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/~ STOCHASTIC PROCESSES: I

Discrete Time and Discrete State

A variable that evolves over time in at least a partially

random manner is a stochastic process
More formally, a stochastic process is a law for the evo-
lution of variable z; over time t that allows us to calcu-
late for various t; < ty < t3 < ... the joint probability
P{al <x < bl,a,g < Ty < bg,a,g < a3 < bg,...}
» Stationary processes have statistical properties that are constant
over long periods of time, e.g., temperature
» Non-stationary processes may be things like stock prices
Discrete-time processes change values only at discrete
points in time, e.g., random walk
» Starting with xo, z: takes independent jumps of size 1 (either up
or down) at discrete points t = 1,2, 3, ... each with probability %

» Thus, z; has a binomial distribution: Plxy = t — 2n| =
(:7,) (%)n (%)t_n = (2)2_t is the probability that there are n down-
\ ward jumps and ¢t — n upward jumps by time ¢ /
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STOCHASTIC PROCESSES: I

Discrete Time and Continuous State

\_

Instead of being a Bernoulli RV, the size of each jump

may be a continuous RV, e.g., normal with mean zero
and SD o

Another example is a first-order AR process, i.e., AR(1):
Ty = 0+ pxi_1+€, where —1 < p < 1 and ¢, is a standard
normal RV
» Stationary process with long-run expected value %
» A mean-reverting process

Both the random walk and AR(1) are Markov processes,
i.e., the probability distribution for z;,; depends only on
x; and is independent of anything that happened before

time ¢ /
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/~ STOCHASTIC PROCESSES: I

Continuous Time

A Wiener process (or Brownian motion) has the following
properties:
» Markov process
» Independent increments
» Changes over any finite time interval are normally distributed with
variance that increases linearly in time

Nice property that past patterns have no forecasting
value

For prices, it makes more sense to assume that changes
in their logarithms are normally distributed, i.e., prices

are lognormally distributed
More formally for a Wiener process {z(t),t > 0}:
> Az =e;V/At, where e, ~ N(0,1)

\ » ¢, are serially uncorrelated, i.e., E[eie5] = 0 for ¢t # s /
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/~ STOCHASTIC PROCESSES: I

Continuous Time

\_

Implications of the two conditions are examined by
breaking up the time interval 7" into n units of length
At each
» Change in z over T'is z(s +T) — 2(s) = >, €,V At, where the ¢;
are independent
» Via the CLT, 2(s +T) — 2(s) is N(0,nAt = T)
» Variance of the changes increases linearly in time

Letting At become infinitesimally small implies dz =
eV dt, where €, ~ N(0,1)

This implies that £[dz] = 0 and V(dz) = £[(dz)?] = dt
Coefficient of correlation between two Wiener processes,

21(t) and 25(t): E|dz1dzs] = pradt
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/~ STOCHASTIC PROCESSES: I

Brownian Motion with Drift

Generalise the Wiener process: dr = adt + odz, where
dz is the increment of the Wiener process, « is the drift
parameter, and o is the variance parameter
» Over time interval At, Az is normal with mean £[Az] = aAt and
variance V(Azx) = o? At
» Given xo, it is possible to generate sample paths

» For example, if « = 0.2 and ¢ = 1.0, then the discretisation with
At = == is ¢y = z:—1 + 0.01667 + 0.2887¢; (Figure 3.1)

Optimal forecast is Z; .7 = z; + 0.016671 and 66% CI is
x, + 0.01667T + 0.2887\/T (Figure 3.2)

Mean of z; — xg is ot and its SD is ov/t, so the trend

\ dominates in the long run /
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/~ STOCHASTIC PROCESSES:

[ ]
Figures 3.1 and 3.2
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Figure 3.2.  Uptimal Forecast of Brownian Motion with Drift
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/STOCHASTIC PROCESSES: Brownian \
Motion and Random Walks

