TIØ 1: Financial Engineering in Energy Markets

Afzal Siddiqui

Department of Statistical Science
University College London
London WC1E 6BT, UK
afzal@stats.ucl.ac.uk

COURSE OUTLINE

* Introduction (Chs 1-2)
* Mathematical Background (Chs 3-4)

夫 Investment and Operational Timing (Chs 5-6)
\star Entry, Exit, Lay-Up, and Scrapping (Ch 7)
\star Recent Theoretical Work I: Capacity Sizing
\star Recent Theoretical Work II: Risk Aversion and Multiple Risk Factors

* Applications to the Energy Sector I: Capacity Sizing, Timing, and Operational Flexibility
* Applications to the Energy Sector II: Modularity and Technology Choice

LECTURE OUTLINE

\star Basic model

* Solutions via dynamic programming and contingent claims
* Characteristics of optimal investment
* Alternative stochastic processes
\star Operating costs and temporary suspension
\star Projects with variable output
* Depreciation
* Price and cost uncertainty

BASIC MODEL: Optimal Timing

* Suppose project value, V, evolves according to a GBM, i.e., $d V=\alpha V d t+\sigma V d z$, which may be obtained at a sunk cost of I
* When is the optimal time to invest?
- A perpetual option, i.e., calendar time is not important
- Ignore temporary suspension or other embedded options
- Use both dynamic programming and contingent claims methods
* Problem formulation: $\max _{T} \mathcal{E}_{V_{0}}\left[\left(V_{T}-I\right) e^{-\rho T}\right]$
- Assume $\delta \equiv \rho-\alpha>0$, otherwise it is always better to wait indefinitely

BASIC MODEL: Deterministic

Case

\star Suppose that $\sigma=0$, i.e., $V(t)=V_{0} e^{\alpha t}$ for $V_{0} \equiv V(0)$

- $F(V) \equiv \max _{T} e^{-\rho T}\left(V e^{\alpha T}-I\right)$
- If $\alpha \leq 0$, then $F(V)=\max [V-I, 0]$
- Otherwise, for $0<\alpha<\rho$, waiting may be better because either (i) $V<I$ or (ii) $V \geq I$, but discounting of future sunk cost is greater than that in the future project value
- Thus, the FONC is $\frac{d F(V)}{d T}=0 \Rightarrow(\rho-\alpha) V e^{-(\rho-\alpha) T}=\rho I e^{-\rho T} \Rightarrow$ $T^{*}=\max \left\{\frac{1}{\alpha} \ln \left\{\frac{\rho I}{(\rho-\alpha) V}\right\}, 0\right\}$
- Reason for delaying is that the MC is depreciating over time by more than the MB
\star Substitute T^{*} to determine $V^{*}=\frac{\rho I}{(\rho-\alpha)}>I$
\star And, $F(V)=\left(\frac{\alpha I}{\rho-\alpha}\right)\left[\frac{(\rho-\alpha) V}{\rho I}\right]^{\frac{\rho}{\alpha}}$ if $V \leq V^{*}(F(V)=V-I$ otherwise)
Figure 5.1 indicates that greater α increases V^{*}

BASIC MODEL: Figure 5.1

Figure 5.1. Value of Investment Opportunity, $F(V)$, for $\sigma=0, \rho=0.1$

DYNAMIC PROGRAMMING SOLUTION

\star Bellman equation for continuation is $\rho F d t=\mathcal{E}[d F]$
Expand the RHS via Itô's lemma: $d F=F^{\prime}(V) d V+$ $\frac{1}{2} F^{\prime \prime}(V)(d V)^{2} \Rightarrow \mathcal{E}[d F]=F^{\prime}(V) \alpha V d t+\frac{1}{2} F^{\prime \prime}(V) \sigma^{2} V^{2} d t$

* Substitution into the Bellman equation yields the ODE $\frac{1}{2} F^{\prime \prime}(V) \sigma^{2} V^{2}+F^{\prime}(V) \alpha V-\rho F(V)=0$
- Equivalently, $\frac{1}{2} F^{\prime \prime}(V) \sigma^{2} V^{2}+F^{\prime}(V)(\rho-\delta) V-\rho F(V)=0$
- Three boundary conditions: (i) $F(0)=0$, (ii) $F\left(V^{*}\right)=V^{*}-I$, and (iii) $F^{\prime}\left(V^{*}\right)=1$
- General solution to the ODE is $F(V)=A_{1} V^{\beta_{1}}+A_{2} V^{\beta_{2}}$
- Taking derivatives, we have $F^{\prime}(V)=A_{1} \beta_{1} V^{\beta_{1}-1}+A_{2} \beta_{2} V^{\beta_{2}-1}$ and $F^{\prime \prime}(V)=A_{1} \beta_{1}\left(\beta_{1}-1\right) V^{\beta_{1}-2}+A_{2} \beta_{2}\left(\beta_{2}-1\right) V^{\beta_{2}-1}$
- Substitution into the ODE yields $A_{1} V^{\beta_{1}}\left[\frac{1}{2} \sigma^{2} \beta_{1}\left(\beta_{1}-1\right)+\beta_{1}(\rho-\right.$

$$
\delta)-\rho]+A_{2} V^{\beta_{2}}\left[\frac{1}{2} \sigma^{2} \beta_{2}\left(\beta_{2}-1\right)+\beta_{2}(\rho-\delta)-\rho\right]=0
$$

