# TIØ 1: Financial Engineering in Energy Markets

#### Afzal Siddiqui

Department of Statistical Science University College London London WC1E 6BT, UK afzal@stats.ucl.ac.uk



#### COURSE OUTLINE

- ★ Introduction (Chs 1–2)
- ★ Mathematical Background (Chs 3–4)
- ★ Investment and Operational Timing (Chs 5–6)
- ★ Entry, Exit, Lay-Up, and Scrapping (Ch 7)
- ★ Recent Theoretical Work I: Capacity Sizing
- \* Recent Theoretical Work II: Risk Aversion and Multiple Risk Factors
- ★ Applications to the Energy Sector I: Capacity Sizing, Timing, and Operational Flexibility
- ★ Applications to the Energy Sector II: Modularity and Technology Choice



#### LECTURE OUTLINE

- ★ Stochastic processes
- ★ Wiener process and GBM
- ★ Itô's lemma
- ★ Dynamic programming
- ★ Contingent claims

### STOCHASTIC PROCESSES: Discrete Time and Discrete State

- ★ A variable that evolves over time in at least a partially random manner is a stochastic process
- More formally, a stochastic process is a law for the evolution of variable  $x_t$  over time t that allows us to calculate for various  $t_1 < t_2 < t_3 < \dots$  the joint probability  $\mathcal{P} \{a_1 < x_1 \leq b_1, a_2 < x_2 \leq b_2, a_3 < x_3 \leq b_3, \dots\}$ 
  - ▶ Stationary processes have statistical properties that are constant over long periods of time, e.g., temperature
  - ▶ Non-stationary processes may be things like stock prices
- ★ Discrete-time processes change values only at discrete points in time, e.g., random walk
  - Starting with  $x_0$ ,  $x_t$  takes independent jumps of size 1 (either up or down) at discrete points  $t = 1, 2, 3, \ldots$  each with probability  $\frac{1}{2}$
  - Thus,  $x_t$  has a binomial distribution:  $\mathcal{P}[x_t = t 2n] = \binom{t}{n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{t-n} = \binom{t}{n} 2^{-t}$  is the probability that there are n downward jumps and t n upward jumps by time t

### STOCHASTIC PROCESSES: Discrete Time and Continuous State

- ★ Instead of being a Bernoulli RV, the size of each jump may be a continuous RV, e.g., normal with mean zero and SD  $\sigma$
- Another example is a first-order AR process, i.e., AR(1):  $x_t = \delta + \rho x_{t-1} + \epsilon_t$ , where  $-1 < \rho < 1$  and  $\epsilon_t$  is a standard normal RV
  - ▶ Stationary process with long-run expected value  $\frac{\delta}{1-\rho}$
  - ▶ A mean-reverting process
- $\star$  Both the random walk and AR(1) are Markov processes, i.e., the probability distribution for  $x_{t+1}$  depends only on  $x_t$  and is independent of anything that happened before time t



#### STOCHASTIC PROCESSES: Continuous Time

- ★ A Wiener process (or Brownian motion) has the following properties:
  - Markov process
  - ▶ Independent increments
  - ► Changes over any finite time interval are normally distributed with variance that increases linearly in time
- ★ Nice property that past patterns have no forecasting value
- ★ For prices, it makes more sense to assume that changes in their logarithms are normally distributed, i.e., prices are lognormally distributed
- $\star$  More formally for a Wiener process  $\{z(t), t \geq 0\}$ :
  - $\Delta z = \epsilon_t \sqrt{\Delta t}$ , where  $\epsilon_t \sim \mathcal{N}(0, 1)$
  - ightharpoonup are serially uncorrelated, i.e.,  $\mathcal{E}[\epsilon_t \epsilon_s] = 0$  for  $t \neq s$



#### STOCHASTIC PROCESSES: Continuous Time

- $\star$  Implications of the two conditions are examined by breaking up the time interval T into n units of length  $\Delta t$  each
  - ► Change in z over T is  $z(s+T) z(s) = \sum_{i=1}^{n} \epsilon_i \sqrt{\Delta t}$ , where the  $\epsilon_i$  are independent
  - ▶ Via the CLT, z(s+T) z(s) is  $\mathcal{N}(0, n\Delta t = T)$
  - ▶ Variance of the changes increases linearly in time
- $\star$  Letting  $\Delta t$  become infinitesimally small implies  $dz = \epsilon_t \sqrt{dt}$ , where  $\epsilon_t \sim \mathcal{N}(0,1)$
- $\star$  This implies that  $\mathcal{E}[dz] = 0$  and  $\mathcal{V}(dz) = \mathcal{E}[(dz)^2] = dt$
- $\star$  Coefficient of correlation between two Wiener processes,  $z_1(t)$  and  $z_2(t)$ :  $\mathcal{E}[dz_1dz_2] = \rho_{12}dt$