Suppose that a discrete-time random walk for which the
position is described by variable x makes jumps of =Ah
every At time units given the initial position xg
» The probability of an upward (downward) jump is p (¢ = 1 — p)
» Thus, x follows a Markov process with independent increments,
i.e., probability distribution of its future position depends only on
its current position (Figure 3.3)

Mean: E[Azx] = (p — q¢)Ah; second moment: E[(Ax)?
p(Ah)?+q(Ah)? = (Ah)?; variance: V(Az) = (Ah)?|
(p—q)"] = [1 — (2p — 1)°](AR)* = 4pq(Ah)’

Thus, if t has n = ﬁ steps, then x; — x¢ is a binomial RV

with mean n&[Az] = 12 _Aqt)Ah and variance nV(Ax)

4pqt(Ah)?
\ At /
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Figure 3.3

/~ STOCHASTIC PROCESSES:

~
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Figure 3.3.  Random Walk Representation of Brownian Motion
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/STOCHASTIC PROCESSES: Brownian \
Motion and Random Walks

Choose Ah, At, p, and ¢ so that the random walk con-
verges to a Brownian mot10n as At — 0

> Ah=ovVAt
- p= 21 sva o= 2 1 sva
» Thus, p—q = 2VALt = % Ah
Substitute these into the formulas for the mean and vari-
ance x; — Io:
» Mean: [z —xo] =

ta(Ah)?2  tac?At
c2At — oZ2At

2
9 Ato? At|1— 27 At
Adpqt(Ah)® o
At T VIYAN 7
as At — 0

Hence, these are the mean and variance of a Brown-
ian motion; furthermore, the binomial distribution ap-

\ proaches the normal one for large n /
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/ GENERALISED BROWNIAN \

MOTION
An Tto process 1s dr = a(x,1)dt + b(z, t)dz, where dz 1s

the increment of a Wiener process, and both a(x,t) and

b(x,t) are known but may be functions of both = and ¢
» Mean: &[dx] = a(z,t)dt; second moment: &[(dr)?] =
Ela®(x,t)(dt)*+b*(z, t)(dz)*4+2a(x, t)b(x, t)dtdz] = b*(x, t)dt; vari-
ance: V(dz) = £[(dz)?] — (E[dx])® = b*(x, t)dt
A geometric Brownian motion (GBM) has a(z,t) = ax
and b(x,t) = oz, which implies dx = axdt + oxdz
» Percentage changes in x are normally distributed, or absolute

changes in x are lognormally distributed
» If {y(¢),¢t > 0} is a BM with parameters (o — 20°) t and o°t, then

{x(t) = z0e¥D,t > 0} is a GBM

2 22
Ut+ gt

> my(s) = E[eM] = e 5, which implies E[y(t)] =
(a — J)tandV( t)) = o’t

(
N Erafe0e0] = zom, (1) = e and Vi (a() L/
Euo [(2(1)2] = (Eug [2(D)])? = 23 Eny [€2V D] —ae?*! = 25e®* e t -1
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/" GEOMETRIC BROWNIAN I
MOTION TRAJECTORIES

Expected PV of a GBM assuming discount rate

ro> ads & | [ xt)e ] = [T Eulz(t)]edt =
[ moete " dt = 20

Generate sample paths for « = 0.09 and ¢ = 0.2 per
annum using x1950 = 100 and one-month intervals, i.e.,

LT — L—1 — 0.00751'75_1 +O-O577wt—1€t7 where €t N N(O, 1)

(Figure 3.4)
» Trend line is obtained by setting ¢, =0

> Optimal forecast given Tigr4 1S 531974+T = (1.0075>T$1974, while
the CI is (1.0075)7(1.0577) YT 21974 (Figure 3.5)
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/GEOMETRIC BROWNIAN MOTION \
TRAJECTORIES: Figures 3.4 and 3.5
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4 A

MEAN-REVERTING PROCESSES

Certain commodity prices tend to stay near their
long-run marginal production costs, e.g., oil or copper