- Thus, $\beta_{1}=\frac{1}{2}-\frac{(\rho-\delta)}{\sigma^{2}}+\sqrt{\left[\frac{\rho-\delta}{\sigma^{2}}-\frac{1}{2}\right]^{2}+\frac{2 \rho}{\sigma^{2}}}$ and $\beta_{2}=\frac{1}{2}-\frac{(\rho-\delta)}{\sigma^{2}}-$

$$
\sqrt{\left[\frac{\rho-\delta}{\sigma^{2}}-\frac{1}{2}\right]^{2}+\frac{2 \rho}{\sigma^{2}}}
$$

DYNAMIC PROGRAMMING SOLUTION

The characteristic quadratic, $\mathcal{Q}(\beta)=\frac{1}{2} \sigma^{2} \beta(\beta-1)+(\rho-$ $\delta) \beta-\rho$, has two roots such that $\beta_{1}>1$ and $\beta_{2}<0$
$\rightarrow \mathcal{Q}(\beta)$ has a positive coefficient for β^{2}, i.e., it is an upward-pointing parabola

- Note that $\mathcal{Q}(1)=-\delta<0$, which means that $\beta_{1}>1$
- $\mathcal{Q}(0)=-\rho$, which means that $\beta_{2}<0$ (Figure 5.2)
* Consequently, the first boundary condition implies that $A_{2}=0$, i.e., $F(V)=A_{1} V^{\beta_{1}}$
- Using the VM and SP conditions, we obtain $V^{*}=\frac{\beta_{1}}{\beta_{1}-1} I$ and $A_{1}=\frac{\left(V^{*}-I\right)}{\left(V^{*}\right) \beta_{1}}=\frac{\left(\beta_{1}-1\right)^{\beta_{1}-1}}{\left[\left(\beta_{1}\right)^{\beta_{1}} I^{\beta_{1}-1}\right]}$
- Since $\beta_{1}>1$, we also have $V^{*}>I$

DYNAMIC PROGRAMMING SOLUTION: Figure 5.2

Figure 5.2. The Fundamental Quadratic

DYNAMIC PROGRAMMING SOLUTION: Comparative Statics

* $\frac{\partial \beta_{1}}{\partial \sigma}<0$

Differentiate $\mathcal{Q}(\beta)$ totally and evaluate it at β_{1}

- $\frac{\partial \mathcal{Q}}{\partial \beta} \frac{\partial \beta_{1}}{\partial \sigma}+\frac{\partial \mathcal{Q}}{\partial \sigma}=0 \Rightarrow \frac{\partial \beta_{1}}{\partial \sigma}=-\frac{\partial \mathcal{Q} / \partial \sigma}{\partial \mathcal{Q} / \partial \beta}$
- Know that $\frac{\partial \mathcal{Q}}{\partial \beta}>0$ at β_{1} via Figure 5.2 and $\frac{\partial \mathcal{Q}}{\partial \sigma}=\sigma \beta(\beta-1)>0$ at $\beta_{1}>1$
- Thus, $\frac{\partial \beta_{1}}{\partial \sigma}<0$ and $\frac{\beta_{1}}{\beta_{1}-1}$ increases with σ
\star Similarly, $\frac{\partial \beta_{1}}{\partial \delta}=-\frac{\partial \mathcal{Q} / \partial \delta}{\partial \mathcal{Q} / \partial \beta}>0$
- For $\beta_{1}>1, \frac{\partial \mathcal{Q}}{\partial \delta}=-\beta<-1$
- Thus, $\frac{\partial \beta_{1}}{\partial \delta}>0$ and $\frac{\beta_{1}}{\beta_{1}-1}$ decreases with δ
\star Finally, $\frac{\partial \beta_{1}}{\partial \rho}=-\frac{\partial \mathcal{Q} / \partial \rho}{\partial \mathcal{Q} / \partial \beta}<0$
- For $\beta_{1}>1, \frac{\partial \mathcal{Q}}{\partial \rho}=\beta-1>0$
- Thus, $\frac{\partial \beta_{1}}{\partial \rho}<0$ and $\frac{\beta_{1}}{\beta_{1}-1}$ increases with ρ

As $\sigma \rightarrow \infty, \beta_{1} \rightarrow 1$ and $V^{*} \rightarrow \infty$, whereas as $\sigma \rightarrow 0$, $\beta_{1} \rightarrow \frac{\rho}{\rho-\delta}$ and $V^{*} \rightarrow \frac{\rho}{\delta} I$ for $\alpha>0$

DYNAMIC PROGRAMIVING SOLUTION: Comparison to Neoclassical Theory

* Marshallian analysis is to compare $V_{0} \equiv$ $\mathcal{E}_{\pi_{0}} \int_{0}^{\infty} \pi_{s} e^{-\rho s} d s=\int_{0}^{\infty} \mathcal{E}_{\pi_{0}}\left[\pi_{s}\right] e^{-\rho s} d s=\frac{\pi_{0}}{\rho-\alpha}$ with I
- Invest if $V_{0} \geq I$ or $\pi_{0} \geq(\rho-\alpha) I$
- Real options approach says to invest when $\pi_{0} \geq \pi^{*} \equiv \frac{\beta_{1}}{\beta_{1}-1}(\rho-$ $\alpha) I>(\rho-\alpha) I$
\star Tobin's q is the ratio of the value of the existing capital goods to the their current reproduction cost
- Rule is to invest when $q \geq 1$
- If we interpret q as being $\frac{V}{I}$, then the real options threshold is $q^{*}=\frac{\beta_{1}}{\beta_{1}-1}>1$
- Hence, the real options definition of q adds option value to the PV of assets in place

