invariant in time. (My wording, so subject to 
misinterpretations ☺)



Hamiltonian Dynamics
Symplectictness

The volume preservation is the most important 
consequence of this more universal property. Hamiltonian 
dynamics is symplectic. In dynamics symplectictness and 
volume preservation are often treated as synonyms. 
Symplectictness can be defined via the Jacobian of the 
transformation defining the propagation in time 
(dynamics).

In Hamiltonian dynamics the symplectic form is defined as 
𝜔 = 𝑑𝑞 ∧ 𝑑𝑝. Hamiltonian flow keeps ׬

𝑆
𝜔 invariant. (See e.g. 

differentiable manifolds, if you are interested.) 

(∧ is the exterior (vector) product (×).)



Hamiltonian Dynamics
Discretization of Hamilton’s Equations

Euler’s Method

𝑝𝑖 𝑡 + 𝜀 = 𝑝𝑖 𝑡 + 𝜀
𝑑𝑝𝑖
𝑑𝑡

𝑡 = 𝑝𝑖 𝑡 − 𝜀
𝜕𝑈

𝜕𝑞𝑖
𝑞 𝑡 ,

𝑞𝑖 𝑡 + 𝜀 = 𝑞𝑖 𝑡 + 𝜀
𝑑𝑞𝑖
𝑑𝑡

𝑡 = 𝑞𝑖 𝑡 + 𝜀
𝜕𝐾

𝜕𝑝𝑖
(𝑝 𝑡 )

We use 𝐾 𝑝 = σ𝑖=1
𝑑 𝑝𝑖

2

2𝑚𝑖
⇒ 𝑞𝑖 𝑡 + 𝜀 = 𝑞𝑖 𝑡 + 𝜀

𝑝𝑖(𝑡)

𝑚𝑖
.

(𝜀 is the step size)

The following examples of numerical integration are for 
the 1-D harmonic oscillator →



Hamiltonian Dynamics
Discretization of Hamilton’s Equations

Euler’s Method

Integrating in time using Euler involves numerical error; 
try to minimise it →



Hamiltonian Dynamics

A Modified Euler’s Method

𝑝𝑖 𝑡 + 𝜀 = 𝑝𝑖 𝑡 − 𝜀
𝜕𝑈

𝜕𝑞𝑖
𝑞 𝑡 ,

𝑞𝑖 𝑡 + 𝜀 = 𝑞𝑖 𝑡 + 𝜀
𝑝𝑖(𝑡 + 𝜀)

𝑚𝑖
.

The computed trajectory deviates less from the exact trajectory.

→

← Here’s the difference.



Hamiltonian Dynamics

A Modified Euler’s Method

We can do still better →



Hamiltonian Dynamics

The Leapfrog Method

Propagate 𝑝𝑖 in half steps.

𝑝𝑖 𝑡 + 𝜀/2 = 𝑝𝑖 𝑡 − 𝜀/2
𝜕𝑈

𝜕𝑞𝑖
𝑞 𝑡 ,

𝑞𝑖 𝑡 + 𝜀 = 𝑞𝑖 𝑡 + 𝜀
𝑝𝑖(𝑡 + 𝜀/2)

𝑚𝑖
.

𝑝𝑖 𝑡 + 𝜀 = 𝑝𝑖 𝑡 + 𝜀/2 − 𝜀/2
𝜕𝑈

𝜕𝑞𝑖
𝑞 𝑡 + 𝜀 .



Hamiltonian Dynamics
The Leapfrog Method Even with increased time step 

the computation is stable.



MCMC from Hamiltonian Dynamics

The requirement: Translate the density function for the 
distribution to be sampled from to a potential energy 
function and introduce momentum variables to go with the 
original variables of interest, now seen as position variables. 

The task: Simulate a Markov chain in which each iteration 
resamples the momentum and then performs a Metropolis 
update with a proposal found by using Hamiltonian 
dynamics.

How do we map the probability distribution to a potential 
energy function?