Simplest mean-reverting (MR) process is the Ornstein-

Uhlenbeck process: dxr = n(T — x)dt + odz

» Satisfies the Markov property but does not have independent in-
crements
» Given z(t) = o, we have E;,[z(t)] = T+(xo—T)e” " and Vy, [z(t)—

7 =g (1—e ")
» Note that as ¢ — oo, the mean converges to * and the variance

converges to %
» As 71 — oo, the variance goes to zero
» Asn — 0, {z(t),t > 0} becomes a BM with variance o*t

» Figure 3.6 shows sample paths for x = 1, xg = 1, 0 = 0.05, and

various values of n
» Figure 3.7 shows the optimal forecast and CI
1-8 September 2011 Siddiqui 16 of 35




/" MEAN-REVERTING
PROCESSES: Figures 3.6 and 3.7
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Figure 3.7. Optimal Forecast of Mean-Reverting Process
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MEAN-REVERTING PROCESSES

\_

Equation for first-order autoregressive process is x; —
i1 =T(1—e ")+ (e7"—1)x;_1 +¢€, where ¢ ~ N (0, 0,)
2 __ o2 —2n
and o; = 3-(1 —e™)
» LEstimate parameters by running the regression r; — x:+—1 = a +
bri—1 + €
_ & A - A2 52 In(1+b)?
» Thus,Z=—%,1=—In(1+b), and 6° = (14?6)2—1

Can also have a geometric MR process: dr =
nx(T — x)dt + oxdz

In order to check for mean reversion, perform unit root
tests on many years of data
» Figures 3.8 and 3.9 indicate that commodity prices are mean re-

verting but with a low rate of mean reversion /
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/" MEAN-REVERTING

] 9
PROCESSES: Figures 3.8 and 3.
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4 A

ITO'S LEMMA

Ito‘s lemma allows us to integrate and differentiate func-
tions of It0 processes
» Recall Taylor series expansion for F(z,t): dF = 2Edx + 2&dt +
2
108 (dz)? + $ 9.5 (dw)® +
» Usually, higher-order terms Vanish, but here (dz)? = b*(x,t)dt
(once terms in (dt)% and (dt)? are ignored), which is linear in dt
» Thus, dF = 2Edp + 2Lg 4 L2E(gp)? = JF =
[%—IZ + a(z,t) 25 + 1v*(x, 1) giz;] dt + b(z,t) 2L dz
» Intuitively, even if a(z,t) = 0 and 2 = 0, then &[dz] = 0, but
E|dF] # 0 because of Jensen‘s inequality

Generalise to m Ito processes with dx;
ai(xl,...,xm, )dt+b-(w1,.. xm, t)dx; and £|dz;dz;]

\ pijdt: dF = 98t + 3, 08 du; + 157,57, 528 du,da,
1-8 September 2011 Siddiqui 20 of 35
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4 A

APPLICATION TO GBM
Y I dr = axdt+oxdz and F(z) = In(x), then F(z) follows

a BM with parameters o — %a and o
> %1; 0, %1; = 316, 62 = 2, which implies that dF = ? —

5z (dz)? = adt + adz — —a2dt (a — 20%)dt + odz
Consider F'(z,y) = xy and G = In F with dz = azxdt +
0,2d2y;, dy = ayydt + o,ydz,, and £|dz,dz,| = pdt
> ‘315 = ‘321; —0and 2 P;J 1, which implies dF' = ydx+xdy-+dxdy
» Substitute dxr and dy dF' = azzydt + orxydz: + ayrydt +

OyTYdzy + Yooy pdt = dF = (ag + ay + poyoy)Fdt + (0zdzy +
oydzy)F, i.e., F is also a GBM

» Meanwhile, dG = (ay + ozy 107 — 100)dt + 0pdzy + 0ydzy

Discounted PV: F(z) = 2% and z follows a GBM
» F follows a GBM, too: dF = 0z 'dz +

60 —
)2’ (dz)? = Fl0a + 20(0 — 1)0?]dt + 0o Fdz = Eg, [F(x(

t)] =
F(xo)et(eoz-i—%é?(e—l)az) /
TQ
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/~ STOCHASTIC DISCOUNT
FACTOR

