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COURSE OUTLINE

F Introduction (Chs 1—2)
F Mathematical Background (Chs 3—4)
F Investment and Operational Timing (Chs 5—6)
F Entry, Exit, Lay-Up, and Scrapping (Ch 7)
F Recent Theoretical Work I: Capacity Sizing
F Recent Theoretical Work II: Risk Aversion and Multiple
Risk Factors

F Applications to the Energy Sector I: Capacity Sizing,
Timing, and Operational Flexibility

F Applications to the Energy Sector II: Modularity and
Technology Choice
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LECTURE OUTLINE

F Basic model
F Solutions via dynamic programming and contingent
claims

F Characteristics of optimal investment
F Alternative stochastic processes
F Operating costs and temporary suspension
F Projects with variable output
F Depreciation
F Price and cost uncertainty
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BASIC MODEL: Optimal Timing
F Suppose project value, V , evolves according to a GBM,
i.e., dV = αV dt + σV dz, which may be obtained at a
sunk cost of I

F When is the optimal time to invest?
I A perpetual option, i.e., calendar time is not important
I Ignore temporary suspension or other embedded options
I Use both dynamic programming and contingent claims methods

F Problem formulation: maxT EV0[(VT − I)e−ρT ]
I Assume δ ≡ ρ − α > 0, otherwise it is always better to wait
indefinitely
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BASIC MODEL: Deterministic 
Case
F Suppose that σ = 0, i.e., V (t) = V0e

αt for V0 ≡ V (0)
I F (V ) ≡ maxT e−ρT (V eαT − I)
I If α ≤ 0, then F (V ) = max[V − I, 0]
I Otherwise, for 0 < α < ρ, waiting may be better because either (i)
V < I or (ii) V ≥ I, but discounting of future sunk cost is greater
than that in the future project value

I Thus, the FONC is dF (V )
dT = 0 ⇒ (ρ − α)V e−(ρ−α)T = ρIe−ρT ⇒

T ∗ = max
n
1
α
ln
n

ρI
(ρ−α)V

o
, 0
o

I Reason for delaying is that the MC is depreciating over time by
more than the MB

F Substitute T ∗ to determine V ∗ = ρI
(ρ−α) > I

F And, F (V ) =
³

αI
ρ−α

´ h
(ρ−α)V

ρI

i ρ
α
if V ≤ V ∗ (F (V ) = V −I

otherwise)
F Figure 5.1 indicates that greater α increases V ∗
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BASIC MODEL: Figure 5.1
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DYNAMIC PROGRAMMING 
SOLUTION
F Bellman equation for continuation is ρFdt = E [dF ]
F Expand the RHS via Itô’s lemma: dF = F 0(V )dV +

1
2
F 00(V )(dV )2 ⇒ E [dF ] = F 0(V )αV dt+ 1

2
F 00(V )σ2V 2dt

F Substitution into the Bellman equation yields the ODE
1
2
F 00(V )σ2V 2 + F 0(V )αV − ρF (V ) = 0
I Equivalently, 1

2
F 00(V )σ2V 2 + F 0(V )(ρ− δ)V − ρF (V ) = 0

I Three boundary conditions: (i) F (0) = 0, (ii) F (V ∗) = V ∗ − I,
and (iii) F 0(V ∗) = 1

I General solution to the ODE is F (V ) = A1V
β1 +A2V

β2

I Taking derivatives, we have F 0(V ) = A1β1V
β1−1+A2β2V

β2−1 and
F 00(V ) = A1β1(β1 − 1)V β1−2 +A2β2(β2 − 1)V β2−1

I Substitution into the ODE yields A1V
β1 [ 1

2
σ2β1(β1 − 1) + β1(ρ −

δ)− ρ] +A2V β2 [ 1
2
σ2β2(β2 − 1) + β2(ρ− δ)− ρ] = 0

I Thus, β1 =
1
2
− (ρ−δ)

σ2
+
q£

ρ−δ
σ2
− 1

2

¤2
+ 2ρ

σ2
and β2 =

1
2
− (ρ−δ)