### STOCHASTIC PROCESSES: Brownian Motion with Drift

- $\star$  Generalise the Wiener process:  $dx = \alpha dt + \sigma dz$ , where dz is the increment of the Wiener process,  $\alpha$  is the drift parameter, and  $\sigma$  is the variance parameter
  - Note time interval  $\Delta t$ ,  $\Delta x$  is normal with mean  $\mathcal{E}[\Delta x] = \alpha \Delta t$  and variance  $\mathcal{V}(\Delta x) = \sigma^2 \Delta t$
  - $\triangleright$  Given  $x_0$ , it is possible to generate sample paths
  - For example, if  $\alpha = 0.2$  and  $\sigma = 1.0$ , then the discretisation with  $\Delta t = \frac{1}{12}$  is  $x_t = x_{t-1} + 0.01667 + 0.2887\epsilon_t$  (Figure 3.1)
- $\star$  Optimal forecast is  $\hat{x}_{t+T} = x_t + 0.01667T$  and 66% CI is  $x_t + 0.01667T \pm 0.2887\sqrt{T}$  (Figure 3.2)
- $\star$  Mean of  $x_t x_0$  is  $\alpha t$  and its SD is  $\sigma \sqrt{t}$ , so the trend dominates in the long run

# STOCHASTIC PROCESSES: Figures 3.1 and 3.2



Figure 3.1. Sample Paths of Brownian Motion with Drift



Figure 3.2. Optimal Forecast of Brownian Motion with Drift



### STOCHASTIC PROCESSES: Brownian Motion and Random Walks

- \* Suppose that a discrete-time random walk for which the position is described by variable x makes jumps of  $\pm \Delta h$  every  $\Delta t$  time units given the initial position  $x_0$ 
  - ▶ The probability of an upward (downward) jump is p (q = 1 p)
  - Thus, x follows a Markov process with independent increments, i.e., probability distribution of its future position depends only on its current position (Figure 3.3)
- Mean:  $\mathcal{E}[\Delta x] = (p q)\Delta h$ ; second moment:  $\mathcal{E}[(\Delta x)^2] = p(\Delta h)^2 + q(\Delta h)^2 = (\Delta h)^2$ ; variance:  $\mathcal{V}(\Delta x) = (\Delta h)^2[1 (p q)^2] = [1 (2p 1)^2](\Delta h)^2 = 4pq(\Delta h)^2$
- Thus, if t has  $n = \frac{t}{\Delta t}$  steps, then  $x_t x_0$  is a binomial RV with mean  $n\mathcal{E}[\Delta x] = \frac{t(p-q)\Delta h}{\Delta t}$  and variance  $n\mathcal{V}(\Delta x) = \frac{4pqt(\Delta h)^2}{\Delta t}$

### STOCHASTIC PROCESSES:

#### Figure 3.3



Figure 3.3. Random Walk Representation of Brownian Motion



### STOCHASTIC PROCESSES: Brownian Motion and Random Walks

- $\star$  Choose  $\Delta h$ ,  $\Delta t$ , p, and q so that the random walk converges to a Brownian motion as  $\Delta t \to 0$ 

  - $p = \frac{1}{2} \left[ 1 + \frac{\alpha}{\sigma} \sqrt{\Delta t} \right], \ q = \frac{1}{2} \left[ 1 \frac{\alpha}{\sigma} \sqrt{\Delta t} \right]$
  - ► Thus,  $p q = \frac{\alpha}{\sigma} \sqrt{\Delta t} = \frac{\alpha}{\sigma^2} \Delta h$
- $\star$  Substitute these into the formulas for the mean and variance  $x_t x_0$ :
  - Mean:  $\mathcal{E}[x_t x_0] = \frac{t\alpha(\Delta h)^2}{\sigma^2 \Delta t} = \frac{t\alpha\sigma^2 \Delta t}{\sigma^2 \Delta t} = \alpha t$ ; variance:  $\mathcal{V}(x_t x_0) = \frac{4pqt(\Delta h)^2}{\Delta t} = \frac{4t\sigma^2 \Delta t \left[1 \frac{\alpha^2}{\sigma^2} \Delta t\right]}{4\Delta t} = t\sigma^2 \left[1 \frac{\alpha^2}{\sigma^2} \Delta t\right]$ , which goes to  $t\sigma^2$  as  $\Delta t \to 0$
- $\star$  Hence, these are the mean and variance of a Brownian motion; furthermore, the binomial distribution approaches the normal one for large n