~

B1
(P%) , where 7 = min {t : P, > Pr}
Proof: Let g(p) =&, e "]
> g(p) = o(dt)e™¥ + (1 — o(dt))e "' &,y [g(p + dP)]
> = g(p) — o(dt)e P4

v

pdt)2a’p’g (p)dt
= —pg(p) + apg (p) + 1o°p
= g(p) = a1p”™ + axp™

\ » limp,0g9(p) =0=a2=0and g(Pr)=1= a1 =

’g (p) = 22

\4

\4

Proposition: The conditional expectation of the stochas-
tic discount factor, &,|e *7], is the power function,

o(dt))e™" &, |g(p) + dPg (p) + 5(dP)*g" (p) + o(dt)
= g(p) = o(dt) + e~ ""g(p) + e " apg (p)dt +e " §op’g (p)dt
> = g(p) = o(dt) + (1 — pdt)g(p) + (1 — pdt)apg (p)dt + (1 —

1
PP

+a -
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/" DYNAMIC PROGRAMMING:

Many-Period Example

\_

Now, let the state variable x; be continuous and the con-

trol variable u; represent the possible choices made at
time ¢

» Let the immediate profit flow be 7 (x+, ut) and Pt (xey1|xe, usr) be

the CDF of the state variable next period given current information

» Given the discount rate p and the Bellman Principle of Optimality,

the expected NPV of the cash flows to go from period t is Fi(x:) =

max., {m(act,ut) + ﬁ&s [Ft+1(fﬁt+1)]}
» Use the termination value at time T and work back-
wards to solve for successive values of w:: Fr_i(zr—1) =

MaXy,_, {WT—l(CCT—l, ur—1) + uTll))gT—l[QT(xT)]
With an infinite horizon, it is possible to solve the prob-
lem recursively due to independence from time and the
downward scaling due to the discount factor: F(x) :/

=0

max,, {W(Q?,U)—l— - 5[F(a:’)|a:,u]¥

J
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/" DYNAMIC PROGRAMMING:

Optimal Stopping

\_

Suppose that the choice is binary: either continue (to
wait or to produce) or to terminate (waiting or produc-
tion)

» Bellman equation is now max {Q(a:), m(x) + (lip)g[F(x’”x]}

» Focus on case where it is optimal to continue for > z* and stop
otherwise

» Continuation is more attractive for higher x if: (i) immediate profit
from continuation becomes larger relative to the termination pay-
off, i.e., m(x) + (1ip)5[ﬂ(g/)\a}] — Q(z) is increasing in z, and (ii)
current advantage should not be likely to be reversed in the near
future, i.e., require first-order stochastic dominance

» Both conditions are satisfied in the applications studied here: (i)
always holds, and (ii) is true for random walks, Brownian motion,

MR processes, and most other economic applications
» In general, may have stopping threshold that varies with time,/

z"(t)
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/" DYNAMIC PROGRAMMING:

Continuous Time

In continuous time, the length of the time period, At,
goes to zero and all cash flows are expressed in terms of
rates

» Bellman equation is now F(z,t) =
max,, {W(x,u, DAL+ qrixp E[F (2t + At)a, u]}

» Multiply by (1 + pAt) and re-arrange:  pAtF(z,t)
max,, {7(x,u,t)At(1 + pAt) + E[F(z',t + At) — F(z,t)|z,u]}
max, {m(x,u, t)At(1 4+ pAt) + E[AF|x,u]}

» Divide by At and let it go to zero to obtain pF(z,t) =
maxs, {w(m,u, t) + W}

» Intuitively, the instantaneous rate of return on the asset must equal
its expected net appreciation
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/ DYNAMIC PROGRAMMING: It \