σ2
−q£

ρ−δ
σ2
− 1

2

¤2
+ 2ρ

σ2
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DYNAMIC PROGRAMMING 
SOLUTION
F The characteristic quadratic, Q(β) = 1

2
σ2β(β−1)+(ρ−

δ)β − ρ, has two roots such that β1 > 1 and β2 < 0
I Q(β) has a positive coefficient for β2, i.e., it is an upward-pointing
parabola

I Note that Q(1) = −δ < 0, which means that β1 > 1
I Q(0) = −ρ, which means that β2 < 0 (Figure 5.2)

F Consequently, the first boundary condition implies that
A2 = 0, i.e., F (V ) = A1V

β1

I Using the VM and SP conditions, we obtain V ∗ = β1
β1−1I and

A1 =
(V ∗−I)
(V ∗)β1

= (β1−1)β1−1
[(β1)

β1Iβ1−1]
I Since β1 > 1, we also have V

∗ > I
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DYNAMIC PROGRAMMING 
SOLUTION: Figure 5.2
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DYNAMIC PROGRAMMING 
SOLUTION: Comparative Statics

F ∂β1
∂σ
< 0

I Differentiate Q(β) totally and evaluate it at β1
I ∂Q

∂β
∂β1
∂σ

+ ∂Q
∂σ
= 0⇒ ∂β1

∂σ
= −∂Q/∂σ

∂Q/∂β
I Know that ∂Q

∂β > 0 at β1 via Figure 5.2 and
∂Q
∂σ = σβ(β − 1) > 0

at β1 > 1
I Thus, ∂β1

∂σ
< 0 and β1

β1−1 increases with σ

F Similarly, ∂β1
∂δ
= − ∂Q/∂δ

∂Q/∂β > 0
I For β1 > 1,

∂Q
∂δ
= −β < −1

I Thus, ∂β1
∂δ

> 0 and β1
β1−1 decreases with δ

F Finally, ∂β1
∂ρ
= − ∂Q/∂ρ

∂Q/∂β < 0
I For β1 > 1,

∂Q
∂ρ
= β − 1 > 0

I Thus, ∂β1
∂ρ

< 0 and β1
β1−1 increases with ρ

F As σ → ∞, β1 → 1 and V ∗ → ∞, whereas as σ → 0,
β1 → ρ

ρ−δ and V
∗ → ρ

δ
I for α > 0
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DYNAMIC PROGRAMMING 
SOLUTION: Comparison to Neoclassical 
Theory

F Marshallian analysis is to compare V0 ≡
Eπ0
R∞
0
πse
−ρsds =

R∞
0
Eπ0[πs]e−ρsds = π0

ρ−α with
I
I Invest if V0 ≥ I or π0 ≥ (ρ− α)I
I Real options approach says to invest when π0 ≥ π∗ ≡ β1

β1−1 (ρ −
α)I > (ρ− α)I

F Tobin’s q is the ratio of the value of the existing capital
goods to the their current reproduction cost
I Rule is to invest when q ≥ 1
I If we interpret q as being V

I
, then the real options threshold is

q∗ = β1
β1−1 > 1

I Hence, the real options definition of q adds option value to the PV
of assets in place
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CONTINGENT CLAIMS 
SOLUTION: Background

F Instead of using an arbitrary discount rate, ρ, we now
try to ground it more firmly using market principles
I Assume that x is the price of an asset that is perfectly correlated
with V , i.e., ρxm = ρVM

I If x pays no dividends, then dx = μxdt+ σxdz
I From CAPM, μ = r + φρxmσ > α, where α is the expected per-
centage rate of change of V

I Let δ = μ−α be the dividend rate, and if it were equal to zero, then
it would imply that the option would always be held to maturity

I In other words, there would be no opportunity cost to delaying
exercise of the option since the entire return comes from the price
movement, i.e., one would never invest

I Thus, we assume δ > 0, and if δ → ∞, then invest either now or
never, i.e., opportunity cost of waiting is high and options value
goes to zero
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CONTINGENT CLAIMS 
SOLUTION
F Find F (V ) by constructing a risk-free portfolio, Φ, which
consists of one unit of F (V ) and n = F 0(V ) units short
of the underlying project (or correlated asset)
I Recall from the previous lecture that n = bFx