MCMC from Hamiltonian Dynamics

Probability and the Hamiltonian: Canonical Distributions

From statistical physics we know that in a canonical system 
(temperature and volume are constant) the probability 
density function for the state 𝒙, whose energy is 𝐸(𝑥), is the 
canonical distribution (Gibbs ensemble). The probability

𝑝𝑋 𝑥 =
1

𝑍
exp

−𝐸 𝑥

𝑘𝑇

Here, 𝑇 is the temperature and 𝑘 is the Boltzmann constant, 
which we just set to 1, since absolute energy values are of no 
consequence in what we do.

⇒ 𝑝𝑋 𝑥 =
1

𝑍
exp

−𝐸 𝑥

𝑇



MCMC from Hamiltonian Dynamics
𝑍 is the partition function. It is the sum over all states in the 
system. It corresponds to the normalisation constant in the 
distributions we encounter in statistics/stochastics. Typically 
incalculable.

Since the Hamiltonian 𝐻 𝑞, 𝑝 = 𝑈 𝑞 + 𝐾(𝑝) is an energy 
function for the joint state of position 𝑞 and momentum 𝑝, it 
defines the joint distribution

𝑝𝑞,𝑝 𝑞, 𝑝 =
1

𝑍
exp

−𝑈 𝑞

𝑇
exp

−𝐾 𝑝

𝑇

𝒒 represent the variables of interest and 𝒑 provide the dynamics.

𝐻 𝑞, 𝑝 = 𝐸total = const. ⇒ 𝑝𝑞,𝑝 𝑞, 𝑝 = const. when 

computation is exact.

In our liberal spirit we also set 𝑇 = 1 and write 
𝐸 𝑥 = − log𝑃 𝑥 − log𝑍 and choose for 𝑍 a convenient value. 



MCMC from Hamiltonian Dynamics

In Bayesian statistics, the distribution of interest is the 
posterior distribution for the model. The posterior 
distribution can be expressed as a canonical distribution    
(𝑇 = 1) using a potential energy function defined as:

𝑈 𝑞 = − log 𝜋 𝑞 𝐿 𝑞 𝐷 ,

where 𝜋(𝑞) is the prior density and 𝐿(𝑞|𝐷) is the likelihood 
function given data 𝐷. (log = ln.)

So, to construct the potential function to go with the 
distribution, use 𝜋 𝑞 𝐿 𝑞 𝐷 = exp[−𝑈 𝑞 ].



MCMC from Hamiltonian Dynamics
Betancourt

Betancourt writes the (joint) canonical density as 
𝜋 𝑞, 𝑝 = 𝑒−𝐻(𝑞,𝑝).

⇔ 𝐻 𝑞, 𝑝 = − log𝜋 𝑞, 𝑝 = −log[𝜋 𝑝 𝑞 𝜋 𝑞 ].

Accordingly, the decomposition of the Hamiltonian and the 
joint density correspond as

𝐻 𝑞, 𝑝 = − log 𝜋 𝑝 𝑞 − log 𝜋 𝑞
≡ 𝐾 𝑞, 𝑝 + 𝑉(𝑞).

[Note that there’s a (notational) difference here compared to 
Hamiltonian on the previous slide: 𝑉 𝑞 = −log[𝜋 𝑞 ] instead 
of 𝑉 𝑞 = −log[𝜋 𝑞 𝐿 𝑞 𝐷 ]; “target distribution” instead of 
“posterior distribution”.]

https://arxiv.org/abs/1701.02434


MCMC from Hamiltonian Dynamics

Note that since only the gradient ∇𝑉 𝒒  is used in HMC, 
possible prefactors are of no concern. This is the reason for 
the sloppy definitions of the distributions in this context, 
which, of course, nobody cares to mention.

For example, take the target distribution 𝜋 𝑞 = 𝐴𝑒−𝐵𝑞
2
. We 

can write this as 𝜋 𝑞 = exp −𝐵𝑞2 + ln𝐴 . 
Then 𝑉 𝑞 = − ln𝜋 𝑞 = 𝐵𝑞2 − ln𝐴 

⇒
𝑑𝑉 𝑞

𝑑𝑞
= 2𝐵𝑞.

The prefactor 𝐴 does not show in ∇𝑉 𝒒  and so has no effect 
on the HMC implementation. Also, energies in HMC are 
scaled anyway, so the minimal form suffices.
In HMC, the potential can be thus used in the minimal form
𝑉 𝑞 = 𝐵𝑞2.