### GENERALISED BROWNIAN MOTION

- An Itô process is dx = a(x,t)dt + b(x,t)dz, where dz is the increment of a Wiener process, and both a(x,t) and b(x,t) are known but may be functions of both x and t
  - Mean:  $\mathcal{E}[dx] = a(x,t)dt$ ; second moment:  $\mathcal{E}[(dx)^2] = \mathcal{E}[a^2(x,t)(dt)^2 + b^2(x,t)(dz)^2 + 2a(x,t)b(x,t)dtdz] = b^2(x,t)dt$ ; variance:  $\mathcal{V}(dx) = \mathcal{E}[(dx)^2] (\mathcal{E}[dx])^2 = b^2(x,t)dt$
- $\star$  A geometric Brownian motion (GBM) has  $a(x,t) = \alpha x$  and  $b(x,t) = \sigma x$ , which implies  $dx = \alpha x dt + \sigma x dz$ 
  - ightharpoonup Percentage changes in x are normally distributed, or absolute changes in x are lognormally distributed
  - ▶ If  $\{y(t), t \ge 0\}$  is a BM with parameters  $(\alpha \frac{1}{2}\sigma^2)t$  and  $\sigma^2 t$ , then  $\{x(t) \equiv x_0 e^{y(t)}, t \ge 0\}$  is a GBM
  - ▶  $m_y(s) = \mathcal{E}[e^{sy(t)}] = e^{s\alpha t \frac{s\sigma^2 t}{2} + \frac{s^2\sigma^2 t}{2}}$ , which implies  $\mathcal{E}[y(t)] = (\alpha \frac{1}{2}\sigma^2)t$  and  $\mathcal{V}(y(t)) = \sigma^2 t$
  - Thus,  $\mathcal{E}_{x_0}[x(t)] = \mathcal{E}_{x_0}[x_0e^{y(t)}] = x_0m_y(1) = x_0e^{\alpha t}$  and  $\mathcal{V}_{x_0}(x(t)) = \mathcal{E}_{x_0}[(x(t))^2] (\mathcal{E}_{x_0}[x(t)])^2 = x_0^2\mathcal{E}_{x_0}[e^{2y(t)}] x_0^2e^{2\alpha t} = x_0^2e^{2\alpha t}[e^{\sigma^2t} 1]$



#### GEOMETRIC BROWNIAN MOTION TRAJECTORIES

- \* Expected PV of a GBM assuming discount rate  $r > \alpha$  is  $\mathcal{E}_{x_0} \left[ \int_0^\infty x(t) e^{-rt} dt \right] = \int_0^\infty \mathcal{E}_{x_0} [x(t)] e^{-rt} dt = \int_0^\infty x_0 e^{\alpha t} e^{-rt} dt = \frac{x_0}{r-\alpha}$
- Generate sample paths for  $\alpha = 0.09$  and  $\sigma = 0.2$  per annum using  $x_{1950} = 100$  and one-month intervals, i.e.,  $x_t x_{t-1} = 0.0075x_{t-1} + 0.0577x_{t-1}\epsilon_t$ , where  $\epsilon_t \sim \mathcal{N}(0, 1)$  (Figure 3.4)
  - ▶ Trend line is obtained by setting  $\epsilon_t = 0$
  - ▶ Optimal forecast given  $x_{1974}$  is  $\hat{x}_{1974+T} = (1.0075)^T x_{1974}$ , while the CI is  $(1.0075)^T (1.0577)^{\pm \sqrt{T}} x_{1974}$  (Figure 3.5)

14 of 35

### GEOMETRIC BROWNIAN MOTION TRAJECTORIES: Figures 3.4 and 3.5



Figure 3.4. Sample Paths of Geometric Brownian Motion



Figure 3.5. Optimal Forecast of Geometric Brownian Motion

15 of 35

#### MEAN-REVERTING PROCESSES

- ★ Certain commodity prices tend to stay near their long-run marginal production costs, e.g., oil or copper
- $\star$  Simplest mean-reverting (MR) process is the Ornstein-Uhlenbeck process:  $dx = \eta(\overline{x} - x)dt + \sigma dz$ 
  - ▶ Satisfies the Markov property but does not have independent increments
  - Given  $x(t) = x_0$ , we have  $\mathcal{E}_{x_0}[x(t)] = \overline{x} + (x_0 \overline{x})e^{-\eta t}$  and  $V_{x_0}[x(t) \overline{x}] = \frac{\sigma^2}{2\eta}(1 e^{-2\eta t})$
  - Note that as  $t \to \infty$ , the mean converges to  $\overline{x}$  and the variance converges to  $\frac{\sigma^2}{2\eta}$
  - ightharpoonup As  $\eta \to \infty$ , the variance goes to zero
  - ▶ As  $\eta \to 0$ ,  $\{x(t), t \ge 0\}$  becomes a BM with variance  $\sigma^2 t$
  - Figure 3.6 shows sample paths for  $\overline{x} = 1$ ,  $x_0 = 1$ ,  $\sigma = 0.05$ , and various values of  $\eta$
  - ▶ Figure 3.7 shows the optimal forecast and CI