BX
in order for the

synthetic portfolio to be risk free
I Φ = F −F 0(V )V , which means that n must change over time even
if it is kept constant for the next dt time units

I Short position requires dividend payment of δV F 0(V )
I Thus, the total portfolio return is dΦ − δF 0(V )V dt = dF −
F 0(V )dV − δF 0(V )V dt

I From Itô’s lemma, we have dF = F 0(V )dV + 1
2
F 00(V )(dV )2

I Substitution yields the total portfolio return is 1
2F

00(V )(dV )2 −
δF 0(V )V dt = 1

2
F 00(V )V 2σ2dt− δF 0(V )V dt

I The no-arbitrage condition implies 1
2
F 00(V )V 2σ2dt−δF 0(V )V dt =

r[F − F 0(V )V ]dt⇒ 1
2F

00(V )V 2σ2 + (r − δ)F 0(V )V − rF = 0

I Hence, F (V ) = A1V
β1 , where β1 =

1
2
− r−δ

σ2
+

rh
(r−δ)
σ2
− 1

2

i2
+ 2r

σ2
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CHARACTERISTICS OF THE 
OPTIMAL INVESTMENT RULE
F Use numerical examples to illustrate how investment
values and thresholds change using I = 1, r = 0.04,
δ = 0.04, and σ = 0.20
I This implies that β1 = 2, V ∗ = 2I = 2, and A1 =

1
4 , i.e., real

options says to invest when project value is twice as high as the
investment cost

I Furthermore, F (V ) = 1
4
V 2 for V ≤ 2 and F (V ) = V −1 otherwise

(Figure 5.3)
I Note that F (V ) and V ∗ increase with σ: greater uncertainty in-
creases value of waiting and, thus, the opportunity cost of investing
(Figure 5.4)

I Greater δ increases the opportunity cost of delaying the investment
and, thus, reduces the option value and the investment threshold
(Figures 5.5 and 5.6)

I Caveat: σ and δ are related via δ = μ − α = r + φσρxm − α, but
we treat them as being independent for sake of exposition
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CHARACTERISTICS OF THE 
OPTIMAL INVESTMENT RULE: 
Figure 5.3
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CHARACTERISTICS OF THE 
OPTIMAL INVESTMENT RULE: 
Figure 5.4
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CHARACTERISTICS OF THE 
OPTIMAL INVESTMENT RULE: 
Figure 5.5
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CHARACTERISTICS OF THE 
OPTIMAL INVESTMENT RULE: 
Figure 5.6
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CHARACTERISTICS OF THE 
OPTIMAL INVESTMENT RULE
F Use numerical examples to illustrate how investment
values and thresholds change using I = 1, r = 0.04,
δ = 0.04, and σ = 0.20
I Increasing r increases F (V ) and V ∗ because the PV of expenditure
at future time, T , Ie−rT , is reduced while the PV of revenue,
V e−δT , is unaffected (Figure 5.7)

I Thus, it is worthwhile to wait more even if the value of the option
increases

I Cast results in terms of Tobin’s q = V ∗
I
= β1

β1−1 , i.e., use definition
without option value

I Plot contours of constant q∗ for combinations of 2r
σ2
and 2δ

σ2
(Figure

5.8)
I Find that q∗ is large when either δ is small or r is large: intuitively,
higher dividend rate reduces value of waiting, while higher interest
rate does the opposite

I Finally, note that all estimated parameters, such as α and σ, may
be changing over time
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CHARACTERISTICS OF THE 
OPTIMAL INVESTMENT RULE: 
Figure 5.7
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CHARACTERISTICS OF THE 
OPTIMAL INVESTMENT RULE: 
Figure 5.8
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ALTERNATIVE STOCHASTIC 
PROCESSES: GMR Process

F Suppose V follows a GMR process: dV = η(V −V )V dt+
σV dz
I Expected percentage change of V is 1

dtE
£
dV
V

¤
= η(V − V )

