TIØ 1: Financial Engineering in Energy Markets

Afzal Siddiqui

Department of Statistical Science University College London London WC1E 6BT, UK afzal@stats.ucl.ac.uk

COURSE OUTLINE

- \bigstar Introduction (Chs 1–2)
- \star Mathematical Background (Chs 3–4)
- \star Investment and Operational Timing (Chs 5–6)
- \star Entry, Exit, Lay-Up, and Scrapping (Ch 7)
- \star Recent Theoretical Work I: Capacity Sizing
- ★ Recent Theoretical Work II: Risk Aversion and Multiple Risk Factors
- ★ Applications to the Energy Sector I: Capacity Sizing, Timing, and Operational Flexibility
- ★ Applications to the Energy Sector II: Modularity and Technology Choice

LECTURE OUTLINE

- \star Basic model
- \bigstar Solutions via dynamic programming and contingent claims
- \star Characteristics of optimal investment
- \star Alternative stochastic processes
- \star Operating costs and temporary suspension
- \star Projects with variable output
- \star Depreciation
- \star Price and cost uncertainty

BASIC MODEL: Optimal Timing

- ★ Suppose project value, V, evolves according to a GBM, i.e., $dV = \alpha V dt + \sigma V dz$, which may be obtained at a sunk cost of I
- \star When is the optimal time to invest?
 - ▶ A perpetual option, i.e., calendar time is not important
 - ▶ Ignore temporary suspension or other embedded options
 - Use both dynamic programming and contingent claims methods
- \star Problem formulation: $\max_T \mathcal{E}_{V_0}[(V_T I)e^{-\rho T}]$
 - Assume $\delta \equiv \rho \alpha > 0$, otherwise it is always better to wait indefinitely

BASIC MODEL: Deterministic Case

★ Suppose that
$$\sigma = 0$$
, i.e., $V(t) = V_0 e^{\alpha t}$ for $V_0 \equiv V(0)$
► $F(V) \equiv \max_T e^{-\rho T} (V e^{\alpha T} - I)$

• If
$$\alpha \leq 0$$
, then $F(V) = \max[V - I, 0]$

▶ Otherwise, for 0 < α < ρ, waiting may be better because either (i) V < I or (ii) V ≥ I, but discounting of future sunk cost is greater than that in the future project value

• Thus, the FONC is
$$\frac{dF(V)}{dT} = 0 \Rightarrow (\rho - \alpha)Ve^{-(\rho - \alpha)T} = \rho I e^{-\rho T} \Rightarrow$$

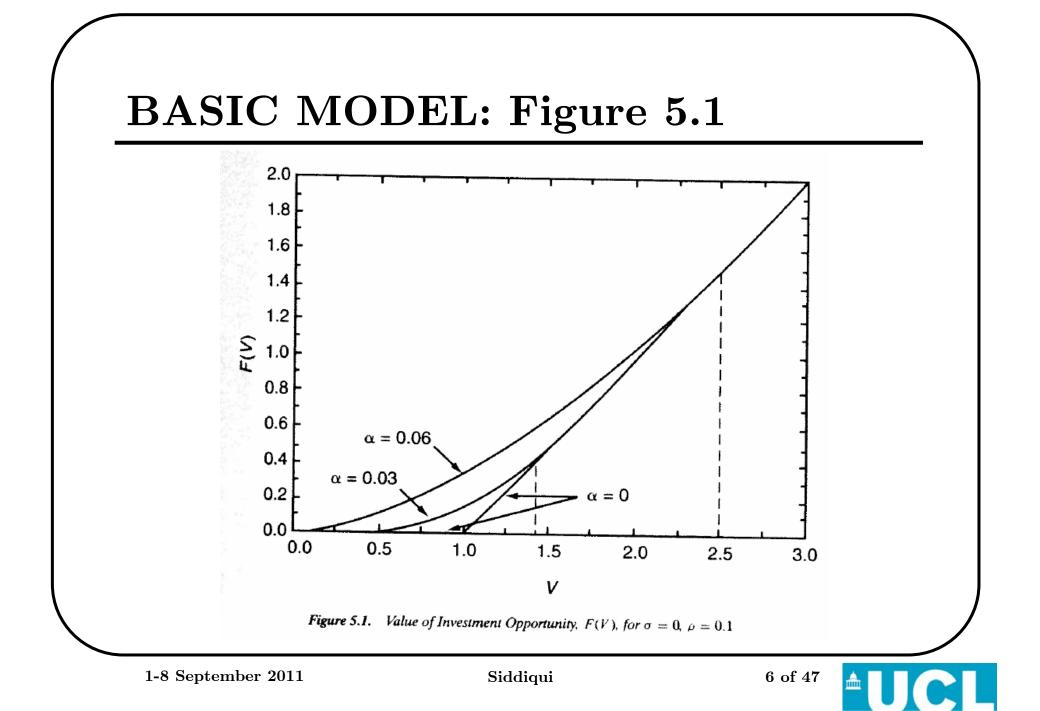
 $T^* = \max\left\{\frac{1}{\alpha}\ln\left\{\frac{\rho I}{(\rho - \alpha)V}\right\}, 0\right\}$

Reason for delaying is that the MC is depreciating over time by more than the MB

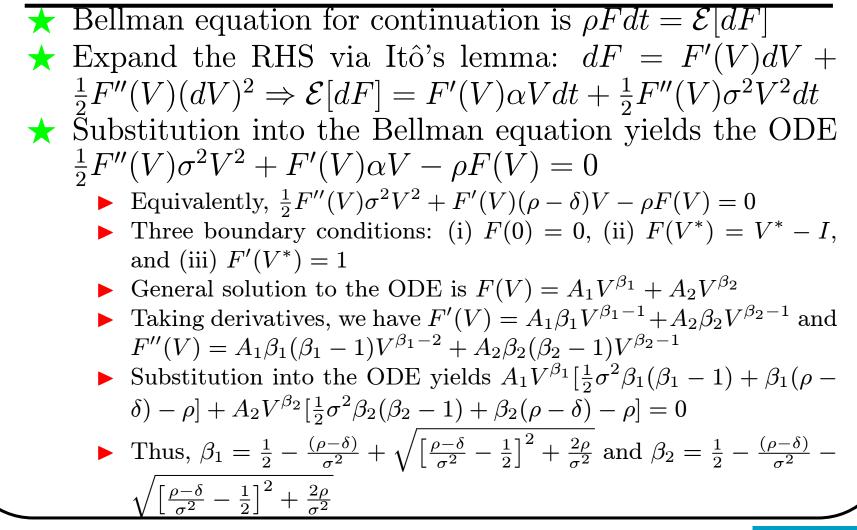
★ Substitute T^* to determine $V^* = \frac{\rho I}{(\rho - \alpha)} > I$

★ And,
$$F(V) = \left(\frac{\alpha I}{\rho - \alpha}\right) \left[\frac{(\rho - \alpha)V}{\rho I}\right]^{\frac{\rho}{\alpha}}$$
 if $V \le V^*$ ($F(V) = V - I$ otherwise)