MCMC from Hamiltonian Dynamics

In general, for any 𝜋 𝑞 = 𝐶𝑓 𝑞 :

⟹ 𝑉 𝑞 = − ln𝜋 𝑞 = − ln 𝑓 𝑞 − ln𝐶 ⟹
𝑑𝑉 𝑞

𝑑𝑞
=

−𝑑𝑓(𝑞)/𝑑𝑞

𝑓(𝑞)

The minimal form that can be used in HMC is 

𝑉 𝑞 = −ln[𝑓 𝑞 ].



MCMC from Hamiltonian Dynamics

The Hamiltonian Monte Carlo Algorithm

HMC can be used to sample only from continuous 
distributions on ℝ𝑑 for which
- the density function can be evaluated (up to an unknown 

normalising constant)
- the partial derivative of the density function (or the gradient 

of 𝑈(𝑞)) can be computed: the derivatives must exist except 
for on a set of points with probability zero, where some 
arbitrary value can be returned



MCMC from Hamiltonian Dynamics

𝑝𝑖 defined as independent with component 𝑖 having variance 𝒎𝒊 
(and setting 𝑇 = 1):

𝐾 𝑝 =෍

𝑖=1

𝑑
𝑝𝑖
2

2𝑚𝑖

HMC samples from the canonical distribution 𝑝𝑞,𝑝 𝑞, 𝑝 .

𝑞 has the distribution of interest, as specified by 𝑈(𝑞).
The distribution of 𝑝 can be chosen freely via 𝐾(𝑝). Common 
practise is to use quadratic 𝑲 𝒑 ; 𝐜𝐨𝐧𝐬𝐞𝐪𝐮𝐞𝐧𝐭𝐥𝐲 𝒑 has a zero-
mean multivariate Gaussian distribution.



MCMC from Hamiltonian Dynamics

The Two Steps of the HMC Algorithm

The First Step

Draw new values for 𝑝𝑖, independently of the current values 

of 𝑞𝑖. For 𝐾 𝑝 = σ𝑖=1
𝑑 𝑝𝑖

2

2𝑚𝑖
 the 𝑑 variables 𝑝𝑖~𝑁(0, 𝜎𝑖

2). This 

step leaves 𝑝𝑞,𝑝 𝑞, 𝑝  invariant. 

→The Second Step



MCMC from Hamiltonian Dynamics
The Second Step

Propose a new state by performing a Metropolis update with 
Hamiltonian dynamics:

At the end of 𝐿 steps, negate 𝑝𝑖 (𝑝𝑖 → −𝑝𝑖).
Now you have the proposed state 𝑞∗, 𝑝∗ .
Accept this proposed state (as the next state of the Markov 
chain) with probability (Metropolis)

𝑃 = min 1, exp −𝐻 𝑞∗, 𝑝∗ +𝐻 𝑝, 𝑞
= min 1, exp −𝑈 𝑞∗ + 𝑈 𝑞 − 𝐾 𝑝∗ + 𝐾(𝑝) .

Boltzmann
← exp(−∆𝐸)

Start with the current state 𝑞, 𝑝 .

Simulate Hamiltonian dynamics for 𝐿 steps using the leapfrog 
method (or some other reversible volume-preserving method) 
with a step size 𝜀. (When 𝐿 = 1, HMC is also called 
L(angevin)MC.)



MCMC from Hamiltonian Dynamics

If the proposed state is rejected, the next state is the current 
state. Be sure to count the occurrences of these states also, 
when computing expectations etc.

“The negation of the momentum is done to ensure that the 
Metropolis proposal is symmetric.” (Neal) 
In fact, there is a more fundamental reason to momentum 
reversal (Betancourt): “If only states going forward can be 
proposed, i.e. 𝑝∗ > 𝑝, the Metropolis-Hastings acceptance 
probability becomes ill-posed.” (See Betancourt p. 39). 

Return to The First Step.

(Hmm… but 𝐾(𝑝) ∝ 𝑝2, so “cut the smalltalk”, as 
Bogie would say.) 