I Thus, expected absolute rate of change is 1
dt
E [dV ] = ηV V − ηV 2,

which is a parabola that is zero at V = 0 and V = V with a
maximum at V

2

I Let μ be the risk-adjusted rate of return for the project and define
the dividend rate to be δ(V ) = μ− 1

dt
E
£
dV
V

¤
= μ− η(V − V )

I End up with same ODE as before using contingent claims, but
adjust for δ(V ): 1

2
σ2V 2F 00(V )+[r−μ+η(V −V )]V F 0(V )−rF = 0

I Must satisfy the same three boundary conditions as before
I Typically, a closed-form solution is difficult to find
I Express the solution as F (V ) = AV θh(V ) and substitute it back
into the ODE
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ALTERNATIVE STOCHASTIC 
PROCESSES: GMR Process
F Since F 0(V ) = θAV θ−1h(V ) + AV θh0(V ) and F 00(V ) =

θ(θ − 1)AV θ−2h(V ) + 2θAV θ−1h0(V ) +AV θh00(V )
I We have V θh(V )

£
1
2
σ2θ(θ − 1) + (r − μ+ ηV )θ − r

¤
+

V θ+1
£
1
2
σ2V h00(V ) + (σ2θ + r − μ+ ηV − ηV )h0(V )− ηθh(V )

¤
=

0
I Both bracketed components must be zero, i.e., 1

2σ
2θ(θ− 1) + (r−

μ+ ηV )θ − r = 0⇒ θ = 1
2
+ (μ2−r−ηV )

σ2
+

rh
r−μ+ηV

σ2
− 1

2

i2
+ 2r

σ2

I And also 1
2
σ2V h00(V )+(σ2θ+r−μ+ηV −ηV )h0(V )−ηθh(V ) = 0

I Use substitution x = 2ηV
σ2

to transform it into Kummer‘s equation,
xg00(x) + (b− x)g0(x)− θg(x), which has the solution H(x; θ, b) =
1 + θ

b
x+ θ(θ+1)x2

b(b+1)2!
+ θ(θ+1)(θ+2)x3

b(b+1)(b+2)3!
+ · · ·

I Hence, F (V ) = AV θH
¡
2η
σ2
V ; θ, b

¢
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ALTERNATIVE STOCHASTIC 
PROCESSES: Investment Characteristics
F Use numerical example with same parameters as before
plus μ = 0.08 and varying η and V
I As V increases, so does the value of waiting and, thus, both F (V )
and V ∗ increase (Figure 5.11)

I Variation with η: if V > I, then F (V ) increases in η (but decreases
otherwise) as V is likely to rise above I and remain there (Figures
5.12 and 5.13)

I Shape of F (V ) becomes concave for small V because the absolute
rate of mean reversion rises rapidly

I V ∗ increases with η as long as V is large (Figure 5.14)
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ALTERNATIVE STOCHASTIC 
PROCESSES: Figure 5.11
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ALTERNATIVE STOCHASTIC 
PROCESSES: Figure 5.12
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ALTERNATIVE STOCHASTIC 
PROCESSES: Figure 5.13
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ALTERNATIVE STOCHASTIC 
PROCESSES: Figure 5.14
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VALUE OF THE PROJECT 
WITHOUT OPERATING COSTS
F Suppose that the output price, P , follows a GBM and
the firm produces one unit per year forever
I Without operating costs and ruling out speculative bubbles,
the value of the project is V (P ) = EP

R∞
0
Pte
−μtdt =R∞

0
EP [Pt] e−μtdt =

R∞
0
Pe−(μ−α)tdt = P

δ

I Via the contingent claims argument, we can now find the value
of the option to invest, F (P ), which will satisfy the ODE
1
2
σ2P 2F 00(P ) + (r − δ)PF 0(P ) − rF (P ) = 0: F (P ) = A1P

β1 +

A2P
β2

I Boundary condition F (0) = 0⇒ A2 = 0
I VM and SP conditions imply: (i)A1(P

∗)β1 = P∗
δ
− I and (ii)