## MEAN-REVERTING PROCESSES: Figures 3.6 and 3.7



**Figure 3.6.** Sample Paths of Mean-Reverting Process:  $dx = \eta(\bar{x} - x)dt + \sigma dz$ 



Figure 3.7. Optimal Forecast of Mean-Reverting Process

#### MEAN-REVERTING PROCESSES

- Equation for first-order autoregressive process is  $x_t x_{t-1} = \overline{x}(1-e^{-\eta}) + (e^{-\eta}-1)x_{t-1} + \epsilon_t$ , where  $\epsilon_t \sim \mathcal{N}(0, \sigma_{\epsilon})$  and  $\sigma_{\epsilon}^2 = \frac{\sigma^2}{2n}(1-e^{-2\eta})$ 
  - Estimate parameters by running the regression  $x_t x_{t-1} = a + bx_{t-1} + \epsilon_t$
  - ► Thus,  $\overline{x} = -\frac{\hat{a}}{\hat{b}}$ ,  $\hat{\eta} = -\ln(1+\hat{b})$ , and  $\hat{\sigma}^2 = \frac{\hat{\sigma}_{\epsilon}^2 \ln(1+\hat{b})^2}{(1+\hat{b})^2-1}$
- ★ Can also have a geometric MR process:  $dx = \eta x(\overline{x} x)dt + \sigma xdz$
- ★ In order to check for mean reversion, perform unit root tests on many years of data
  - ▶ Figures 3.8 and 3.9 indicate that commodity prices are mean reverting but with a low rate of mean reversion

# MEAN-REVERTING PROCESSES: Figures 3.8 and 3.9



Figure 3.8. Price of Crude Oil in 1967 Dollars per Barrel



Figure 3.9. Price of Copper in 1967 Cents per Pound

19 of 35

#### ITÔ'S LEMMA

- ★ Itô's lemma allows us to integrate and differentiate functions of Itô processes
  - Recall Taylor series expansion for F(x,t):  $dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial t}dt + \frac{1}{2}\frac{\partial^2 F}{\partial x^2}(dx)^2 + \frac{1}{6}\frac{\partial^3 F}{\partial x^3}(dx)^3 + \cdots$
  - Usually, higher-order terms vanish, but here  $(dx)^2 = b^2(x,t)dt$  (once terms in  $(dt)^{\frac{3}{2}}$  and  $(dt)^2$  are ignored), which is linear in dt
  - Thus,  $dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial t}dt + \frac{1}{2}\frac{\partial^2 F}{\partial x^2}(dx)^2 \Rightarrow dF = \left[\frac{\partial F}{\partial t} + a(x,t)\frac{\partial F}{\partial x} + \frac{1}{2}b^2(x,t)\frac{\partial^2 F}{\partial x^2}\right]dt + b(x,t)\frac{\partial F}{\partial x}dz$
  - Intuitively, even if a(x,t) = 0 and  $\frac{\partial F}{\partial t} = 0$ , then  $\mathcal{E}[dx] = 0$ , but  $\mathcal{E}[dF] \neq 0$  because of Jensen's inequality
- Generalise to m Itô processes with  $dx_i = a_i(x_1, \dots, x_m, t)dt + b_i(x_1, \dots, x_m, t)dx_i$  and  $\mathcal{E}[dz_i dz_j] = \rho_{ij}dt$ :  $dF = \frac{\partial F}{\partial t}dt + \sum_i \frac{\partial F}{\partial x_i}dx_i + \frac{1}{2}\sum_i \sum_j \frac{\partial^2 F}{\partial x_i \partial x_j}dx_i dx_j$