 \star Figure 5.1 indicates that greater α increases V^*



DYNAMIC PROGRAMMING SOLUTION



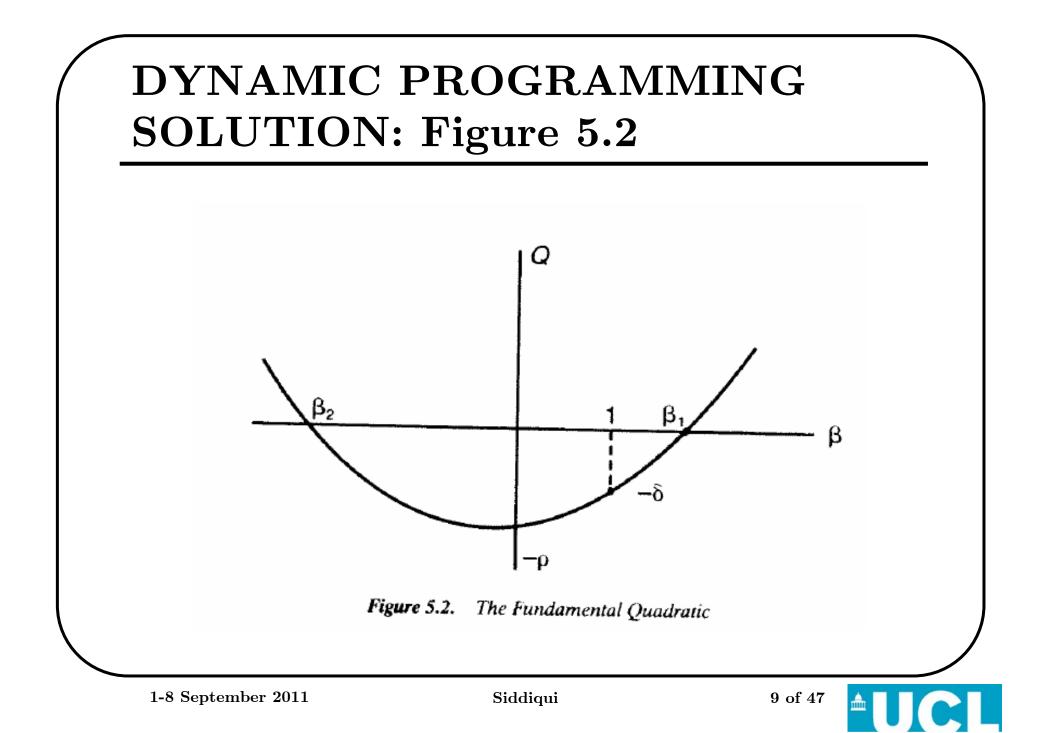
1-8 September 2011

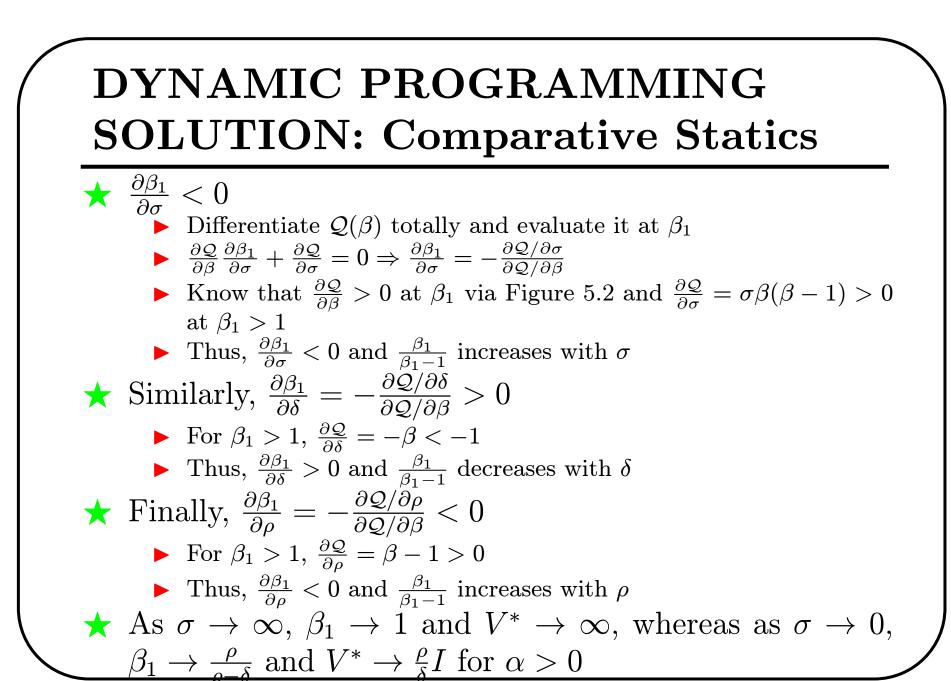
DYNAMIC PROGRAMMING SOLUTION

- ★ The characteristic quadratic, $Q(\beta) = \frac{1}{2}\sigma^2\beta(\beta-1) + (\rho 1)$
 - $\delta(\beta) \rho$, has two roots such that $\beta_1 > 1$ and $\beta_2 < 0$
 - $\mathcal{Q}(\beta)$ has a positive coefficient for β^2 , i.e., it is an upward-pointing parabola
 - Note that $Q(1) = -\delta < 0$, which means that $\beta_1 > 1$
 - ▶ $Q(0) = -\rho$, which means that $\beta_2 < 0$ (Figure 5.2)
- ★ Consequently, the first boundary condition implies that $A_2 = 0$, i.e., $F(V) = A_1 V^{\beta_1}$

► Using the VM and SP conditions, we obtain $V^* = \frac{\beta_1}{\beta_1 - 1}I$ and $A_1 = \frac{(V^* - I)}{(V^*)\beta_1} = \frac{(\beta_1 - 1)^{\beta_1 - 1}}{[(\beta_1)^{\beta_1}I^{\beta_1 - 1}]}$

Since $\beta_1 > 1$, we also have $V^* > I$





Siddiqui

1-8 September 2011

DYNAMIC PROGRAMMING SOLUTION: Comparison to Neoclassical Theory

 $\star \text{Marshallian analysis is to compare } V_0 \equiv \mathcal{E}_{\pi_0} \int_0^\infty \pi_s e^{-\rho s} ds = \int_0^\infty \mathcal{E}_{\pi_0} [\pi_s] e^{-\rho s} ds = \frac{\pi_0}{\rho - \alpha} \text{ with } I$

• Invest if
$$V_0 \ge I$$
 or $\pi_0 \ge (\rho - \alpha)I$

- Real options approach says to invest when $\pi_0 \ge \pi^* \equiv \frac{\beta_1}{\beta_1 1} (\rho \alpha)I > (\rho \alpha)I$
- \star Tobin's q is the ratio of the value of the existing capital goods to the their current reproduction cost
 - Rule is to invest when $q \ge 1$
 - ▶ If we interpret q as being $\frac{V}{I}$, then the real options threshold is $q^* = \frac{\beta_1}{\beta_1 1} > 1$
 - Hence, the real options definition of q adds option value to the PV of assets in place

CONTINGENT CLAIMS SOLUTION: Background

- \star Instead of using an arbitrary discount rate, ρ , we now try to ground it more firmly using market principles
 - Assume that x is the price of an asset that is perfectly correlated with V, i.e., $\rho_{xm} = \rho_{VM}$
 - If x pays no dividends, then $dx = \mu x dt + \sigma x dz$
 - From CAPM, $\mu = r + \phi \rho_{xm} \sigma > \alpha$, where α is the expected percentage rate of change of V
 - Let $\delta = \mu \alpha$ be the dividend rate, and if it were equal to zero, then it would imply that the option would always be held to maturity
 - ▶ In other words, there would be no opportunity cost to delaying exercise of the option since the entire return comes from the price movement, i.e., one would never invest
 - ► Thus, we assume δ > 0, and if δ → ∞, then invest either now or never, i.e., opportunity cost of waiting is high and options value goes to zero