β1A1(P
∗)β1−1 = 1

δ

I Therefore, P ∗ = β1
β1−1δI and A1 =

(β1−1)β1−1I−(β1−1)
(δβ1)

β1

I Note that V ∗ = P∗
δ = β1

β1−1I > I

F Can also use dynamic programming to find F (P )
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OPERATING COSTS AND 
TEMPORARY SUSPENSION: Value of 
the Project
F Suppose now that the project incurs operating cost, C,
but it may be costlessly suspended or resumed once in-
stalled
I Instantaneous profit flow is π(P ) = max[P − C, 0], i.e., project
owner has infinitely many embedded operational options

I Thus, the value of an active project will be worth more than simply
the NPV of the cash flows

F Value the project using contingent claims by going long
one unit V (P ) and shorting n = VP (P ) units of P
I Unlike the option to invest, we now have a profit flow, π(P ), which
implies that the ODE becomes 1

2
σ2P 2V 00(P ) + (r − δ)PV 0(P ) −

rV (P ) + π(P ) = 0
I For P < C, only the homogeneous part of the solution is valid,
i.e., V (P ) = K1P

β1 +K2P
β2

I With P ≥ C, we also have the particular solution D1P+D2C+D3

I Substitution into the ODE yields D1 =
1
δ
,D2 = − 1

r
, D3 = 0

I Therefore, V (P ) = B1P
β1 +B2P

β2 + P
δ
− C

r
for P ≥ C
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OPERATING COSTS AND 
TEMPORARY SUSPENSION: Value of 
the Project
F For P < C, V (P ) represents the option value of resuming
a suspended project
I Intuitively, this must increase in P and be worthless for very small
P

I Only when K2 = 0 does this hold; thus, V (P ) = K1P
β1 for P < C

F For P ≥ C, V (P ) is the value of an active project inclu-
sive of the option to suspend operations
I The suspension option is valuable only for small P and becomes
worthless for large P

I Thus, B1 = 0 and V (P ) = B2P
β2 + P

δ
− C

r
for P ≥ C

F Find K1 and B2 via VM and SP at P = C
I K1C

β1 = B2C
β2 + C

δ
− C

r
and β1K1C

β1−1 = β2B2C
β2−1 + 1

δ

I K1 =
C1−β1
β1−β2

³
β2
r
− (β2−1)

δ

´
> 0, B2 =

C1−β2
β1−β2

³
β1
r
− (β1−1)

δ

´
> 0

I V (P ) is increasing (decreasing) in σ (δ) (Figures 6.1 and 6.2)
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OPERATING COSTS AND 
TEMPORARY SUSPENSION: Figure 
6.1
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OPERATING COSTS AND 
TEMPORARY SUSPENSION: Figure 
6.2
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OPERATING COSTS AND 
TEMPORARY SUSPENSION: Value of 
the Option to Invest
F Following the contingent claims approach, F (P ) =
A1P

β1 +A2P
β2

I Boundary condition F (0) = 0⇒ A2 = 0
F For P < C, it is never optimal to invest

I Thus, VM and SP of F (P ) will occur for P ≥ C, i.e., with V (P )−
I = B2P

β2 + P
δ
− C

r
− I

I Use A1 (P
∗)β1 = B2 (P

∗)β2 + P∗
δ
− C

r
− I and β1A1 (P

∗)β1−1 =

β2B2 (P
∗)β2−1 + 1

δ
to solve for P ∗ and A1

I Substitute to solve the following equation numerically: (β1 −
β2)B2 (P

∗)β2 + (β1 − 1)P
∗
δ
− β1

¡
C
r
+ I

¢
= 0

I Solution for r = 0.04, δ = 0.04, σ = 0.20, I = 100, and C = 10
(Figure 6.3)