#### APPLICATION TO GBM

- \* If  $dx = \alpha x dt + \sigma x dz$  and  $F(x) = \ln(x)$ , then F(x) follows a BM with parameters  $\alpha \frac{1}{2}\sigma^2$  and  $\sigma$ 
  - $\frac{\partial F}{\partial t} = 0, \frac{\partial F}{\partial x} = \frac{1}{x}, \frac{\partial^2 F}{\partial x^2} = -\frac{1}{x^2}, \text{ which implies that } dF = \frac{dx}{x} \frac{1}{2x^2}(dx)^2 = \alpha dt + \sigma dz \frac{1}{2}\sigma^2 dt = (\alpha \frac{1}{2}\sigma^2)dt + \sigma dz$
- Consider F(x, y) = xy and  $G = \ln F$  with  $dx = \alpha_x x dt + \sigma_x x dz_x$ ,  $dy = \alpha_y y dt + \sigma_y y dz_y$ , and  $\mathcal{E}[dz_x dz_y] = \rho dt$ 

  - Substitute dx and dy:  $dF = \alpha_x xy dt + \sigma_x xy dz_x + \alpha_y xy dt + \sigma_y xy dz_y + xy \sigma_x \sigma_y \rho dt \Rightarrow dF = (\alpha_x + \alpha_y + \rho \sigma_x \sigma_y) F dt + (\sigma_x dz_x + \sigma_y dz_y) F$ , i.e., F is also a GBM
  - Meanwhile,  $dG = (\alpha_x + \alpha_y \frac{1}{2}\sigma_x^2 \frac{1}{2}\sigma_y^2)dt + \sigma_x dz_x + \sigma_y dz_y$
- $\star$  Discounted PV:  $F(x) = x^{\theta}$  and x follows a GBM
  - F follows a GBM, too:  $dF = \theta x^{\theta-1} dx + \frac{1}{2}\theta(\theta 1)x^{\theta-1}(dx)^2 = F[\theta\alpha + \frac{1}{2}\theta(\theta 1)\sigma^2]dt + \theta\sigma Fdz \Rightarrow \mathcal{E}_{x_0}[F(x(t))] = F(x_0)e^{t(\theta\alpha + \frac{1}{2}\theta(\theta 1)\sigma^2)}$





### STOCHASTIC DISCOUNT FACTOR

- Proposition: The conditional expectation of the stochastic discount factor,  $\mathcal{E}_p[e^{-\rho\tau}]$ , is the power function,  $\left(\frac{p}{P_I}\right)^{\beta_1}$ , where  $\tau \equiv \min\{t : P_t \geq P_I\}$
- $\star$  Proof: Let  $g(p) \equiv \mathcal{E}_p \left[ e^{-\rho \tau} \right]$ 
  - $g(p) = o(dt)e^{-\rho dt} + (1 o(dt))e^{-\rho dt}\mathcal{E}_p[g(p+dP)]$
  - $\Rightarrow g(p) = o(dt)e^{-\rho dt} + (1 o(dt))e^{-\rho dt} \mathcal{E}_{p} \left[ g(p) + dPg'(p) + \frac{1}{2}(dP)^{2}g''(p) + o(dt) \right]$
  - $\Rightarrow g(p) = o(dt) + e^{-\rho dt}g(p) + e^{-\rho dt}\alpha pg'(p)dt + e^{-\rho dt}\frac{1}{2}\sigma^{2}p^{2}g''(p)dt$
  - $\Rightarrow g(p) = o(dt) + (1 \rho dt)g(p) + (1 \rho dt)\alpha p g'(p)dt + (1 \rho dt)\frac{1}{2}\sigma^{2}p^{2}g''(p)dt$
  - $\Rightarrow -\rho g(p) + \alpha p g'(p) + \frac{1}{2} \sigma^2 p^2 g''(p) = \frac{o(dt)}{dt}$
  - $\Rightarrow g(p) = a_1 p^{\beta_1} + a_2 p^{\beta_2}$
  - $ightharpoonup \lim_{p\to 0} g(p) = 0 \Rightarrow a_2 = 0 \text{ and } g(P_I) = 1 \Rightarrow a_1 = \frac{1}{P_I^{\beta_1}}$



### DYNAMIC PROGRAMMING: Many-Period Example

- Now, let the state variable  $x_t$  be continuous and the control variable  $u_t$  represent the possible choices made at time t
  - Let the immediate profit flow be  $\pi_t(x_t, u_t)$  and  $\Phi_t(x_{t+1}|x_t, u_t)$  be the CDF of the state variable next period given current information
  - ► Given the discount rate  $\rho$  and the Bellman Principle of Optimality, the expected NPV of the cash flows to go from period t is  $F_t(x_t) = \max_{u_t} \left\{ \pi_t(x_t, u_t) + \frac{1}{(1+\rho)} \mathcal{E}_t[F_{t+1}(x_{t+1})] \right\}$
  - Use the termination value at time T and work backwards to solve for successive values of  $u_t$ :  $F_{T-1}(x_{T-1}) = \max_{u_{T-1}} \left\{ \pi_{T-1}(x_{T-1}, u_{T-1}) + \frac{1}{(1+\rho)} \mathcal{E}_{T-1}[\Omega_T(x_T)] \right\}$
- \* With an infinite horizon, it is possible to solve the problem recursively due to independence from time and the downward scaling due to the discount factor: F(x) =

$$\max_{u} \left\{ \pi(x, u) + \frac{1}{(1+\rho)} \mathcal{E}[F(x')|x, u] \right\}$$