CONTINGENT CLAIMS SOLUTION

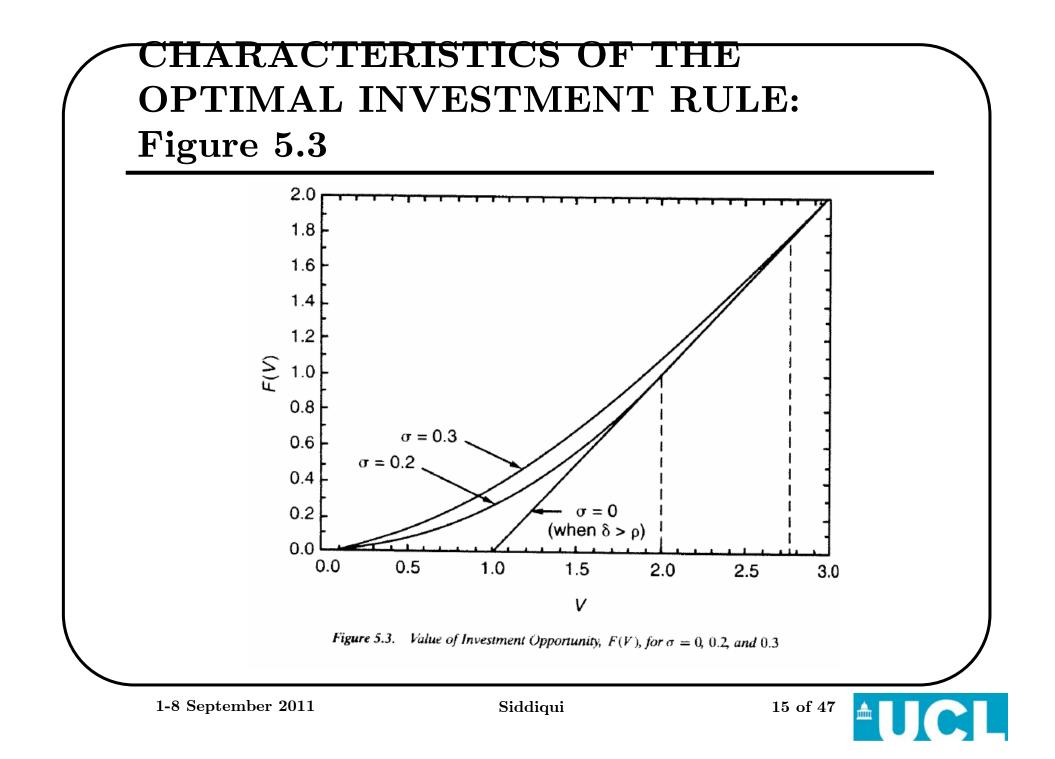
- ★ Find F(V) by constructing a risk-free portfolio, Φ , which consists of one unit of F(V) and n = F'(V) units short of the underlying project (or correlated asset)
 - Recall from the previous lecture that $n = \frac{bF_x}{BX}$ in order for the synthetic portfolio to be risk free
 - $\Phi = F F'(V)V$, which means that *n* must change over time even if it is kept constant for the next *dt* time units
 - Short position requires dividend payment of $\delta V F'(V)$
 - ► Thus, the total portfolio return is $d\Phi \delta F'(V)Vdt = dF F'(V)dV \delta F'(V)Vdt$
 - From Itô's lemma, we have $dF = F'(V)dV + \frac{1}{2}F''(V)(dV)^2$
 - Substitution yields the total portfolio return is $\frac{1}{2}F''(V)(dV)^2 \delta F'(V)Vdt = \frac{1}{2}F''(V)V^2\sigma^2 dt \delta F'(V)Vdt$
 - The no-arbitrage condition implies $\frac{1}{2}F''(V)V^2\sigma^2 dt \delta F'(V)V dt = r[F F'(V)V]dt \Rightarrow \frac{1}{2}F''(V)V^2\sigma^2 + (r \delta)F'(V)V rF = 0$

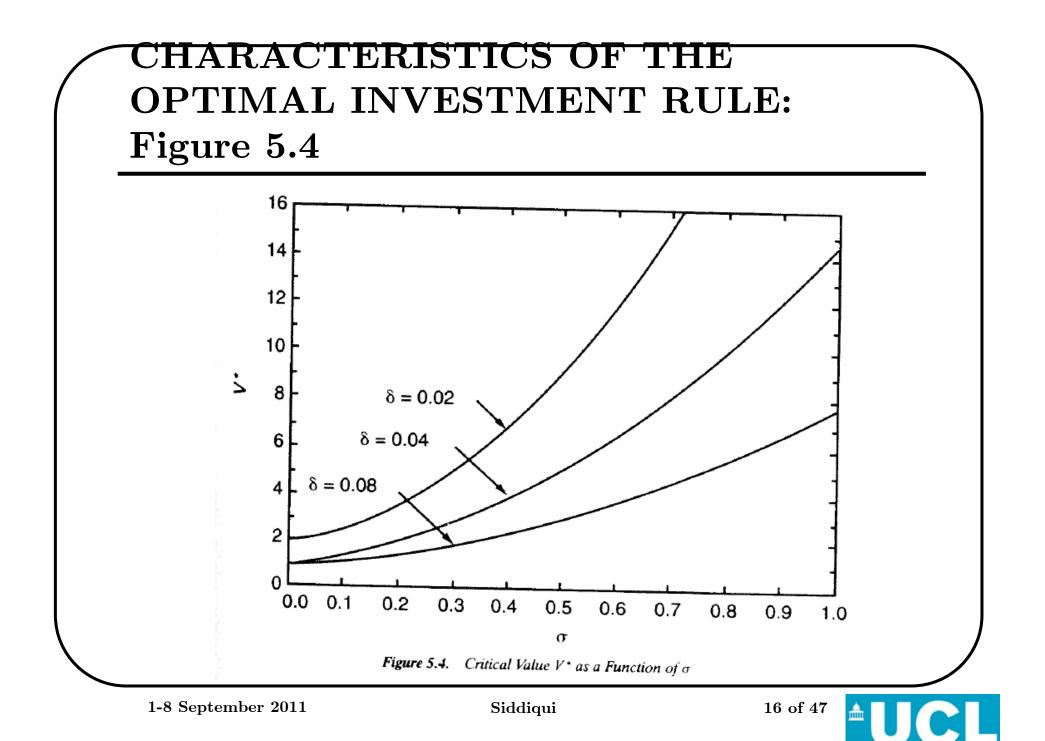
Hence,
$$F(V) = A_1 V^{\beta_1}$$
, where $\beta_1 = \frac{1}{2} - \frac{r-\delta}{\sigma^2} + \sqrt{\left[\frac{(r-\delta)}{\sigma^2} - \frac{1}{2}\right]}$