CONTINGENT CLAIMS SOLUTION: Background

Instead of using an arbitrary discount rate, ρ, we now try to ground it more firmly using market principles

- Assume that x is the price of an asset that is perfectly correlated with V, i.e., $\rho_{x m}=\rho_{V M}$
- If x pays no dividends, then $d x=\mu x d t+\sigma x d z$
- From CAPM, $\mu=r+\phi \rho_{x m} \sigma>\alpha$, where α is the expected percentage rate of change of V
- Let $\delta=\mu-\alpha$ be the dividend rate, and if it were equal to zero, then it would imply that the option would always be held to maturity
- In other words, there would be no opportunity cost to delaying exercise of the option since the entire return comes from the price movement, i.e., one would never invest
- Thus, we assume $\delta>0$, and if $\delta \rightarrow \infty$, then invest either now or never, i.e., opportunity cost of waiting is high and options value goes to zero

CONTINGENT CLAIMS SOLUTION

Find $F(V)$ by constructing a risk-free portfolio, Φ, which consists of one unit of $F(V)$ and $n=F^{\prime}(V)$ units short of the underlying project (or correlated asset)

- Recall from the previous lecture that $n=\frac{b F_{x}}{B X}$ in order for the synthetic portfolio to be risk free
- $\Phi=F-F^{\prime}(V) V$, which means that n must change over time even if it is kept constant for the next $d t$ time units
- Short position requires dividend payment of $\delta V F^{\prime}(V)$
- Thus, the total portfolio return is $d \Phi-\delta F^{\prime}(V) V d t=d F-$ $F^{\prime}(V) d V-\delta F^{\prime}(V) V d t$
- From Itô's lemma, we have $d F=F^{\prime}(V) d V+\frac{1}{2} F^{\prime \prime}(V)(d V)^{2}$
- Substitution yields the total portfolio return is $\frac{1}{2} F^{\prime \prime}(V)(d V)^{2}-$ $\delta F^{\prime}(V) V d t=\frac{1}{2} F^{\prime \prime}(V) V^{2} \sigma^{2} d t-\delta F^{\prime}(V) V d t$
- The no-arbitrage condition implies $\frac{1}{2} F^{\prime \prime}(V) V^{2} \sigma^{2} d t-\delta F^{\prime}(V) V d t=$ $r\left[F-F^{\prime}(V) V\right] d t \Rightarrow \frac{1}{2} F^{\prime \prime}(V) V^{2} \sigma^{2}+(r-\delta) F^{\prime}(V) V-r F=0$
\rightarrow Hence, $F(V)=A_{1} V^{\beta_{1}}$, where $\beta_{1}=\frac{1}{2}-\frac{r-\delta}{\sigma^{2}}+\sqrt{\left[\frac{(r-\delta)}{\sigma^{2}}-\frac{1}{2}\right]^{2}+\frac{2 r}{\sigma^{2}}}$

CHARACTERISTICS OF THE OPTIMAL INVESTMENT RULE

* Use numerical examples to illustrate how investment values and thresholds change using $I=1, r=0.04$, $\delta=0.04$, and $\sigma=0.20$
- This implies that $\beta_{1}=2, V^{*}=2 I=2$, and $A_{1}=\frac{1}{4}$, i.e., real options says to invest when project value is twice as high as the investment cost
- Furthermore, $F(V)=\frac{1}{4} V^{2}$ for $V \leq 2$ and $F(V)=V-1$ otherwise (Figure 5.3)
- Note that $F(V)$ and V^{*} increase with σ : greater uncertainty increases value of waiting and, thus, the opportunity cost of investing (Figure 5.4)
- Greater δ increases the opportunity cost of delaying the investment and, thus, reduces the option value and the investment threshold (Figures 5.5 and 5.6)
- Caveat: σ and δ are related via $\delta=\mu-\alpha=r+\phi \sigma \rho_{x m}-\alpha$, but we treat them as being independent for sake of exposition

CHARACTERISTICS OF THE OPTIMAL INVESTMENT RULE: Figure 5.3

Figure 5.3. Value of Investment Opportunity, $F(V)$, for $\sigma=0,0.2$ and 0.3

CHARACTERISTICS OF THE OPTIMAL INVESTMENT RULE: Figure 5.4

Figure 5.4. Critical Value V* as a Function of σ

CHARACTERISTICS OF THE OPTIMAL INVESTMENT RULE: Figure 5.5

Figure 5.5. Value of Investment Opportunity, $F(V)$, for $\delta=0.04$ and 0.08

CHARACTERISTICS OF THE OPTIMAL INVESTMENT RULE: Figure 5.6

Figure 5.6. Critical Value V as a Function of δ

CHARACTERISTICS OF THE OPTIMAL INVESTMENT RULE

丸 Use numerical examples to illustrate how investment values and thresholds change using $I=1, r=0.04$, $\delta=0.04$, and $\sigma=0.20$