### DYNAMIC PROGRAMMING: Optimal Stopping

- ★ Suppose that the choice is binary: either continue (to wait or to produce) or to terminate (waiting or production)
  - ▶ Bellman equation is now max  $\left\{\Omega(x), \pi(x) + \frac{1}{(1+\rho)}\mathcal{E}[F(x')|x]\right\}$
  - Focus on case where it is optimal to continue for  $x > x^*$  and stop otherwise
  - Continuation is more attractive for higher x if: (i) immediate profit from continuation becomes larger relative to the termination payoff, i.e.,  $\pi(x) + \frac{1}{(1+\rho)}\mathcal{E}[\Omega(x')|x] \Omega(x)$  is increasing in x, and (ii) current advantage should not be likely to be reversed in the near future, i.e., require first-order stochastic dominance
  - ▶ Both conditions are satisfied in the applications studied here: (i) always holds, and (ii) is true for random walks, Brownian motion, MR processes, and most other economic applications
  - ▶ In general, may have stopping threshold that varies with time,  $x^*(t)$

#### DYNAMIC PROGRAMMING: Continuous Time

- $\star$  In continuous time, the length of the time period,  $\Delta t$ , goes to zero and all cash flows are expressed in terms of rates
  - Bellman equation is now  $F(x,t) = \max_{u} \left\{ \pi(x,u,t)\Delta t + \frac{1}{(1+\rho\Delta t)}\mathcal{E}[F(x',t+\Delta t)|x,u] \right\}$
  - Multiply by  $(1 + \rho \Delta t)$  and re-arrange:  $\rho \Delta t F(x,t) = \max_{u} \{\pi(x,u,t)\Delta t(1+\rho\Delta t) + \mathcal{E}[F(x',t+\Delta t)-F(x,t)|x,u]\} = \max_{u} \{\pi(x,u,t)\Delta t(1+\rho\Delta t) + \mathcal{E}[\Delta F|x,u]\}$
  - Divide by  $\Delta t$  and let it go to zero to obtain  $\rho F(x,t) = \max_{u} \left\{ \pi(x,u,t) + \frac{\mathcal{E}[dF|x,u]}{dt} \right\}$
  - ► Intuitively, the instantaneous rate of return on the asset must equal its expected net appreciation

#### DYNAMIC PROGRAMMING: Itô Processes

- $\star$  Suppose that dx = a(x, u, t)dt + b(x, u, t)dz and x' = x + dx
- $\star$  Apply Itô's lemma to the value function, F:
  - $\mathcal{E}[F(x+\Delta,t+\Delta t)|x,u] = F(x,t) + [F_t(x,t) + a(x,u,t)F_x(x,t) + \frac{1}{2}b^2(x,u,t)F_{xx}(x,t)]\Delta t + o(\Delta t)$
  - Return equilibrium condition is now  $\rho F(x,t) = \max_{u} \left\{ \pi(x,u,t) + F_t(x,t) + a(x,u,t)F_x(x,t) + \frac{1}{2}b^2(x,u,t)F_{xx}(x,t) \right\}$
  - Next, find optimal u as a function of  $F_t(x,t)$ ,  $F_x(x,t)$ ,  $F_{xx}(x,t)$ , x, t, and underlying parameters
  - $\blacktriangleright$  Substitute it back into the return equilibrium condition to obtain a second-order PDE with F as the dependent variable and x and t as the independent ones
  - $\blacktriangleright$  Solution procedure is typically to start at the terminal time T and work backwards
- $\star$  When time horizon is infinite, t drops out of the equation:
  - $\rho F(x) = \max_{u} \left\{ \pi(x, u) + a(x, u) F'(x) + \frac{1}{2} b^{2}(x, u) F''(x) \right\}$