I β1 = 2, β2 = −1, P ∗,nf = 28, Anf1 = 0.4464, P ∗ = 23.8, and
A1 = 0.4943

I Sensitivity analysis: F (P ) and P ∗ increase with σ (Figure 6.4)
I But F (P ) decreases and P ∗ increases with δ (Figures 6.5 and 6.6)
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OPERATING COSTS AND 
TEMPORARY SUSPENSION: Figure 
6.3
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OPERATING COSTS AND 
TEMPORARY SUSPENSION: Figure 
6.4
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OPERATING COSTS AND 
TEMPORARY SUSPENSION: Figure 
6.5
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OPERATING COSTS AND 
TEMPORARY SUSPENSION: Figure 
6.6
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PROJECTS WITH VARIABLE 
OUTPUT: Project Value
F Suppose output is produced according to function h(v),
where v is level of some intermediate good

F Instantaneous profit flow is π(P ) ≡ maxv [Ph(v)− C(v)]
I Assume Cobb-Douglas production function, i.e., h(v) = vθ, where
0 < θ < 1, and constant marginal cost, i.e., C(v) = cv

I Profit maximisation yields v∗ =
£
θP
c

¤ 1
1−θ and π(P ) = (1 −

θ)
¡
θ
c

¢ θ
1−θ P

1
1−θ

I Let γ ≡ 1
1−θ > 1 so that π(P ) = KP

γ

I Intuition is that without control, profit changes linearly in price,
but variation makes it possible to increase faster (decrease slower)
when P rises (falls)

F Standard ODE for the project value is 1
2
σ2P 2V 00(P ) +

(r − δ)PV 0(P )− rV (P ) +KP γ = 0
I Guess particular solution of the form K1P

γ and find that K1 =
K

r−(r−δ)γ− 1
2
σ2γ(γ−1) ⇒ V (P ) = KPγ

δ0
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PROJECTS WITH VARIABLE 
OUTPUT: Option Value
F We require δ0 > 0, where δ0 is the negative of Q(γ)

F Thus, δ0 > 0⇔ Q(γ) < 0, which implies that γ < β1
I In other words, the production function must have the restriction
that θ < β1−1

β1

F Solution to the option value is F (P ) = A1P
β1

I Use VM and SP conditions to find
K(P∗)γ

δ0 = β1
β1−γ I

I There is a greater incentive to invest now because of the convexity
of profit flow: it is possible to benefit from the upside of greater
volatility without being hurt by the downside
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DEPRECIATION: Exponential Decay 
with a Single Investment Option
F Suppose that the lifetime of the project, T , follows a
Poisson process with parameter λ, i.e., density function
is e−λT
I Given that the lifetime is T years, the expected PV of the project
is VT (P ) = EP

R T
0
Pte
−μtdt =

R T
0
EP [Pt]e−μtdt = P

δ

¡
1− e−δT

¢
I With a random lifetime: V (P ) = E [VT (P )] =R∞

0
λe−λT P

δ

¡
1− e−δT

¢
dT = P

λ+δ

I Project functions less well over time, which eats into its cash flows

F Value of option to invest may be obtained using contin-
gent claims: F (P ) = A1P

β1

F VM and SP conditions reveal P ∗ = β1
β1−1(δ + λ)I
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DEPRECIATION: Exponential 
Decay with Re-investment
F Upon termination, re-investment is available at cost I
F If no investment has occurred, then the option value to
invest is again F (P ) = A1P

β1

F Let J(P ) be the value of an active project along with all
future replacement options (use dynamic programming)
I When P < P ∗, there is a profit flow and probability λdt that the
project will die in the next dt time units

I Conditional expectation: J(P ) = Pdt + (1 − λdt)e−ρdtE[J(P +
dP )] + λdte−ρdtE[F (P + dP )]

I Note that E [J(P+dP )] = J(P )+J 0(P )αPdt+ 1
2
J 00(P )σ2P 2dt and

E[F (P + dP )] = F (P ) + F 0(P )αPdt+ 1
2
σ2P 2F 00(P )dt

I Thus, J(P ) = Pdt + (1 − (ρ + λ)dt)[J(P ) + J 0(P )αPdt +
1
2
σ2P 2J 00(P )dt] + λdtA1P