- Increasing r increases $F(V)$ and V^{*} because the PV of expenditure at future time, $T, I e^{-r T}$, is reduced while the PV of revenue, $V e^{-\delta T}$, is unaffected (Figure 5.7)
- Thus, it is worthwhile to wait more even if the value of the option increases
- Cast results in terms of Tobin's $q=\frac{V^{*}}{I}=\frac{\beta_{1}}{\beta_{1}-1}$, i.e., use definition without option value
- Plot contours of constant q^{*} for combinations of $\frac{2 r}{\sigma^{2}}$ and $\frac{2 \delta}{\sigma^{2}}$ (Figure 5.8)
- Find that q^{*} is large when either δ is small or r is large: intuitively, higher dividend rate reduces value of waiting, while higher interest rate does the opposite
- Finally, note that all estimated parameters, such as α and σ, may be changing over time

CHARACTERISTICS OF THE OPTIMAL INVESTMENT RULE: Figure 5.7

Figure 5.7. Critical Value $V \cdot$ as a Function of r

CHARACTERISTICS OF THE OPTIMAL INVESTMENT RULE: Figure 5.8

Figure 5.8. Curves of Constant $\dot{q}^{*}=\beta_{1} /\left(\beta_{1}-1\right)$

ALTERNATIVE STOCHASTIC PROCESSES: GMR Process

* Suppose V follows a GMR process: $d V=\eta(\bar{V}-V) V d t+$ $\sigma V d z$
- Expected percentage change of V is $\frac{1}{d t} \mathcal{E}\left[\frac{d V}{V}\right]=\eta(\bar{V}-V)$
- Thus, expected absolute rate of change is $\frac{1}{d t} \mathcal{E}[d V]=\eta V \bar{V}-\eta V^{2}$, which is a parabola that is zero at $V=0$ and $V=\bar{V}$ with a maximum at $\frac{\bar{V}}{2}$
- Let μ be the risk-adjusted rate of return for the project and define the dividend rate to be $\delta(V)=\mu-\frac{1}{d t} \mathcal{E}\left[\frac{d V}{V}\right]=\mu-\eta(\bar{V}-V)$
- End up with same ODE as before using contingent claims, but adjust for $\delta(V): \frac{1}{2} \sigma^{2} V^{2} F^{\prime \prime}(V)+[r-\mu+\eta(\bar{V}-V)] V F^{\prime}(V)-r F=0$
- Must satisfy the same three boundary conditions as before
- Typically, a closed-form solution is difficult to find
- Express the solution as $F(V)=A V^{\theta} h(V)$ and substitute it back into the ODE

ALTERNATIVE STOCHASTIC PROCESSES: GMR Process

* Since $F^{\prime}(V)=\theta A V^{\theta-1} h(V)+A V^{\theta} h^{\prime}(V)$ and $F^{\prime \prime}(V)=$ $\theta(\theta-1) A V^{\theta-2} h(V)+2 \theta A V^{\theta-1} h^{\prime}(V)+A V^{\theta} h^{\prime \prime}(V)$
- We have $V^{\theta} h(V)\left[\frac{1}{2} \sigma^{2} \theta(\theta-1)+(r-\mu+\eta \bar{V}) \theta-r\right]+$ $V^{\theta+1}\left[\frac{1}{2} \sigma^{2} V h^{\prime \prime}(V)+\left(\sigma^{2} \theta+r-\mu+\eta \bar{V}-\eta V\right) h^{\prime}(V)-\eta \theta h(V)\right]=$ 0
- Both bracketed components must be zero, i.e., $\frac{1}{2} \sigma^{2} \theta(\theta-1)+(r-$ $\mu+\eta \bar{V}) \theta-r=0 \Rightarrow \theta=\frac{1}{2}+\frac{\left(\mu^{2}-r-\eta \bar{V}\right)}{\sigma^{2}}+\sqrt{\left[\frac{r-\mu+\eta \bar{V}}{\sigma^{2}}-\frac{1}{2}\right]^{2}+\frac{2 r}{\sigma^{2}}}$
- And also $\frac{1}{2} \sigma^{2} V h^{\prime \prime}(V)+\left(\sigma^{2} \theta+r-\mu+\eta \bar{V}-\eta V\right) h^{\prime}(V)-\eta \theta h(V)=0$
- Use substitution $x=\frac{2 \eta V}{\sigma^{2}}$ to transform it into Kummer's equation, $x g^{\prime \prime}(x)+(b-x) g^{\prime}(x)-\theta g(x)$, which has the solution $H(x ; \theta, b)=$ $1+\frac{\theta}{b} x+\frac{\theta(\theta+1) x^{2}}{b(b+1) 2!}+\frac{\theta(\theta+1)(\theta+2) x^{3}}{b(b+1)(b+2) 3!}+\cdots$
- Hence, $F(V)=A V^{\theta} H\left(\frac{2 \eta}{\sigma^{2}} V ; \theta, b\right)$

ALTERNATIVE STOCHASTIC PROCESSES: Investment Characteristics

Use numerical example with same parameters as before plus $\mu=0.08$ and varying η and \bar{V}