MCMC from Hamiltonian Dynamics

Viewing HMC as sampling from the joint distribution of 𝑞 and 
𝑝, the Metropolis step using a proposal found by Hamiltonian 
dynamics – i.e. the second step - leaves the probability density 
for (𝑞, 𝑝) unchanged; in fact almost unchanged due to 
truncation in the used numerical method and finite numerical 
precision. 

Movement to (𝑞, 𝑝) points with a different probability density 
is  accomplished only by the first step, the replacement of 𝑝 by 
a new value. This replacement can change the probability 
density for (𝑞, 𝑝) by a large amount. 



MCMC from Hamiltonian Dynamics
To rephrase, a value for 𝑞 with a very different probability 
density and, equivalently, a very different potential energy 
𝑈(𝑞) can be produced by Hamiltonian dynamics. Still, 
resampling of 𝑝 is necessary for obtaining the proper 
distribution for 𝑞, since without resampling the Hamiltonian 
𝐻 𝑞, 𝑝 = 𝑈 𝑞 + 𝐾(𝑝) would be (nearly) constant and 𝑈 𝑞  
could never exceed the initial value of 𝐻 𝑞, 𝑝 .

First Step:
Random lift from the 
target parameter space 
onto phase space.

Second Step:
Deterministic Hamiltonian trajectory through phase space
and a projection down to the target parameter space. 



MCMC from Hamiltonian Dynamics

Note: Energy level trajectories of this form are for the 
harmonic oscillator (see page 8).



MCMC from Hamiltonian Dynamics

Proof of the Invariance of the Canonical Distribution 

Mentally partition the 𝑞, 𝑝  space into regions 𝐴𝑘, each of the 
same small volume 𝑉. Define 𝑂 as the operation of 𝐿 leapfrog 
steps plus a negation of the momenta such that 𝑂: 𝐴𝑘 → 𝐵𝑘. 
(𝐵𝑘 is the image of 𝐴𝑘.)

Leapfrog steps are reversible, so 𝐵𝑘 also partition the 𝑞, 𝑝  
space. Since leapfrog steps and negation preserve volume, 
each 𝐵𝑘 has volume 𝑉.

Detailed balance holds if ∀𝑖, 𝑗, 𝑃 𝐴𝑖 𝑇 𝐵𝑗|𝐴𝑖 = 𝑃 𝐵𝑗 𝑇 𝐴𝑖|𝐵𝑗 .

Here, 𝑃 is probability under the canonical distribution, and 
𝑇(𝑋|𝑌) is the conditional probability of proposing and then 
accepting a move to region 𝑋 if the current state is in region 
𝑌.



MCMC from Hamiltonian Dynamics

When 𝑖 ≠ 𝑗, 𝑇 𝐴𝑖|𝐵𝑗 = 𝑇 𝐵𝑗|𝐴𝑖 = 0 and detailed balance holds.

When 𝑖 = 𝑗:
In the limit as regions 𝐴𝑘 and 𝐵𝑘 become smaller, the 
Hamiltonian 𝐻𝑋 within each region 𝑋 becomes effectively 
constant. → The canonical probability density and the 
transition probabilities become effectively constant within 
each region. → The detailed balance condition when 𝑖 = 𝑗 
reads:

𝑉

𝑍
exp −𝐻𝐴𝑘 min 1, exp −𝐻𝐵𝑘 +𝐻𝐴𝑘 =

𝑉

𝑍
exp −𝐻𝐵𝑘 min 1, exp −𝐻𝐴𝑘 +𝐻𝐵𝑘

This is seen to be true, so detailed balance holds.



MCMC from Hamiltonian Dynamics

We know from the stuff before that if the detailed balance 
holds, the Markov chain renders the distribution invariant.

So, the HMC algorithm leaves the canonical distribution 
invariant.

Ergodicity

Typically HMC is ergodic → all states can be reached, i.e. no 
traps. This may be compromised by periodic trajectories in 
the Leapfrog, when 𝐿𝜀 ≈ 2𝜋.



MCMC from Hamiltonian Dynamics

Benefits of HMC

Consider sampling from a distribution for two variables that 
is bivariate Gaussian, with means of zero, and correlation 
0.95. Regard these as “position” variables.

Introduce two corresponding “momentum” variables, defined 
to have a Gaussian distribution with means of zero, standard 
deviations of one, and zero correlation.