β1 [1 + αβ1dt +
1
2
σ2β1(β1 − 1)dt] ⇒

1
2
σ2P 2J 00(P ) + αPJ 0(P )− (ρ+ λ)J(P ) + λA1P

β1 + P = 0

I Solution is J(P ) = B1P
β01 + P

ρ+λ−α + A1P
β1 , where β01 is the

positive root of 1
2
σ2ξ(ξ − 1) + αξ − (ρ+ λ) = 0
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DEPRECIATION: Exponential 
Decay with Re-investment
F For P ≥ P ∗, re-investment is immediate upon termina-
tion
I Conditional expectation: J(P ) = Pdt + (1 − λdt)e−ρdtE[J(P +
dP )] + λdte−ρdtE[J(P + dP )− I]

I Thus, J(P ) = Pdt + (1 − (ρ + λ)dt)[J(P ) + J 0(P )αPdt +
1
2
σ2P 2J 00(P )dt] + λdtJ(P ) − λIdt ⇒ 1

2
σ2P 2J 00(P ) + αPJ 0(P ) −

ρJ(P ) + P − λI = 0
I Solution is J(P ) = B2P

β2 + P
ρ−α − λI

ρ

I Two branches of J(P ) meet tangentially at P ∗ and have the usual
VM and SP conditions with F (P )

F Find P ∗ = β01
β01−1

(δ + λ)I, i.e., lower investment threshold

than when only a single option was available
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PRICE AND COST 
UNCERTAINTY
F Both P and I follow correlated GBMs

I dP = αPPdt + σPPdzP , dI = αIIdt + σIIdzI , E[(dzP )2] = dt,
E[(dzI)2] = dt, and E[dzP dzI ] = ρdt

I Expected NPV of project is V (P, I) = P
δP
−I, and we want F (P, I)

I Construct risk-free portfolio: Φ = F − nPP − nII ⇒ dΦ = dF −
nP dP − nIdI

I dF = FP dP+FIdI+
1
2FPP (dP )

2+ 1
2FII(dI)

2+FPI(dPdI)⇒ dF =
FP dP + FIdI +

1
2
FPPσ

2
PP

2dt+ 1
2
FIIσ

2
I I

2dt+ FPIσPσIPIρdt
I Substitution implies dΦ = (FP − nP )dP + (FI − nI)dI +

1
2
FPPσ

2
PP

2dt+ 1
2
FIIσ

2
II

2dt+ FPIσPσIPIρdt
I In order for Φ to be risk free, we must have nP = FP and nI = FI
I Add the convenience yield to obtain the total portfolio return:

1
2
FPPσ

2
PP

2dt+ 1
2
FIIσ

2
I I

2dt+FPIσPσIPIρdt−FP δPPdt−FIδIIdt
I Risk-free rate of return: rΦdt = rFdt− rFPPdt− rFIIdt
I Obtain PDE: 1

2
FPPσ

2
PP

2 + 1
2
FIIσ

2
II

2 + FPIσPσIPIρ + (r −
δP )FPP + (r − δI)FII − rF = 0

I VM: F (P ∗(I), I) = P∗(I)
δP
− I, SP1: FP (P ∗(I), I) = 1

δP
, and SP2:

FI(P
∗(I), I) = −1
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PRICE AND COST 
UNCERTAINTY
F Use transformation to convert PDE to ODE

I Let p = P
I
and f(p) = F (P,I)

I

I Thus, FP = f 0(p), FI = f(p) − pf 0(p), FPP = f 00(p)I−1, FII =
p2f 00(p)

I
, and FPI = − pf 00(p)

I

I The ODE is 1
2

¡
σ2P − 2ρσPσI + σ2I

¢
p2f 00(p) + (δI − δP )pf

0(p) −
δIf(p) = 0

I VM: f(p∗) = p∗
δP
− 1 and SP: f 0(p∗) = 1

δP

I Therefore, f(p) = a1p
γ1 , where γ1 is the positive root of

1
2

¡
σ2P − 2ρσPσI + σ2I

¢
β(β − 1) + (δI − δP )β − δI = 0

I Thus, p∗ = γ1
γ1−1δP

I In other words, higher uncertainty causes the free boundary to
rotate upwards (Figure 6.8)

I What happens when ρ is increased?
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PRICE AND COST 
UNCERTAINTY: Figure 6.8
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QUESTIONS