- As \bar{V} increases, so does the value of waiting and, thus, both $F(V)$ and V^{*} increase (Figure 5.11)
- Variation with η : if $\bar{V}>I$, then $F(V)$ increases in η (but decreases otherwise) as V is likely to rise above I and remain there (Figures 5.12 and 5.13)
- Shape of $F(V)$ becomes concave for small V because the absolute rate of mean reversion rises rapidly
- V^{*} increases with η as long as \bar{V} is large (Figure 5.14)

ALTERNATIVE STOCHASTIC PROCESSES: Figure 5.11

Figure 5.11. Mean Reversion- $F(V)$ for $\eta=0.05$ and $\bar{V}=0.5,1.0$, and 1.5

ALTERNATIVE STOCHASTIC PROCESSES: Figure 5.12

Figure 5.12. Mean Reversion-F(V) for $\eta=0.1$ and $\dot{V}=0.5,1.0$, and 1.5

ALTERNATIVE STOCHASTIC PROCESSES: Figure 5.13

Figure 5.13. Mean Reversion-F $F(V)$ for $\eta=0.5$ and $\tilde{V}=0.5,1.0$, and 1.5

ALTERNATIVE STOCHASTIC PROCESSES: Figure 5.14

Figure 5.14. Critical Value V^{*} as a Function of η for $\mu=0.08$ and $\bar{V}=0.5,1.0$, and 1.5

VALUE OF THE PROJECT WITHOUT OPERATING COSTS

\star Suppose that the output price, P, follows a GBM and the firm produces one unit per year forever

- Without operating costs and ruling out speculative bubbles, the value of the project is $V(P)=\mathcal{E}_{P} \int_{0}^{\infty} P_{t} e^{-\mu t} d t=$ $\int_{0}^{\infty} \mathcal{E}_{P}\left[P_{t}\right] e^{-\mu t} d t=\int_{0}^{\infty} P e^{-(\mu-\alpha) t} d t=\frac{P}{\delta}$
- Via the contingent claims argument, we can now find the value of the option to invest, $F(P)$, which will satisfy the ODE $\frac{1}{2} \sigma^{2} P^{2} F^{\prime \prime}(P)+(r-\delta) P F^{\prime}(P)-r F(P)=0: \quad F(P)=A_{1} P^{\beta_{1}}+$ $A_{2} P^{\beta_{2}}$
- Boundary condition $F(0)=0 \Rightarrow A_{2}=0$
- VM and SP conditions imply: (i) $A_{1}\left(P^{*}\right)^{\beta_{1}}=\frac{P^{*}}{\delta}-I$ and (ii) $\beta_{1} A_{1}\left(P^{*}\right)^{\beta_{1}-1}=\frac{1}{\delta}$
- Therefore, $P^{*}=\frac{\beta_{1}}{\beta_{1}-1} \delta I$ and $A_{1}=\frac{\left(\beta_{1}-1\right)^{\beta_{1}-1} I^{-\left(\beta_{1}-1\right)}}{\left(\delta \beta_{1}\right)^{\beta_{1}}}$
- Note that $V^{*}=\frac{P^{*}}{\delta}=\frac{\beta_{1}}{\beta_{1}-1} I>I$

Can also use dynamic programming to find $F(P)$

OPERATING COSTS AND TEMPORARY SUSPENSION: Value of the Project

* Suppose now that the project incurs operating cost, C, but it may be costlessly suspended or resumed once installed
- Instantaneous profit flow is $\pi(P)=\max [P-C, 0]$, i.e., project owner has infinitely many embedded operational options
- Thus, the value of an active project will be worth more than simply the NPV of the cash flows
\star Value the project using contingent claims by going long one unit $V(P)$ and shorting $n=V_{P}(P)$ units of P
- Unlike the option to invest, we now have a profit flow, $\pi(P)$, which implies that the ODE becomes $\frac{1}{2} \sigma^{2} P^{2} V^{\prime \prime}(P)+(r-\delta) P V^{\prime}(P)-$ $r V(P)+\pi(P)=0$
- For $P<C$, only the homogeneous part of the solution is valid, i.e., $V(P)=K_{1} P^{\beta_{1}}+K_{2} P^{\beta_{2}}$
- With $P \geq C$, we also have the particular solution $D_{1} P+D_{2} C+D_{3}$
- Substitution into the ODE yields $D_{1}=\frac{1}{\delta}, D_{2}=-\frac{1}{r}, D_{3}=0$
- Therefore, $V(P)=B_{1} P^{\beta_{1}}+B_{2} P^{\beta_{2}}+\frac{P}{\delta}-\frac{C}{r}$ for $P \geq C$

OPERATING COSTS AND TEMPORARY SUSPENSION: Value of the Project

For $P<C, V(P)$ represents the option value of resuming a suspended project

- Intuitively, this must increase in P and be worthless for very small P
- Only when $K_{2}=0$ does this hold; thus, $V(P)=K_{1} P^{\beta_{1}}$ for $P<C$
* For $P \geq C, V(P)$ is the value of an active project inclusive of the option to suspend operations
- The suspension option is valuable only for small P and becomes worthless for large P
- Thus, $B_{1}=0$ and $V(P)=B_{2} P^{\beta_{2}}+\frac{P}{\delta}-\frac{C}{r}$ for $P \geq C$