The Hamiltonian will then be 

𝐻 𝑞, 𝑝 = 𝑞𝑇Σ−1 Τ𝑞 2 + 𝑝𝑇 Τ𝑝 2, with covariance Σ =
1 0.95

0.95 1
.

(In multiple dimensions the inverse Σ−1 is computed by e.g. 
Gauss-Jordan.)



MCMC from Hamiltonian Dynamics

Trajectories of a simulation based on this Hamiltonian. 𝐿 = 25, 
𝜀 = 0.25. The initial state 

𝑞 moves from lower left to upper right corner and reverses – 
nothing like a random walk; efficient sampling.

This comes from the projection of 𝑝 in diagonal direction 
changing slowly (gradient in this direction is small) → the 
direction of 𝑝 stays the same for many leapfrog steps.



MCMC from Hamiltonian Dynamics

Smaller-scale oscillations result from high correlation between 
the variables. These oscillations set an upper limit to the step 
size.

The value of the Hamiltonian (the rightmost figure) varies 
only because of numerical inaccuracy. If the trajectory was 
simulated correctly, it would stay constant. For this example, 
at a critical step size 𝜀 = 0.45 the trajectory becomes unstable 
→ the value of the Hamiltonian grows without bound



MCMC from Hamiltonian Dynamics
Note that Neal (p. 16) gives the acceptance probability for the 
end point values of the Hamiltonian. This is the acceptance 
probability, if this difference due to numerical error is 
involved in the stage where new states are proposed.

But since the energy stays constant over the L steps, the 
proposals in HMC would be always accepted, if there were 
no numerical errors! This is not mentioned anywhere, but 
check if you can find something that would prove this not to 
be true.

The above then means that the only role that the Metropolis 
acceptance has in HMC is to reject proposals if the numerical 
errors get too large. Else, 100 % of the proposals are accepted, 
which, of course, means that HMC is extremely effective.

So, all the talk about Metropolis, but no mention about its 
redundancy! Another place for Bogey to step in…



MCMC from Hamiltonian Dynamics
Comparing 𝑞’s of 2d random-walk and HMC. Correlation is 
0.98. 
RW of 20 iterations with 20 updates or leapfrog steps  per 
iteration Metropolis and HMC of 20 leapfrog steps per 
trajectory.



MCMC from Hamiltonian Dynamics

Two hundred iterations, starting with the 20 iterations shown 
above.



MCMC from Hamiltonian Dynamics
Another way of visualising the motivation for/benefit of 
HMC. (Betancourt; also refer back to Lecture 5, pp. 28-29.)
In high dimensions the random-walk Metropolis proposal 
density (green) is strongly biased towards the outside of the 
typical set. (a) Large proposal variances → proposals will 
stray too far from the typical set and be rejected. (b) Smaller 
proposal variances →  proposals stay within the typical set 
and are accepted, but stay close to the initial point.

Both (a) and (b) result in slow exploration of the typical set.



MCMC from Hamiltonian Dynamics

HMC incorporates coherent Markov transitions that 
remain within the typical set: it explores it faster than 
random-walk Metropolis. 



MCMC from Hamiltonian Dynamics
HMC, like RW Metropolis sampling, also involves a 
random-walk part. This comes in the momentum 
resampling. The variance of this part is given by the mass 
𝑚𝑖 in the kinetic energy; this gives 𝜎2 in 𝑁(𝜇, 𝜎2) for the 
auxiliary momentum variables 𝑝𝑖. And this should be 
chosen judiciously:

Btw: Other forms than 𝐾 𝑝 = σ𝑖=1
𝑑 𝑝𝑖

2

2𝑚𝑖
for the kinetic energy 

have been tried with no success.



MCMC from Hamiltonian Dynamics
The benefit of HMC stated naively.
RW MCMC: The variance in the position after 𝑛 iterations of 
RW MCMC is proportional to 𝑛. → The standard deviation of 
the amount moved (the distance) in 𝑞-space ∝ 𝑛.
HMC:  The distance moved after 𝑛 will tend to be proportional 
to 𝑛. 

The advantage of HMC compared to movement by a random 
walk will be a factor roughly equal to the ratio of the 
standard deviations in the least confined direction and most 
confined direction.