### DYNAMIC PROGRAMMING: Optimal Stopping and Smooth Pasting

- ★ Consider a binary decision problem: can either continue to obtain a profit flow (with continuation value) or stop to obtain a termination payoff where dx = a(x,t)dt + b(x,t)dz
  - In this case, a threshold policy with  $x^*(t)$  exists, and the Bellman equation is  $\rho F(x,t)dt = \max \{\Omega(x,t)dt, \pi(x,t)dt + \mathcal{E}[dF|x]\}$
  - The RHS is larger in the continuation region, so applying Itô's lemma gives  $\frac{1}{2}b^2(x,t)F_{xx}(x,t)+a(x,t)F_x(x,t)+F_t(x,t)-\rho F(x,t)+\pi(x,t)=0$
  - ► The PDE can be solved for F(x,t) for  $x > x^*(t)$  subject to the boundary condition  $F(x^*(t),t) = \Omega(x^*(t),t) \, \forall t$  (value-matching condition)
  - A second condition is necessary to find the free boundary:  $F_x(x^*(t),t) = \Omega_x(x^*(t),t) \ \forall t \ (\text{smooth-pasting condition})$
  - ► The latter may be thought of as a first-order necessary condition, i.e., if the two curves met at a kink, then the optimal stopping would occur elsewhere

# DYNAMIC PROGRAMMING EXAMPLE: Optimal Abandonment

- You own a machine that produces profit, x, that evolves according to a BM process, i.e., dx = adt + bdz, where a < 0 to reflect decay of the machine over time
- The lifetime of the machine is T years, discount rate is  $\rho$ , and we must find the optimal threshold profit level,  $x^*(t)$ , below which to abandon the machine (zero salvage value)
  - Corresponding PDE is  $\frac{1}{2}b^2F_{xx}(x,t)+aF_x(x,t)+F_t(x,t)-\rho F(x,t)+x=0$
  - ▶ PDE is solved numerically for T=10,~a=-0.1,~b=0.2, and  $\rho=0.10$  using discrete time steps of  $\Delta t=0.01$
  - Solution in Figure 4.1 indicates that for lifetimes greater than ten years, the optimal abandonment threshold is about -0.17
  - ▶ As lifetime is reduced, it becomes easier to abandon the machine



# DYNAMIC PROGRAMMING EXAMPLE: Figure 4.1







# DYNAMIC PROGRAMMING EXAMPLE: Optimal Abandonment

- Assume an effectively infinite lifetime to obtain an ODE instead of a PDE:  $\frac{1}{2}b^2F''(x) + aF'(x) \rho F(x) + x = 0$ 
  - ▶ Homogeneous solution is  $y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
  - Substituting derivatives into the homogeneous portion of the ODE yields  $c_1 e^{r_1 x} (\frac{1}{2} b^2 r_1^2 + a r_1 \rho) + c_2 e^{r_2 x} (\frac{1}{2} b^2 r_2^2 + a r_2 \rho) = 0$
  - The terms in the parentheses must be equal to zero, i.e.,  $r_1 = \frac{-a + \sqrt{a^2 + 2b\rho}}{b^2} = 5.584 > 0$  and  $r_2 = \frac{-a \sqrt{a^2 + 2b\rho}}{b^2} = -0.854 < 0$
  - ▶ Particular solution: Y(x) = Ax + B, Y'(x) = A, and Y''(x) = 0
  - Substituting these into the original ODE yields  $aA \rho(Ax + B) + x = 0 \Rightarrow A = \frac{1}{\rho}, B = \frac{a}{\rho^2}$
  - Thus,  $Y(x) = \frac{x}{\rho} + \frac{a}{\rho^2}$ , and  $F(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \frac{x}{\rho} + \frac{a}{\rho^2}$
  - Boundary conditions: (i)  $F(x^*) = 0$ , (ii)  $F'(x^*) = 0$ , (iii)  $\lim_{x\to\infty} F(x) = Y(x)$
  - ▶ The third one implies that  $c_1 = 0$ , i.e.,  $F(x) = c_2 e^{r_2 x} + \frac{x}{\rho} + \frac{a}{\rho^2}$
  - First two conditions imply  $x^* = -\frac{a}{\rho} + \frac{1}{r_2} = -0.17$  and  $c_2 = \frac{e^{-r_2x^*}}{2}$



#### CONTINGENT CLAIMS: Replicating Portfolio

- $\star$  Dynamic programming uses an exogenous discount rate,  $\rho$ , which is assumed to the opportunity cost of capital
- ★ Financial theory has a more sophisticated treatment of this topic in terms of relating this cost to the market portfolio
  - Assume profit flow, x, follows a GBM and the output of the firm can be traded in financial markets
  - ▶ Output held by investors if it provides a sufficiently high return: part of it from  $\alpha$  and another from the convenience yield,  $\delta = \mu \alpha$
  - The risk-adjusted rate of return is obtained from CAPM:  $\mu = r + \phi \sigma \rho_{xm}$ , where  $\phi$  is the market price of risk and  $\rho_{xm}$  is the correlation between returns