Find K_{1} and B_{2} via VM and SP at $P=C$

- $K_{1} C^{\beta_{1}}=B_{2} C^{\beta_{2}}+\frac{C}{\delta}-\frac{C}{r}$ and $\beta_{1} K_{1} C^{\beta_{1}-1}=\beta_{2} B_{2} C^{\beta_{2}-1}+\frac{1}{\delta}$
- $K_{1}=\frac{C^{1-\beta_{1}}}{\beta_{1}-\beta_{2}}\left(\frac{\beta_{2}}{r}-\frac{\left(\beta_{2}-1\right)}{\delta}\right)>0, B_{2}=\frac{C^{1-\beta_{2}}}{\beta_{1}-\beta_{2}}\left(\frac{\beta_{1}}{r}-\frac{\left(\beta_{1}-1\right)}{\delta}\right)>0$
- $V(P)$ is increasing (decreasing) in $\sigma(\delta)$ (Figures 6.1 and 6.2)

OPERATING COSTS AND TEMPORARY SUSPENSION: Figure 6.1

Figure 6.1. Value of Project, $V(P)$, for $\sigma=0,0.2,0.4$
(Note: $r=\delta=0.04$, and $C=10$)

OPERATING COSTS AND TEMPORARY SUSPENSION: Value of the Option to Invest

Following the contingent claims approach, $F(P)=$ $A_{1} P^{\beta_{1}}+A_{2} P^{\beta_{2}}$

- Boundary condition $F(0)=0 \Rightarrow A_{2}=0$

For $P<C$, it is never optimal to invest

- Thus, VM and SP of $F(P)$ will occur for $P \geq C$, i.e., with $V(P)-$ $I=B_{2} P^{\beta_{2}}+\frac{P}{\delta}-\frac{C}{r}-I$
- Use $A_{1}\left(P^{*}\right)^{\beta_{1}}=B_{2}\left(P^{*}\right)^{\beta_{2}}+\frac{P^{*}}{\delta}-\frac{C}{r}-I$ and $\beta_{1} A_{1}\left(P^{*}\right)^{\beta_{1}-1}=$ $\beta_{2} B_{2}\left(P^{*}\right)^{\beta_{2}-1}+\frac{1}{\delta}$ to solve for P^{*} and A_{1}
- Substitute to solve the following equation numerically: $\left(\beta_{1}-\right.$ $\left.\beta_{2}\right) B_{2}\left(P^{*}\right)^{\beta_{2}}+\left(\beta_{1}-1\right) \frac{P^{*}}{\delta}-\beta_{1}\left(\frac{C}{r}+I\right)=0$
- Solution for $r=0.04, \delta=0.04, \sigma=0.20, I=100$, and $C=10$ (Figure 6.3)
- $\beta_{1}=2, \beta_{2}=-1, P^{*, n f}=28, A_{1}^{n f}=0.4464, P^{*}=23.8$, and $A_{1}=0.4943$
- Sensitivity analysis: $F(P)$ and P^{*} increase with σ (Figure 6.4)
- But $F(P)$ decreases and P^{*} increases with δ (Figures 6.5 and 6.6)

OPERATING COSTS AND TEMPORARY SUSPENSION: Figure 6.3

Figure 6.3. Value of Investment Opportunity, $F(P)$, and $V(P)-I$
(Note: $r=\delta=0.04, \sigma=0.2$, and $I=100$)

OPERATING COSTS AND TEMPORARY SUSPENSION: Figure 6.4

Figure 6.4. Value of Investment Opportunity, $F(P)$, and $V^{\prime}(P)-I$, for $s=0,0.2$ and 0.4

OPERATING COSTS AND TEMPORARY SUSPENSION: Figure 6.6

PROJECTS WITH VARIABLE OUTPUT: Project Value

* Suppose output is produced according to function $h(v)$, where v is level of some intermediate good Instantaneous profit flow is $\pi(P) \equiv \max _{v}[P h(v)-C(v)]$
- Assume Cobb-Douglas production function, i.e., $h(v)=v^{\theta}$, where $0<\theta<1$, and constant marginal cost, i.e., $C(v)=c v$
- Profit maximisation yields $v^{*}=\left[\frac{\theta P}{c}\right]^{\frac{1}{1-\theta}}$ and $\pi(P)=(1-$ $\theta)\left(\frac{\theta}{c}\right)^{\frac{\theta}{1-\theta}} P^{\frac{1}{1-\theta}}$
- Let $\gamma \equiv \frac{1}{1-\theta}>1$ so that $\pi(P)=K P^{\gamma}$
- Intuition is that without control, profit changes linearly in price, but variation makes it possible to increase faster (decrease slower) when P rises (falls)
Standard ODE for the project value is $\frac{1}{2} \sigma^{2} P^{2} V^{\prime \prime}(P)+$ $(r-\delta) P V^{\prime}(P)-r V(P)+K P^{\gamma}=0$
- Guess particular solution of the form $K_{1} P^{\gamma}$ and find that $K_{1}=$ $\frac{K}{r-(r-\delta) \gamma-\frac{1}{2} \sigma^{2} \gamma(\gamma-1)} \Rightarrow V(P)=\frac{K P^{\gamma}}{\delta^{\prime}}$