There are ways to enhance HMC like using multiple step sizes.

Note: The following pseudocode is for the first iteration. In the 
following iterations you always start with 𝑞∗ from the previous 
iteration, i.e. 𝑞0 = 𝑞∗ and then you update 𝑞∗.



MCMC from Hamiltonian Dynamics
Pseudo algorithm for a single iteration of HMC in 1d (R.M. Neal, p 14):

1. Initiate 𝑞. 𝑞∗ = 𝑞0. ← This is done only for the first iteration.
2. Sample 𝑝0~𝑁(0,1) ←New momentum (𝑝∗ from 7. is not used).
3. Make a half step for momentum
 𝑝∗ ≔ 𝑝0 − Τ𝜀 2 ∙ Τ𝑑𝑈(𝑞∗) 𝑑𝑞
4. Alternate full steps for position and momentum
 for (i := 1, L)
  Make a full step for the position
  𝑞∗ ≔ 𝑞∗ + 𝜀 ∙ 𝑝∗

  Make a full step for the momentum, except at the end
  If 𝑖 ≠ 𝐿, 𝑝∗ ≔ 𝑝∗ − 𝜀 ∙ Τ𝑑𝑈(𝑞∗) 𝑑𝑞
5. Make a half step for momentum at the end
 𝑝∗ ≔ 𝑝∗ − Τ𝜀 2 ∙ Τ𝑑𝑈(𝑞∗) 𝑑𝑞
6. Negate momentum at the end of trajectory
 𝑝∗ ≔ −𝑝∗

7. Evaluate potential and kinetic energies at start and end of trajectory
 𝑈0 = 𝑈 𝑞0 ; 𝐾0 = Τ𝑝0

2 2; 𝑈∗ = 𝑈 𝑞∗ ; 𝐾∗ = Τ𝑝∗ 2 2
8. Accept or reject the proposed state
 𝑞∗ = 𝑞∗, if 𝑢 < exp(𝑈0- 𝑈∗+ 𝐾0- 𝐾∗); 𝑞∗ = 𝑞0, if 𝑢 ≥ exp(𝑈0- 𝑈∗+ 𝐾0- 𝐾∗) 

(𝑢~𝑈(0,1))

Note: This 
step inside 
the loop 
takes care of 
the 2 times 
half-steps. 
  ⏎

THE FORM ON THE NEXT PAGE ENABLES CONSTRAINTS

https://arxiv.org/abs/1206.1901


MCMC from Hamiltonian Dynamics
Pseudo algorithm for a single iteration of HMC in 1d (R.M. Neal, p 14):

1. Initiate 𝑞. 𝑞∗ = 𝑞0. ← This is done only for the first iteration.
2. Sample 𝑝0~𝑁(0,1). 𝑝∗ ≔ 𝑝0
3. Alternate full steps for position and momentum
 for (i := 1, L)
  Make a half step for momentum
  𝑝∗ ≔ 𝑝∗ − Τ𝜀 2 ∙ Τ𝑑𝑈(𝑞∗) 𝑑𝑞
  Make a full step for the position
  𝑞∗ ≔ 𝑞∗ + 𝜀 ∙ 𝑝∗

  Make a half step for momentum
  𝑝∗ ≔ 𝑝∗ − Τ𝜀 2 ∙ Τ𝑑𝑈(𝑞∗) 𝑑𝑞
4. Negate momentum at the end of trajectory
 𝑝∗ ≔ −𝑝∗

5. Evaluate potential and kinetic energies at start and end of trajectory
 𝑈0 = 𝑈 𝑞0 ; 𝐾0 = Τ𝑝0

2 2; 𝑈∗ = 𝑈 𝑞∗ ; 𝐾∗ = Τ𝑝∗ 2 2
6. Accept or reject the proposed state
 𝑞∗ = 𝑞∗, if 𝑢 < exp(𝑈0- 𝑈∗+ 𝐾0- 𝐾∗); 𝑞∗ = 𝑞0, if 𝑢 ≥ exp(𝑈0- 𝑈∗+ 𝐾0- 𝐾∗) 

(𝑢~𝑈(0,1)) 

Here you impose constraints 
(see the page after the next)
⏎

https://arxiv.org/abs/1206.1901


MCMC from Hamiltonian Dynamics

Implementing constraints in HMC  (R.M. Neal, pp 36, 37)

Many distributions have a limited support, that is, the 
support ≠ (−∞,∞).