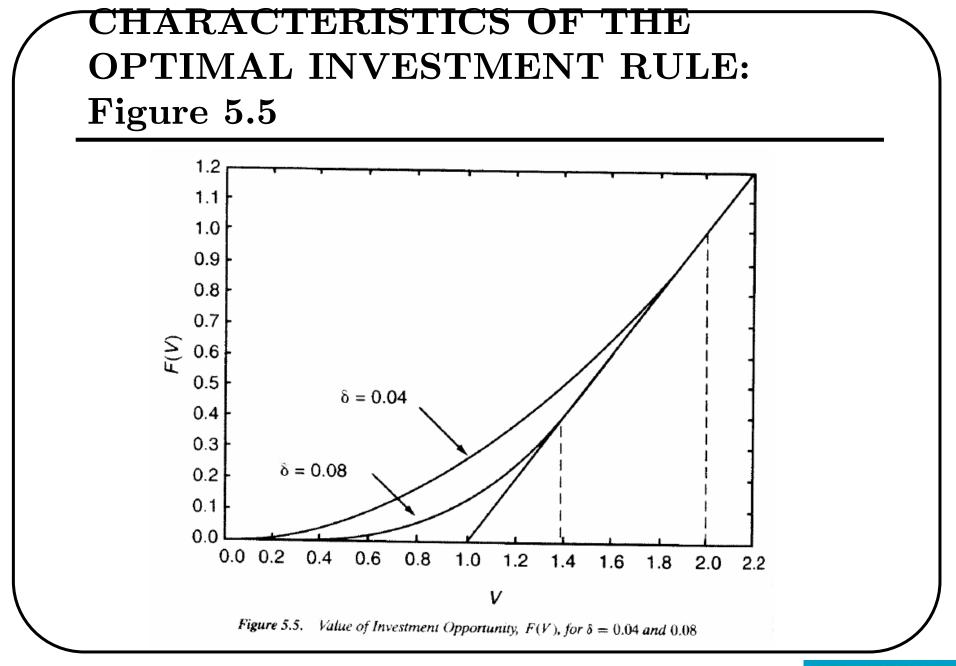
 $+\frac{2r}{\sigma^2}$

CHARACTERISTICS OF THE OPTIMAL INVESTMENT RULE

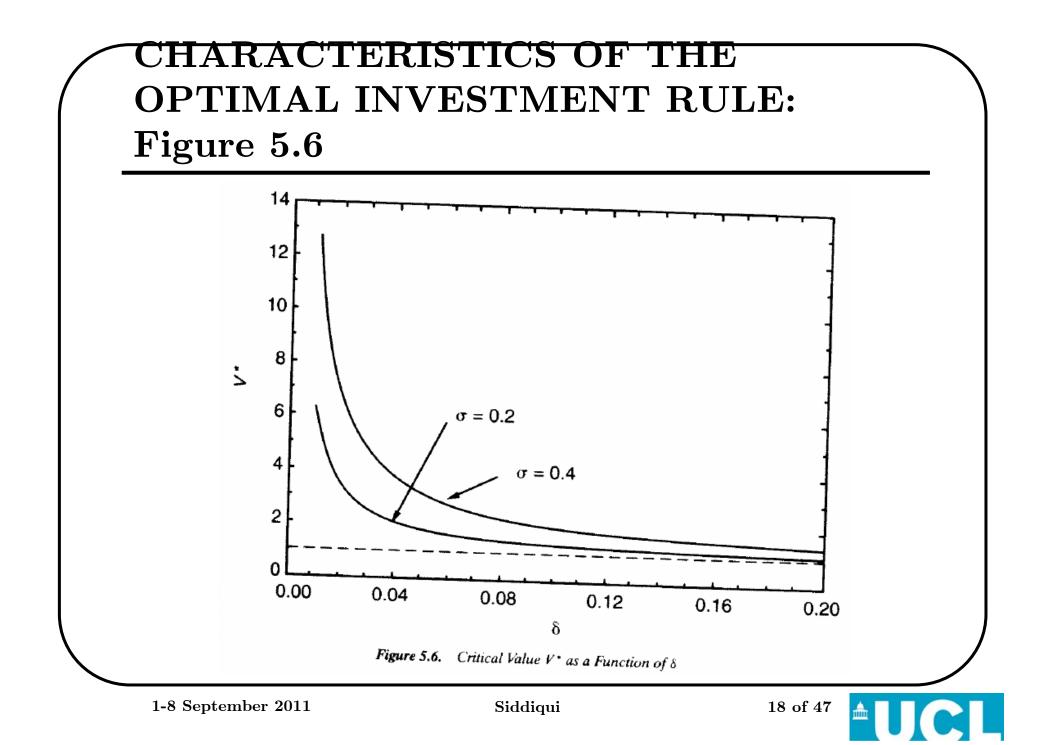
- ★ Use numerical examples to illustrate how investment values and thresholds change using I = 1, r = 0.04, $\delta = 0.04$, and $\sigma = 0.20$
 - ► This implies that $\beta_1 = 2$, $V^* = 2I = 2$, and $A_1 = \frac{1}{4}$, i.e., real options says to invest when project value is twice as high as the investment cost
 - ▶ Furthermore, $F(V) = \frac{1}{4}V^2$ for $V \le 2$ and F(V) = V 1 otherwise (Figure 5.3)
 - Note that F(V) and V^* increase with σ : greater uncertainty increases value of waiting and, thus, the opportunity cost of investing (Figure 5.4)
 - Greater δ increases the opportunity cost of delaying the investment and, thus, reduces the option value and the investment threshold (Figures 5.5 and 5.6)
 - Caveat: σ and δ are related via $\delta = \mu \alpha = r + \phi \sigma \rho_{xm} \alpha$, but we treat them as being independent for sake of exposition





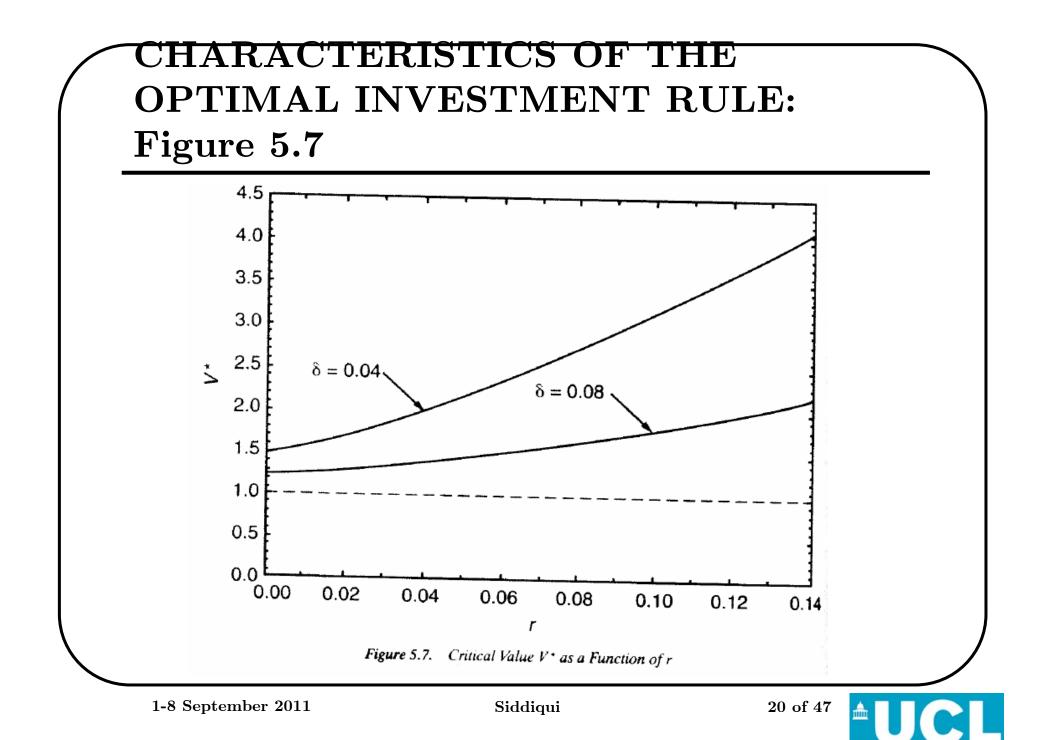


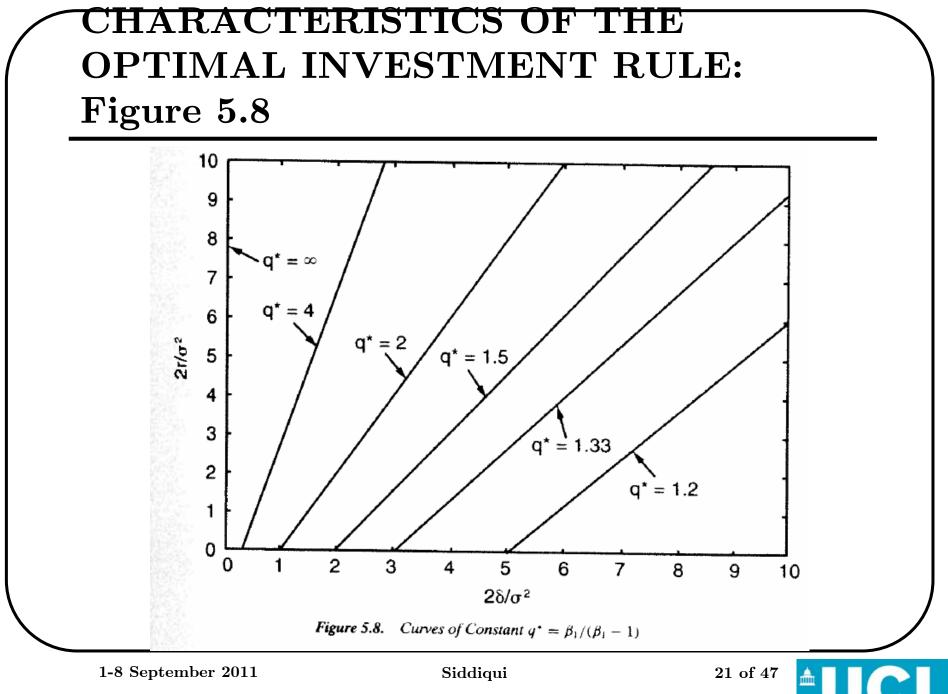
ŵ



CHARACTERISTICS OF THE OPTIMAL INVESTMENT RULE

- ★ Use numerical examples to illustrate how investment values and thresholds change using I = 1, r = 0.04, $\delta = 0.04$, and $\sigma = 0.20$
 - Increasing r increases F(V) and V^* because the PV of expenditure at future time, T, Ie^{-rT} , is reduced while the PV of revenue, $Ve^{-\delta T}$, is unaffected (Figure 5.7)
 - Thus, it is worthwhile to wait more even if the value of the option increases
 - ► Cast results in terms of Tobin's $q = \frac{V^*}{I} = \frac{\beta_1}{\beta_1 1}$, i.e., use definition without option value
 - ▶ Plot contours of constant q^* for combinations of $\frac{2r}{\sigma^2}$ and $\frac{2\delta}{\sigma^2}$ (Figure 5.8)
 - Find that q^* is large when either δ is small or r is large: intuitively, higher dividend rate reduces value of waiting, while higher interest rate does the opposite
 - Finally, note that all estimated parameters, such as α and σ , may be changing over time