PROJECTS WITH VARIABLE OUTPUT: Option Value

\star We require $\delta^{\prime}>0$, where δ^{\prime} is the negative of $\mathcal{Q}(\gamma)$
\star Thus, $\delta^{\prime}>0 \Leftrightarrow \mathcal{Q}(\gamma)<0$, which implies that $\gamma<\beta_{1}$

- In other words, the production function must have the restriction that $\theta<\frac{\beta_{1}-1}{\beta_{1}}$
* Solution to the option value is $F(P)=A_{1} P^{\beta_{1}}$
\checkmark Use VM and SP conditions to find $\frac{K\left(P^{*}\right)^{\gamma}}{\delta^{\prime}}=\frac{\beta_{1}}{\beta_{1}-\gamma} I$
- There is a greater incentive to invest now because of the convexity of profit flow: it is possible to benefit from the upside of greater volatility without being hurt by the downside

DEPRECIATION: Exponential Decay with a Single Investment Option

* Suppose that the lifetime of the project, T, follows a Poisson process with parameter λ, i.e., density function is $e^{-\lambda T}$
- Given that the lifetime is T years, the expected PV of the project is $V_{T}(P)=\mathcal{E}_{P} \int_{0}^{T} P_{t} e^{-\mu t} d t=\int_{0}^{T} \mathcal{E}_{P}\left[P_{t}\right] e^{-\mu t} d t=\frac{P}{\delta}\left(1-e^{-\delta T}\right)$
- With a random lifetime: $V(P)=\mathcal{E}\left[V_{T}(P)\right]=$ $\int_{0}^{\infty} \lambda e^{-\lambda T} \frac{P}{\delta}\left(1-e^{-\delta T}\right) d T=\frac{P}{\lambda+\delta}$
- Project functions less well over time, which eats into its cash flows
* Value of option to invest may be obtained using contingent claims: $F(P)=A_{1} P^{\beta_{1}}$
$\star \mathrm{VM}$ and SP conditions reveal $P^{*}=\frac{\beta_{1}}{\beta_{1}-1}(\delta+\lambda) I$

DEPRECIATION: Exponential Decay with Re-investment

* Upon termination, re-investment is available at cost I If no investment has occurred, then the option value to invest is again $F(P)=A_{1} P^{\beta_{1}}$
* Let $J(P)$ be the value of an active project along with all future replacement options (use dynamic programming)
- When $P<P^{*}$, there is a profit flow and probability $\lambda d t$ that the project will die in the next $d t$ time units
- Conditional expectation: $J(P)=P d t+(1-\lambda d t) e^{-\rho d t} \mathcal{E}[J(P+$ $d P)]+\lambda d t e^{-\rho d t} \mathcal{E}[F(P+d P)]$
- Note that $\mathcal{E}[J(P+d P)]=J(P)+J^{\prime}(P) \alpha P d t+\frac{1}{2} J^{\prime \prime}(P) \sigma^{2} P^{2} d t$ and $\mathcal{E}[F(P+d P)]=F(P)+F^{\prime}(P) \alpha P d t+\frac{1}{2} \sigma^{2} P^{2} F^{\prime \prime}(P) d t$
- Thus, $J(P)=P d t+(1-(\rho+\lambda) d t)\left[J(P)+J^{\prime}(P) \alpha P d t+\right.$ $\left.\frac{1}{2} \sigma^{2} P^{2} J^{\prime \prime}(P) d t\right]+\lambda d t A_{1} P^{\beta_{1}}\left[1+\alpha \beta_{1} d t+\frac{1}{2} \sigma^{2} \beta_{1}\left(\beta_{1}-1\right) d t\right] \Rightarrow$ $\frac{1}{2} \sigma^{2} P^{2} J^{\prime \prime}(P)+\alpha P J^{\prime}(P)-(\rho+\lambda) J(P)+\lambda A_{1} P^{\beta_{1}}+P=0$
- Solution is $J(P)=B_{1} P^{\beta_{1}^{\prime}}+\frac{P}{\rho+\lambda-\alpha}+A_{1} P^{\beta_{1}}$, where β_{1}^{\prime} is the positive root of $\frac{1}{2} \sigma^{2} \xi(\xi-1)+\alpha \xi-(\rho+\lambda)=0$

DEPRECIATION: Exponential Decay with Re-investment

\star For $P \geq P^{*}$, re-investment is immediate upon termination

- Conditional expectation: $J(P)=P d t+(1-\lambda d t) e^{-\rho d t} \mathcal{E}[J(P+$ $d P)]+\lambda d t e^{-\rho d t} \mathcal{E}[J(P+d P)-I]$
- Thus, $J(P)=P d t+(1-(\rho+\lambda) d t)\left[J(P)+J^{\prime}(P) \alpha P d t+\right.$ $\left.\frac{1}{2} \sigma^{2} P^{2} J^{\prime \prime}(P) d t\right]+\lambda d t J(P)-\lambda I d t \Rightarrow \frac{1}{2} \sigma^{2} P^{2} J^{\prime \prime}(P)+\alpha P J^{\prime}(P)-$ $\rho J(P)+P-\lambda I=0$
- Solution is $J(P)=B_{2} P^{\beta_{2}}+\frac{P}{\rho-\alpha}-\frac{\lambda I}{\rho}$
- Two branches of $J(P)$ meet tangentially at P^{*} and have the usual VM and SP conditions with $F(P)$
\star Find $P^{*}=\frac{\beta_{1}^{\prime}}{\beta_{1}^{\prime}-1}(\delta+\lambda) I$, i.e., lower investment threshold than when only a single option was available