In such cases we need to impose constraints on 𝑞.

In order for the constraint to have minimal effect on the 
distribution it has to be imposed at every HMC step. 
Imposing after 𝐿 steps would lead to regions near the 
constraint (boundary) where the target distribution does 
not hold. 

In Hamiltonian dynamics constraints are elastic collisions 
of the imaginary particle with boundaries: positions are 
“mirrored” with respect to boundaries.

https://arxiv.org/abs/1206.1901


MCMC from Hamiltonian Dynamics

Implementing constraints in HMC  (R.M. Neal, pp 36, 37)

After this the momentum is 
propagated: 𝑝𝑖 𝑡 + 𝜀 = 𝑝𝑖

′ −
𝜀

2

𝜕𝑈

𝜕𝑞𝑖
(𝑞 𝑡 + 𝜀 ) (See next p.)

https://arxiv.org/abs/1206.1901


Hamiltonian Dynamics

The Leapfrog Method

𝑝𝑖 𝑡 + 𝜀/2 = 𝑝𝑖 𝑡 − 𝜀/2
𝜕𝑈

𝜕𝑞𝑖
𝑞 𝑡

𝑞𝑖 𝑡 + 𝜀 = 𝑞𝑖 𝑡 + 𝜀
𝑝𝑖(𝑡 + 𝜀/2)

𝑚𝑖

𝑝𝑖 𝑡 + 𝜀 = 𝑝𝑖 𝑡 + 𝜀/2 − 𝜀/2
𝜕𝑈

𝜕𝑞𝑖
𝑞 𝑡 + 𝜀

.

Upper constraint 𝑞𝑖 𝑡 + 𝜀 ≤ 𝑢𝑖:
If 𝑞𝑖 𝑡 + 𝜀 > 𝑢𝑖:
 𝑞𝑖 𝑡 + 𝜀 = 𝑢𝑖 − 𝑞𝑖 𝑡 + 𝜀 − 𝑢𝑖 , 𝑝𝑖 𝑡 + 𝜀/2 = −𝑝𝑖 𝑡 + 𝜀/2

Lower constraint 𝑞𝑖 𝑡 + 𝜀 ≥ 𝑙𝑖:
If 𝑞𝑖 𝑡 + 𝜀 < 𝑙𝑖:
 𝑞𝑖 𝑡 + 𝜀 = 𝑙𝑖 + (𝑙𝑖 − 𝑞𝑖 𝑡 + 𝜀 ) , 𝑝𝑖 𝑡 + 𝜀/2 = −𝑝𝑖 𝑡 + 𝜀/2

with Constraints



The Final Familiar View

𝑦 = 𝑓(𝑥) is 
proportional to 
the potential 
energy at 𝑥

∆𝐸

MCMC takes states towards the energy minimum, that is, 
towards maximum probability density.

The motivation is not just to get there and stay there, but to 
sample significant regions (those around equilibria, typical 
set) for distributions.
- And then there’s the dynamical (non-equilibrium) aspect, 
which is a different ball game altogether.

Local 
maximum of 
probability 
density

→



CS-E5755 - Nonlinear Dynamics and 

Chaos, January – mid-April 2025

Something different if you should be curious…

Machine learning inference is increasingly being used with  
nonlinear dynamics. 



CS-E5755 Nonlinear Dynamics & 
Chaos 

Nonlinear dynamics is relevant in 
the fields of population and 
social dynamics, mathematical 
biology, physics, electrical 
engineering, and many more.
The course covers the 
fundamental concepts and tools 
for solving systems involving 
nonlinear dynamics and provides 
the basis for understanding 
chaotic dynamics. 

Spring 2025 (the third and part of the 
Fourth period) 5 cr

Course book: Steven 
Strogatz: Nonlinear 
Dynamics and Chaos



CS-E5795 - Computational

Methods in Stochastics

THE END

Thanks for the company!

(of lectures…)

(but the peer review battle will rage on)
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