Processes

Suppose that dxr = a(z,u,t)dt + b(x,u,t)dz and =’ =
x + dx
Apply Itd’s lemma to the value function, F"
> ElF(z+ At + At)|z,u] = F(x,t) + [Fi(z,t) + a(x,u, t) Fp(x,t) +
107 (2, u, t) Fow (z, 1) At + o(At)
» Return equilibrium condition is now pF(x,t) =
max, {7(z,u,t) + Fi(z,t) + a(z, u, t) Fp(z,t) + 3b°(z,u, t) Fra(z,t) }
» Next, find optimal v as a function of Fi(x,t), Fy(x,t), Fuz(x,t),
x, t, and underlying parameters
» Subsitute it back into the return equilibrium condition to obtain
a second-order PDE with F' as the dependent variable and x and
t as the independent ones
» Solution procedure is typically to start at the terminal time 7" and
work backwards

When time horizon is infinite, ¢ drops out of the equation:
\ > pF(z) = max, {r(z,u) + a(z,w)F'(z) + $b°(z,uw)F"'(z)} /
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/ DYNAMIC PROGRAMMING: Optimal \
Stopping and Smooth Pasting

Consider a binary decision problem: can either continue
to obtain a profit flow (with continuation value) or stop
to obtain a termination payoff where dr = a(x,t)dt +
b(x,t)dz
» In this case, a threshold policy with x*(¢) exists, and the Bellman
equation is pF'(x,t)dt = max {Q(z,t)dt, 7(x,t)dt + E[dF|x]|}
» The RHS is larger in the continuation region, so applying Ito’s
lemma gives 2b°(z, t) Foo (2, t)+a(z, t) Fy(z, t)+ Fi (z,t)— pF (z, )+

m(z,t) =0
> The PDE can be solved for F(x,t) for z > z*(t) subject to the
boundary condition F(z*(t),t) = Q(«*(t),t) Vt (value-matching
condition)

» A second condition is necessary to find the free boundary:
Fr(x™(t),t) = Qgu(x™(t),t) Vt (smooth-pasting condition)

» The latter may be thought of as a first-order necessary condition,
\ i.e., if the two curves met at a kink, then the optimal stoppiny
would occnr elsewhere
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/" DYNAMIC PROGRAMMING
EXAMPLE: Optimal Abandonment

You own a machine that produces profit, x, that evolves
according to a BM process, i.e., dr = adt + bdz, where
a < 0 to reflect decay of the machine over time

The lifetime of the machine is T years, discount rate is
p, and we must find the optimal threshold profit level,

z*(t), below which to abandon the machine (zero salvage

value)
» Corresponding PDE is 2b° Fyy (z, t)+aFy (z,t)+ Fi(z, t)— pF (z,t)+
x =0
» PDE is solved numerically for T' = 10, a = —0.1, b = 0.2, and
p = 0.10 using discrete time steps of At = 0.01
» Solution in Figure 4.1 indicates that for lifetimes greater than ten
years, the optimal abandonment threshold is about -0.17

\ » As lifetime is reduced, it becomes easier to abandon the machine
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/" DYNAMIC PROGRAMMING

\_
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/" DYNAMIC PROGRAMMING
EXAMPLE: Optimal Abandonment

Assume an eftectively inninite litetime to obtaimn an ODE
instead of a PDE: -0*F"(z) + aF'(z) — pF(z) + 2 =0
» Homogeneous solution is y(x) = c1e"”* + coe™”
» Substituting derivatives into the homogeneous portion of the ODE
yields c1€™*(1b°rf + ar1 — p) + c2€™*(3b°r3 + arz — p) =0
» The terms in the parentheses must be equal to zero, ie., r1 =

VPP _ 5584 > 0 and e = —2VITH2P 854 <
» Particular solution: Y(z) = Az + B, Y'(z) = A, and Y"(z) =0

» Substituting these into the original ODE yields a A — p(Ax + B) +
r=0= A= l ,B=%

p2

» Thus, Y(z) = £ + %, and F(z) = 16”"’" + o€ + 24 5

» Boundary condltlons (i) F(z*) = 0, (ii) F'(z*) = 0, (iii)
limg oo F(z) =Y (x)