1-8 September 2011

ALTERNATIVE STOCHASTIC PROCESSES: GMR Process

- ★ Suppose V follows a GMR process: $dV = \eta (\overline{V} V)Vdt + \sigma Vdz$
 - Expected percentage change of V is $\frac{1}{dt} \mathcal{E}\left[\frac{dV}{V}\right] = \eta(\overline{V} V)$
 - Thus, expected absolute rate of change is $\frac{1}{dt}\mathcal{E}[dV] = \eta V\overline{V} \eta V^2$, which is a parabola that is zero at V = 0 and $V = \overline{V}$ with a maximum at $\frac{\overline{V}}{2}$
 - Let μ be the risk-adjusted rate of return for the project and define the dividend rate to be $\delta(V) = \mu - \frac{1}{dt} \mathcal{E}\left[\frac{dV}{V}\right] = \mu - \eta(\overline{V} - V)$
 - End up with same ODE as before using contingent claims, but adjust for $\delta(V)$: $\frac{1}{2}\sigma^2 V^2 F''(V) + [r \mu + \eta(\overline{V} V)]VF'(V) rF = 0$
 - ▶ Must satisfy the same three boundary conditions as before
 - ▶ Typically, a closed-form solution is difficult to find
 - Express the solution as $F(V) = AV^{\theta}h(V)$ and substitute it back into the ODE

ALTERNATIVE STOCHASTIC PROCESSES: GMR Process

 $\star \text{ Since } F'(V) = \theta A V^{\theta - 1} h(V) + A V^{\theta} h'(V) \text{ and } F''(V) = \\ \theta(\theta - 1) A V^{\theta - 2} h(V) + 2\theta A V^{\theta - 1} h'(V) + A V^{\theta} h''(V) \\ \bullet \text{ We have } V^{\theta} h(V) \left[\frac{1}{2}\sigma^2 \theta(\theta - 1) + (r - \mu + \eta \overline{V})\theta - r\right] + \\ V^{\theta + 1} \left[\frac{1}{2}\sigma^2 V h''(V) + (\sigma^2 \theta + r - \mu + \eta \overline{V} - \eta V) h'(V) - \eta \theta h(V)\right] = \\ 0$

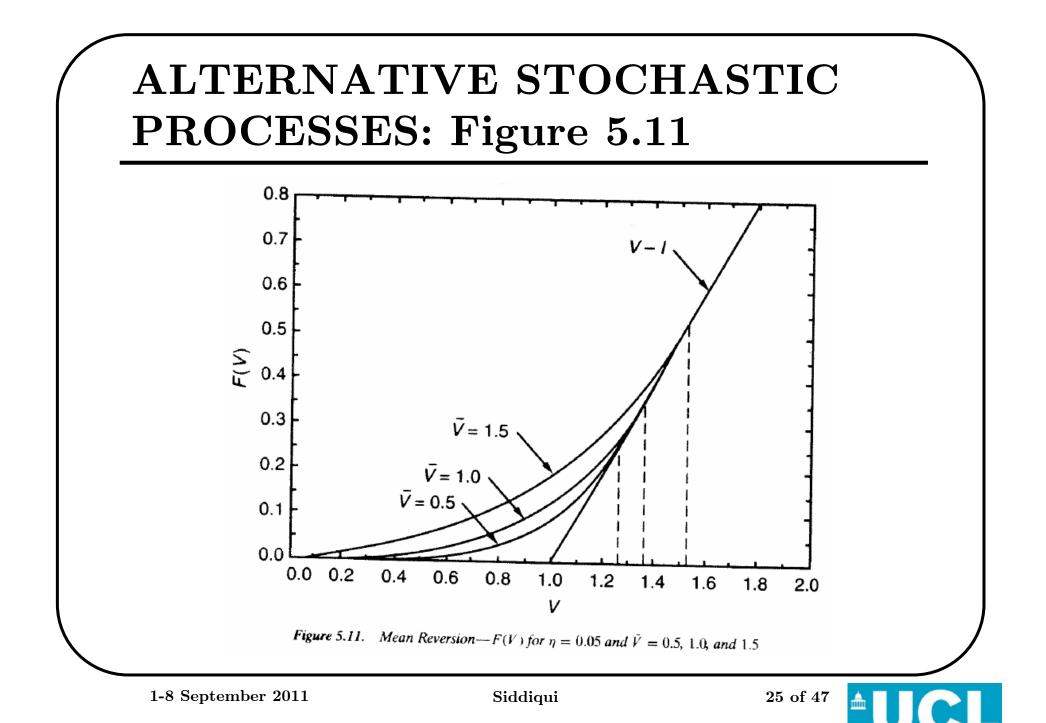
► Both bracketed components must be zero, i.e., $\frac{1}{2}\sigma^2\theta(\theta-1) + (r-\frac{1}{2}\sigma^2\theta(\theta-1)) + (r-\frac{1}{2}\sigma^2\theta(\theta-1))$

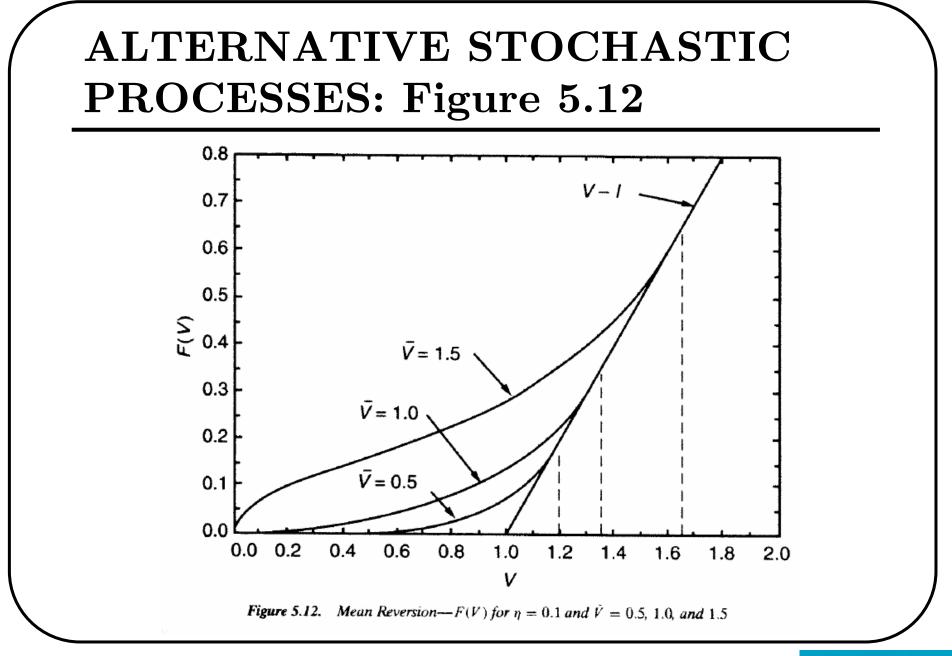
- $\mu + \eta \overline{V})\theta r = 0 \Rightarrow \theta = \frac{1}{2} + \frac{(\mu^2 r \eta \overline{V})}{\sigma^2} + \sqrt{\left[\frac{r \mu + \eta \overline{V}}{\sigma^2} \frac{1}{2}\right]^2 + \frac{2r}{\sigma^2}}$ And also $\frac{1}{2}\sigma^2 V h''(V) + (\sigma^2\theta + r - \mu + \eta \overline{V} - \eta V)h'(V) - \eta\theta h(V) = 0$
- Use substitution x = 2ηV/σ² to transform it into Kummer's equation, xg''(x) + (b x)g'(x) θg(x), which has the solution H(x; θ, b) = 1 + θ/b x + θ(θ+1)x²/b(b+1)2! + θ(θ+1)(θ+2)x³/b(b+1)(b+2)3! + ···
 Hence, F(V) = AV^θH (2η/σ²V; θ, b)