#### CONTINGENT CLAIMS: Replicating Portfolio

- $\star$  Value of a firm, F(x,t), with profit flow,  $\pi(x,t)$ , may be replicated by investing a dollar in the risk-free asset and holding n units of the output
  - Portfolio costs \$(1+nx), and if held for dt time units, then it provides a safe return of rdt, a dividend of  $n\delta xdt$ , and a stochastic capital gain of  $ndx = n\alpha xdt + n\sigma xdz$
  - ► The total return per dollar invested is  $\frac{r+n(\alpha+\delta)x}{1+nx}dt + \frac{\sigma nx}{1+nx}dz$
  - Ownership of the firm over dt costs F(x,t) and offers a profit flow  $\pi(x,t)dt$  along with a stochastic capital gain  $dF = [F_t(x,t) + \alpha x F_x(x,t) + \frac{1}{2}\sigma^2 x^2 F_{xx}(x,t)]dt + \sigma x F_x(x,t)dz$
  - Thus, total return per dollar is  $\frac{\pi(x,t)+F_t(x,t)+\alpha x F_x(x,t)+\frac{1}{2}\sigma^2 x^2 F_{xx}(x,t)}{F(x,t)}dt+\frac{\sigma x F_x(x,t)}{F(x,t)}dz$

#### **CONTINGENT CLAIMS:** Replicating Portfolio

 $\star$  Matching the risk terms gives  $\frac{nx}{(1+nx)} = \frac{xF_x(x,t)}{F(x,t)} \Rightarrow n = 1$ 

$$\frac{F_x(x,t)}{(F(x,t)-xF_x(x,t))}$$

- Matching the return terms gives
- $\frac{\pi(x,t) + F_t(x,t) + \alpha x F_x(x,t) + \frac{1}{2}\sigma^2 x^2 F_{xx}(x,t)}{F(x,t)} = \frac{r + n(\alpha + \delta)x}{1 + nx}$ > Substituting for n implies that the RHS  $r \frac{(F(x,t) x F_x(x,t))}{F(x,t)} + (\alpha + \delta) \frac{x F_x(x,t)}{F(x,t)}$ becomes
- ▶ Re-arranging the return equation then yields  $\frac{1}{2}\sigma^2x^2F_{xx}(x,t)+(r-t)$  $\delta x F_x(x,t) + F_t(x,t) - rF(x,t) + \pi(x,t) = 0$
- Similar to the PDE obtained via dynamic programming
- Can also use a risk-free portfolio by holding one unit of F(x,t) and n units short of the underlying asset x

### CONTINGENT CLAIMS: Spanning Assets

- $\star$  If x is not directly traded, then we can use a spanning asset, i.e., one whose risk tracks the uncertainty in x
  - Suppose replicating asset follows dX = A(x,t)Xdt + B(x,t)Xdz, i.e., have the same dz even if the other coefficients are different
  - ▶ If there is a dividend flow rate, D(x,t), then one dollar invested in X over time dt provides the return [D(x,t)+A(x,t)]dt+B(x,t)dz
  - An investor will require return  $\mu_X(x,t) = r + \phi \rho_{xm} B(x,t)$ , which must equal D(x,t) + A(x,t)
- Risk-free portfolio will cost F nX to buy and provide dividend flows of  $[\pi nDX]dt$ 
  - Capital gain on the portfolio is  $dF ndX = [F_t + aF_x + \frac{1}{2}b^2F_{xx} nAX]dt + [bF_x nBX]dz$ , so risk-free portfolio requires  $n = \frac{bF_x}{BX}$
  - Set expected net return on portfolio to the risk-free return on its cost:  $r[F-nX]dt = [F_t + aF_x + \frac{1}{2}b^2F_{xx} nAX]dt + \pi dt nDXdt$
  - Thus:  $\frac{1}{2}b^2F_{xx} + aF_x + F_t rF + rnX nDX nAX + \pi = 0 \Rightarrow \frac{1}{2}b^2F_{xx} + aF_x + F_trF + \frac{rbF_x}{B} \frac{DbF_x}{B} \frac{AbF_x}{B} + \pi = 0$
  - $\frac{1}{2}b^2F_{rr} + aF_r + F_t rF + \frac{rbF_x}{B} \frac{\mu_X bF_x}{B} + \pi = 0$



### **QUESTIONS**