PRICE AND COST UNCERTAINTY

* Both P and I follow correlated GBMs

- $d P=\alpha_{P} P d t+\sigma_{P} P d z_{P}, d I=\alpha_{I} I d t+\sigma_{I} I d z_{I}, \mathcal{E}\left[\left(d z_{P}\right)^{2}\right]=d t$, $\mathcal{E}\left[\left(d z_{I}\right)^{2}\right]=d t$, and $\mathcal{E}\left[d z_{P} d z_{I}\right]=\rho d t$
- Expected NPV of project is $V(P, I)=\frac{P}{\delta_{P}}-I$, and we want $F(P, I)$
- Construct risk-free portfolio: $\Phi=F-n_{P} P-n_{I} I \Rightarrow d \Phi=d F-$ $n_{P} d P-n_{I} d I$
- $d F=F_{P} d P+F_{I} d I+\frac{1}{2} F_{P P}(d P)^{2}+\frac{1}{2} F_{I I}(d I)^{2}+F_{P I}(d P d I) \Rightarrow d F=$ $F_{P} d P+F_{I} d I+\frac{1}{2} F_{P P} \sigma_{P}^{2} P^{2} d t+\frac{1}{2} F_{I I} \sigma_{I}^{2} I^{2} d t+F_{P I} \sigma_{P} \sigma_{I} P I \rho d t$
- Substitution implies $\mathrm{d} \Phi=\left(F_{P}-n_{P}\right) d P+\left(F_{I}-n_{I}\right) d I+$ $\frac{1}{2} F_{P P} \sigma_{P}^{2} P^{2} d t+\frac{1}{2} F_{I I} \sigma_{I}^{2} I^{2} d t+F_{P I} \sigma_{P} \sigma_{I} P I \rho d t$
- In order for Φ to be risk free, we must have $n_{P}=F_{P}$ and $n_{I}=F_{I}$
- Add the convenience yield to obtain the total portfolio return: $\frac{1}{2} F_{P P} \sigma_{P}^{2} P^{2} d t+\frac{1}{2} F_{I I} \sigma_{I}^{2} I^{2} d t+F_{P I} \sigma_{P} \sigma_{I} P I \rho d t-F_{P} \delta_{P} P d t-F_{I} \delta_{I} I d t$
- Risk-free rate of return: $r \Phi d t=r F d t-r F_{P} P d t-r F_{I} I d t$
- Obtain PDE: $\frac{1}{2} F_{P P} \sigma_{P}^{2} P^{2}+\frac{1}{2} F_{I I} \sigma_{I}^{2} I^{2}+F_{P I} \sigma_{P} \sigma_{I} P I \rho+(r-$ $\left.\delta_{P}\right) F_{P} P+\left(r-\delta_{I}\right) F_{I} I-r F=0$
$\checkmark \mathrm{VM}: F\left(P^{*}(I), I\right)=\frac{P^{*}(I)}{\delta_{P}}-I, \mathrm{SP} 1: F_{P}\left(P^{*}(I), I\right)=\frac{1}{\delta_{P}}$, and SP2:
1-8 SepterFber $\left.P_{20}^{*}(I), I\right)=-1 \quad$ Siddiqui

PRICE AND COST UNCERTAINTY

* Use transformation to convert PDE to ODE
- Let $p=\frac{P}{I}$ and $f(p)=\frac{F(P, I)}{I}$
- Thus, $F_{P}=f^{\prime}(p), F_{I}=f(p)-p f^{\prime}(p), F_{P P}=f^{\prime \prime}(p) I^{-1}, F_{I I}=$ $\frac{p^{2} f^{\prime \prime}(p)}{I}$, and $F_{P I}=-\frac{p f^{\prime \prime}(p)}{I}$
- The ODE is $\frac{1}{2}\left(\sigma_{P}^{2}-2 \rho \sigma_{P} \sigma_{I}+\sigma_{I}^{2}\right) p^{2} f^{\prime \prime}(p)+\left(\delta_{I}-\delta_{P}\right) p f^{\prime}(p)-$ $\delta_{I} f(p)=0$
- VM: $f\left(p^{*}\right)=\frac{p^{*}}{\delta_{P}}-1$ and SP: $f^{\prime}\left(p^{*}\right)=\frac{1}{\delta_{P}}$
- Therefore, $f(p)=a_{1} p^{\gamma_{1}}$, where γ_{1} is the positive root of $\frac{1}{2}\left(\sigma_{P}^{2}-2 \rho \sigma_{P} \sigma_{I}+\sigma_{I}^{2}\right) \beta(\beta-1)+\left(\delta_{I}-\delta_{P}\right) \beta-\delta_{I}=0$
- Thus, $p^{*}=\frac{\gamma_{1}}{\gamma_{1}-1} \delta_{P}$
- In other words, higher uncertainty causes the free boundary to rotate upwards (Figure 6.8)
- What happens when ρ is increased?

PRICE AND COST UNCERTAINTY：Figure 6.8

Figure 6．8．Investment with Price and Cost Uncertainty

QUESTIONS