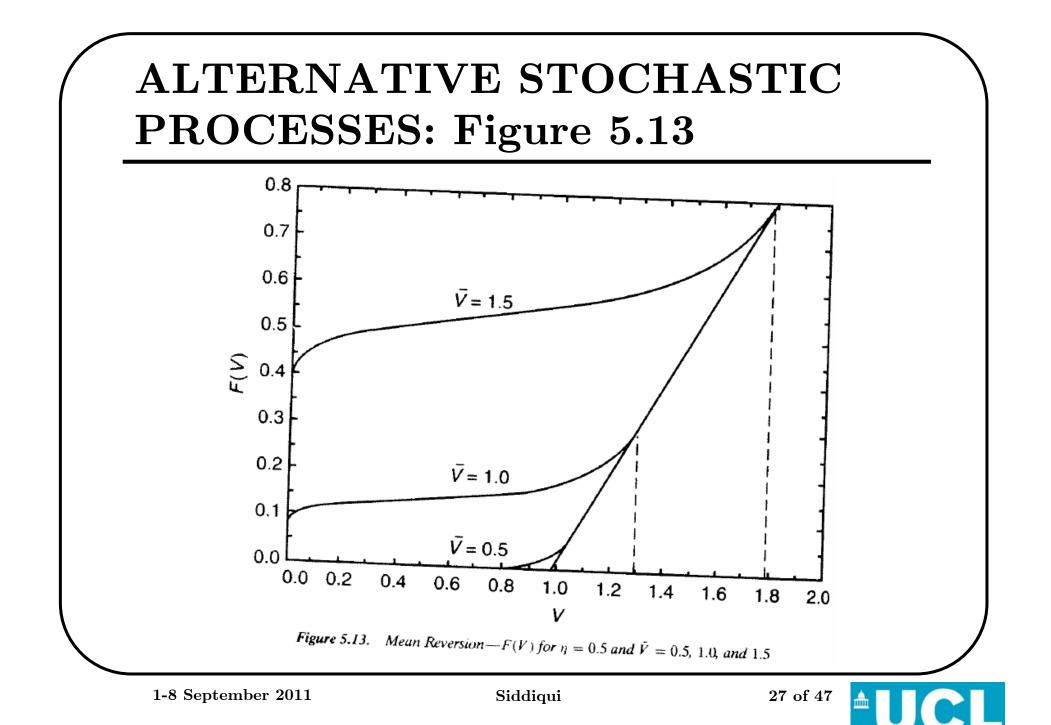
ALTERNATIVE STOCHASTIC PROCESSES: Investment Characteristics

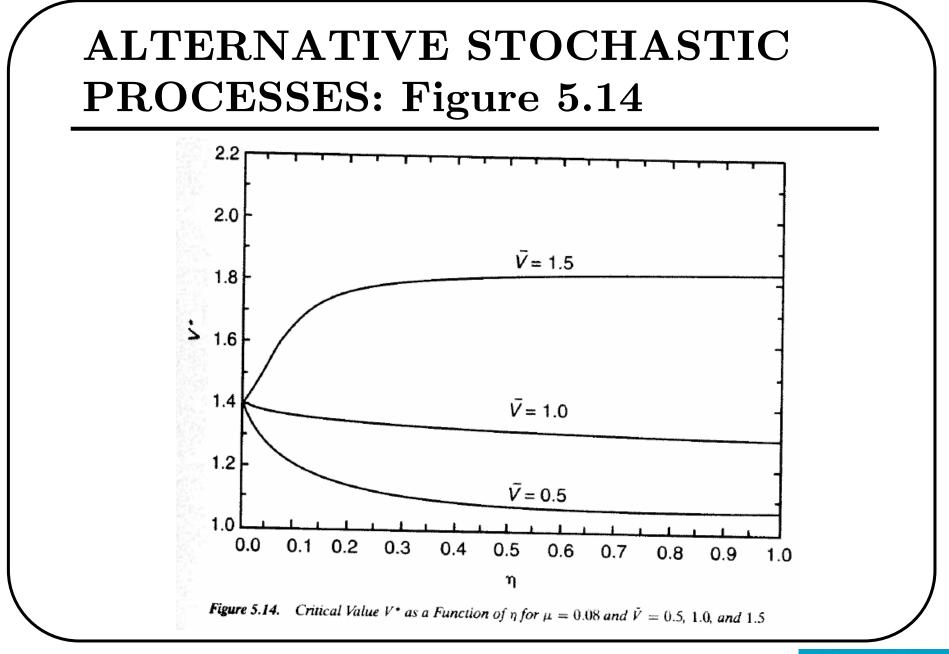
★ Use numerical example with same parameters as before plus $\mu = 0.08$ and varying η and \overline{V}

- As \overline{V} increases, so does the value of waiting and, thus, both F(V) and V^* increase (Figure 5.11)
- Variation with η : if $\overline{V} > I$, then F(V) increases in η (but decreases otherwise) as V is likely to rise above I and remain there (Figures 5.12 and 5.13)
- Shape of F(V) becomes concave for small V because the absolute rate of mean reversion rises rapidly
- V^* increases with η as long as \overline{V} is large (Figure 5.14)









1-8 September 2011

28 of 47

VALUE OF THE PROJECT WITHOUT OPERATING COSTS

- **★** Suppose that the output price, P, follows a GBM and the firm produces one unit per year forever
 - Without operating costs and ruling out speculative bubbles, the value of the project is $V(P) = \mathcal{E}_P \int_0^\infty P_t e^{-\mu t} dt = \int_0^\infty \mathcal{E}_P \left[P_t\right] e^{-\mu t} dt = \int_0^\infty P e^{-(\mu - \alpha)t} dt = \frac{P}{\delta}$
 - Via the contingent claims argument, we can now find the value of the option to invest, F(P), which will satisfy the ODE $\frac{1}{2}\sigma^2 P^2 F''(P) + (r - \delta)PF'(P) - rF(P) = 0$: $F(P) = A_1 P^{\beta_1} + A_2 P^{\beta_2}$
 - ▶ Boundary condition $F(0) = 0 \Rightarrow A_2 = 0$
 - VM and SP conditions imply: (i) $A_1(P^*)^{\beta_1} = \frac{P^*}{\delta} I$ and (ii) $\beta_1 A_1(P^*)^{\beta_1 - 1} = \frac{1}{\delta}$
 - Therefore, $P^* = \frac{\beta_1}{\beta_1 1} \delta I$ and $A_1 = \frac{(\beta_1 1)^{\beta_1 1} I^{-(\beta_1 1)}}{(\delta \beta_1)^{\beta_1}}$

• Note that
$$V^* = \frac{P^*}{\delta} = \frac{\beta_1}{\beta_1 - 1}I > I$$

Can also use dynamic programming to find F(P)

1-8 September 2011

OPERATING COSTS AND TEMPORARY SUSPENSION: Value of the Project

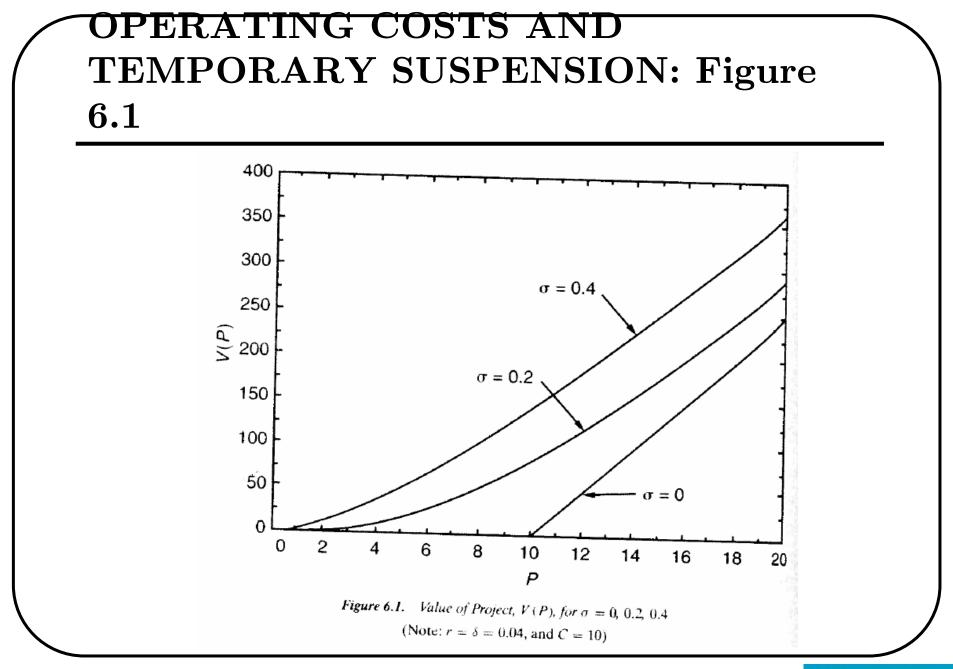
- **★** Suppose now that the project incurs operating cost, C, but it may be costlessly suspended or resumed once installed
 - ▶ Instantaneous profit flow is $\pi(P) = \max[P C, 0]$, i.e., project owner has infinitely many embedded operational options
 - Thus, the value of an active project will be worth more than simply the NPV of the cash flows
- ★ Value the project using contingent claims by going long one unit V(P) and shorting $n = V_P(P)$ units of P
 - Unlike the option to invest, we now have a profit flow, $\pi(P)$, which implies that the ODE becomes $\frac{1}{2}\sigma^2 P^2 V''(P) + (r \delta)PV'(P) rV(P) + \pi(P) = 0$
 - For P < C, only the homogeneous part of the solution is valid, i.e., $V(P) = K_1 P^{\beta_1} + K_2 P^{\beta_2}$
 - ▶ With $P \ge C$, we also have the particular solution $D_1P + D_2C + D_3$
 - Substitution into the ODE yields $D_1 = \frac{1}{\delta}, D_2 = -\frac{1}{r}, D_3 = 0$
 - Therefore, $V(P) = B_1 P^{\beta_1} + B_2 P^{\beta_2} + \frac{P}{\delta} \frac{C}{r}$ for $P \ge C$