» The third one implies that ¢; =0, i.e., F(z) = c2e™”* + % + /;Lz

\4

\ First two conditions imply z* = —% + % = —0.17 and c2 = /
e~ 27"
20
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/" CONTINGENT CLAIMS: I
Replicating Portfolio

Dynamic programming uses an exogenous discount rate,
p, which is assumed to the opportunity cost of capital

Financial theory has a more sophisticated treatment of
this topic in terms of relating this cost to the market
portfolio
» Assume profit flow, x, follows a GBM and the output of the firm
can be traded in financial markets
» Output held by investors if it provides a sufficiently high return:
part of it from o and another from the convenience yield, 6 = p—«
» The risk-adjusted rate of return is obtained from CAPM: u =
r + ¢OpLm, Where ¢ is the market price of risk and pg,, is the
correlation between returns
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CONTINGENT CLAIMS: I
Replicating Portfolio

\_

Value of a firm, F(z,t), with profit flow, 7(x,t), may be
replicated by investing a dollar in the risk-free asset and
holding n units of the output
» Portfolio costs $(1 4+ nz), and if held for dt time units, then it
provides a safe return of rdt, a dividend of ndxdt, and a stochastic
capital gain of ndx = nazdt + noxdz
» The total return per dollar invested is T+T§f‘n4;5) —dt + 7= dz
» Ownership of the firm over dt costs F'(x,t) and offers a profit flow
m(x,t)dt along with a stochastic capital gain dF = [Fi(x,t) +
axFy(z,t) + 0°0% Foo(z,t)]dt + 02 Fy (z,t)dz
» Thus, total return per dollar is

m(z,t)+Ft(z,t)tazFy (wvt)+l0'2$2me (z,t) ocxFy(x,t)
Fad) dt+ =G 4%
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/" CONTINGENT CLAIMS: I
Replicating Portfolio

Matching the risk terms gives 7= = % = n =
Fw(w7t)
(F(x,t)—xFy(x,t))
» Matching the return terms gives
7r(:c,t)—i—Ft(:r:,t)—l—oz:r:Fx(:c,t)—i—%anQFww(:L',t) _ r4n(a+d)x

F(x,t) T 1+nzx
» Substituting for n implies that the RHS becomes

(F(x,t)—xFy(x,t)) xFy(x,t)
r F(z,t) + (@ +9) F(x,t)

» Re-arranging the return equation then yields $0°z* Fpp (z, )+ (r—
0)xFy(x,t) + Fi(x,t) — rF(x,t) + w(x,t) =0

» Similar to the PDE obtained via dynamic programming

» Can also use a risk-free portfolio by holding one unit of F(x,t) and
n units short of the underlying asset x
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/" CONTINGENT CLAIMS: Spanning )
Assets

If z is not directly traded, then we can use a spanning
asset, i.e., one whose risk tracks the uncertainty in x
» Suppose replicating asset follows dX = A(x,t)Xdt + B(x,t)Xdz,
i.e., have the same dz even if the other coefficients are different
» If there is a dividend flow rate, D(x,t), then one dollar invested in
X over time dt provides the return [D(z,t) + A(x,t)|dt + B(x,t)dz
» An investor will require return px(z,t) = r + ¢pzmB(x,t), which
must equal D(z,t) + A(x,t)
Risk-free portfolio will cost /' — nX to buy and provide
dividend flows of |7 — nDX]|dt
» Capital gain on the portfolio is dF' —ndX = [F} + aF, + %bQFm —
nAX|dt + [bF, — nBX]dz, so risk-free portfolio requires n = %=
» Set expected net return on portfolio to the risk-free return on its
cost: r[F —nX]|dt = [Fi +aF, + %bQFm —nAX|dt+ nwdt —nDXdt
» Thus: b’ Fpe +aFy + F; —7F+rnX —nDX —nAX +71=0=
\ 50’ Fop +aF, + FyrF 4 2fe — D0 A 47— ) /
> 0Pt aF 4 o pf 4 e BxMe g o

1
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