OPERATING COSTS AND TEMPORARY SUSPENSION: Value of the Project

- ★ For P < C, V(P) represents the option value of resuming a suspended project
 - Intuitively, this must increase in P and be worthless for very small P
 - Only when $K_2 = 0$ does this hold; thus, $V(P) = K_1 P^{\beta_1}$ for P < C
- ★ For $P \ge C$, V(P) is the value of an active project inclusive of the option to suspend operations
 - The suspension option is valuable only for small P and becomes worthless for large P

• Thus, $B_1 = 0$ and $V(P) = B_2 P^{\beta_2} + \frac{P}{\delta} - \frac{C}{r}$ for $P \ge C$

Find
$$K_1$$
 and B_2 via VM and SP at $P = C$
 $K_1C^{\beta_1} = B_2C^{\beta_2} + \frac{C}{\delta} - \frac{C}{r}$ and $\beta_1K_1C^{\beta_1-1} = \beta_2B_2C^{\beta_2-1} + \frac{1}{\delta}$
 $K_1 = \frac{C^{1-\beta_1}}{\beta_1-\beta_2} \left(\frac{\beta_2}{r} - \frac{(\beta_2-1)}{\delta}\right) > 0, B_2 = \frac{C^{1-\beta_2}}{\beta_1-\beta_2} \left(\frac{\beta_1}{r} - \frac{(\beta_1-1)}{\delta}\right) > 0$
 $V(P)$ is increasing (decreasing) in σ (δ) (Figures 6.1 and 6.2)

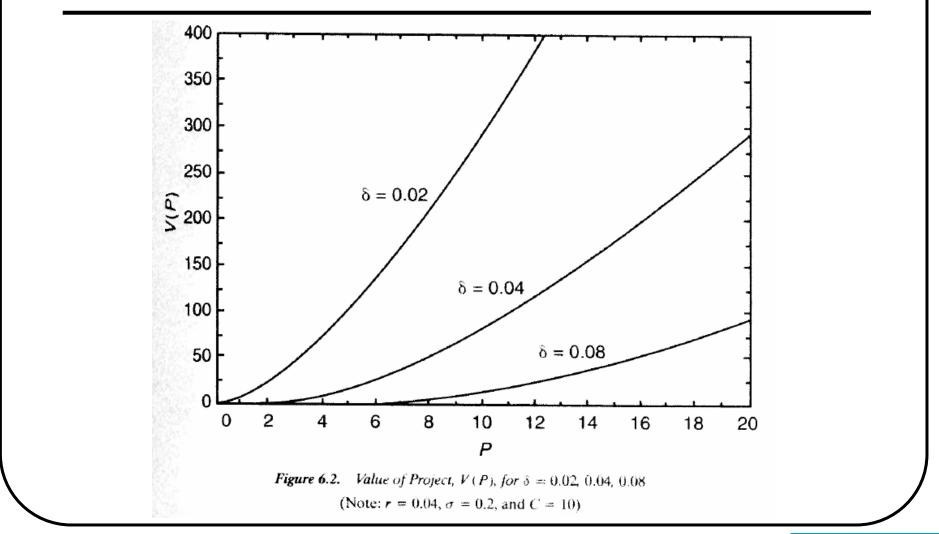


1-8 September 2011

32 of 47

â.

OPERATING COSTS AND TEMPORARY SUSPENSION: Figure 6.2



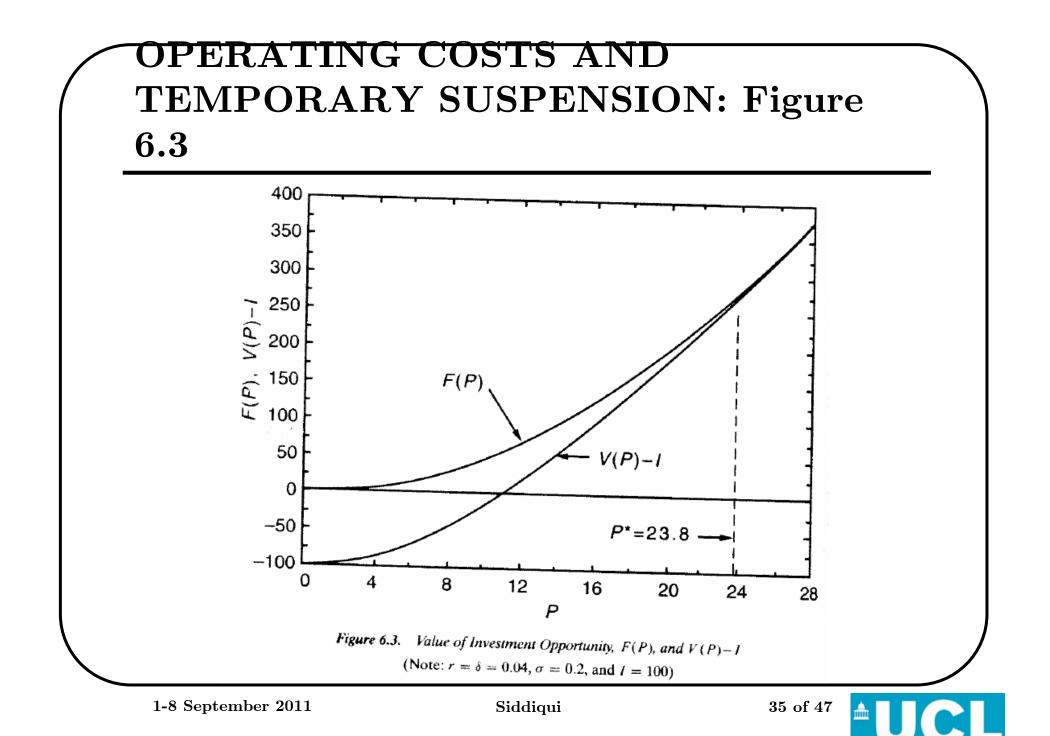
1-8 September 2011

33 of 47

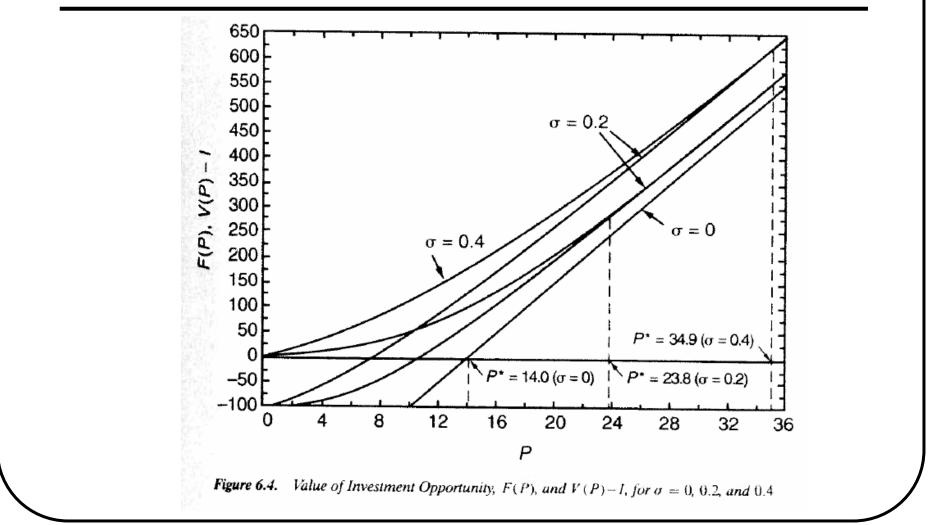
â

OPERATING COSTS AND TEMPORARY SUSPENSION: Value of the Option to Invest

- ★ Following the contingent claims approach, $F(P) = A_1 P^{\beta_1} + A_2 P^{\beta_2}$
 - Boundary condition $F(0) = 0 \Rightarrow A_2 = 0$
- ★ For P < C, it is never optimal to invest
 - ► Thus, VM and SP of F(P) will occur for $P \ge C$, i.e., with $V(P) I = B_2 P^{\beta_2} + \frac{P}{\delta} \frac{C}{r} I$
 - Use $A_1 (P^*)^{\beta_1} = B_2 (P^*)^{\beta_2} + \frac{P^*}{\delta} \frac{C}{r} I$ and $\beta_1 A_1 (P^*)^{\beta_1 1} = \beta_2 B_2 (P^*)^{\beta_2 1} + \frac{1}{\delta}$ to solve for P^* and A_1
 - Substitute to solve the following equation numerically: $(\beta_1 \beta_2)B_2 (P^*)^{\beta_2} + (\beta_1 1)\frac{P^*}{\delta} \beta_1 (\frac{C}{r} + I) = 0$
 - Solution for r = 0.04, $\delta = 0.04$, $\sigma = 0.20$, I = 100, and C = 10 (Figure 6.3)
 - $\beta_1 = 2, \ \beta_2 = -1, \ P^{*,nf} = 28, \ A_1^{nf} = 0.4464, \ P^* = 23.8, \ \text{and} \ A_1 = 0.4943$
 - Sensitivity analysis: F(P) and P* increase with σ (Figure 6.4)
 But F(P) decreases and P* increases with δ (Figures 6.5 and 6.6)

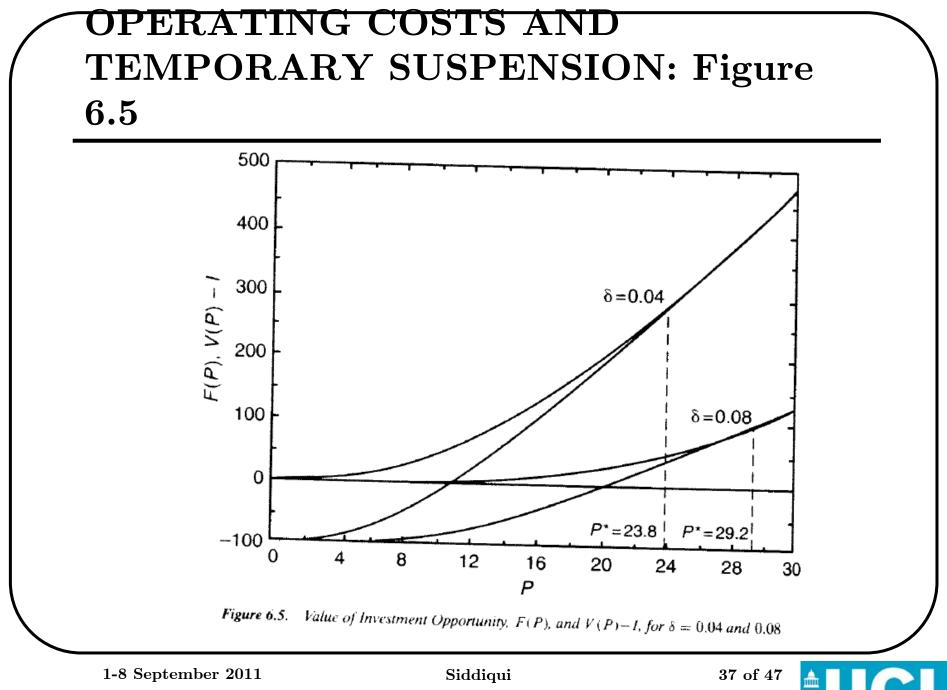


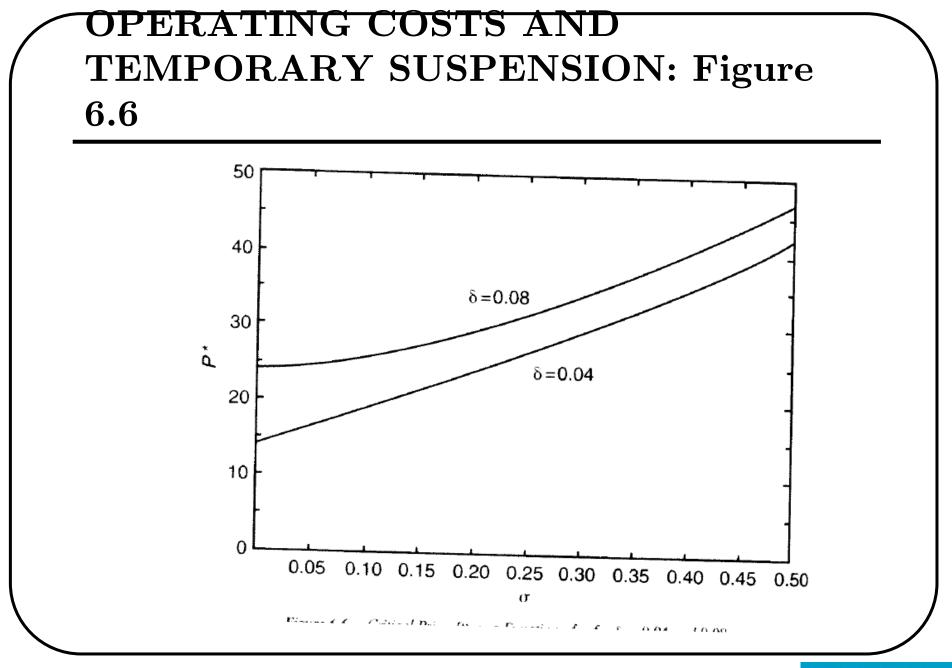
OPERATING COSTS AND TEMPORARY SUSPENSION: Figure 6.4



36 of 47

<u></u>





38 of 47

m

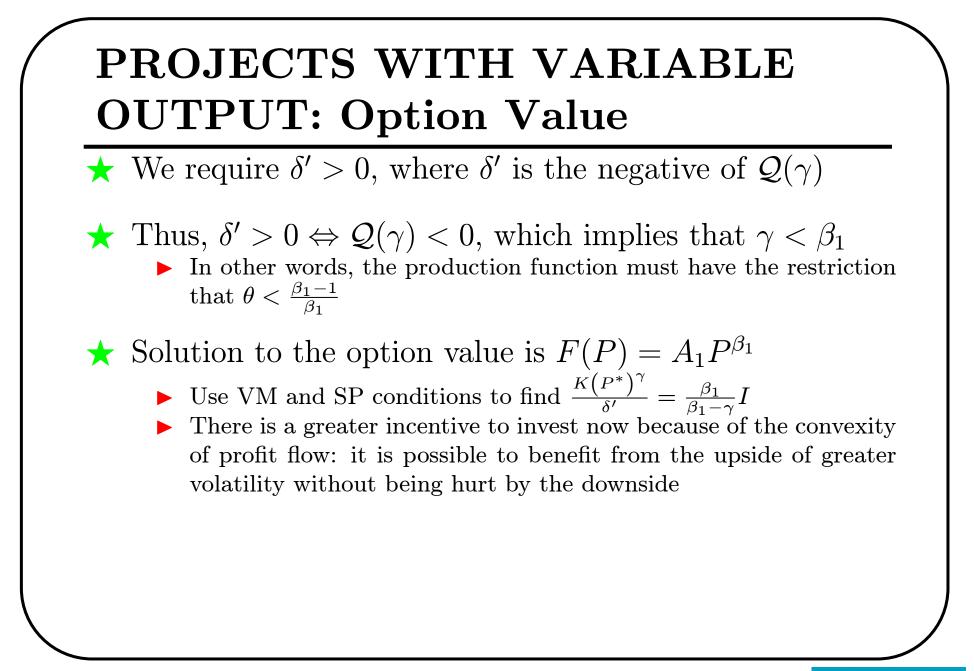
PROJECTS WITH VARIABLE OUTPUT: Project Value

- **★** Suppose output is produced according to function h(v), where v is level of some intermediate good
- ★ Instantaneous profit flow is $\pi(P) \equiv \max_{v} [Ph(v) C(v)]$
 - Assume Cobb-Douglas production function, i.e., $h(v) = v^{\theta}$, where $0 < \theta < 1$, and constant marginal cost, i.e., C(v) = cv
 - Profit maximisation yields $v^* = \left[\frac{\theta P}{c}\right]^{\frac{1}{1-\theta}}$ and $\pi(P) = (1 \theta) \left(\frac{\theta}{c}\right)^{\frac{\theta}{1-\theta}} P^{\frac{1}{1-\theta}}$

• Let
$$\gamma \equiv \frac{1}{1-\theta} > 1$$
 so that $\pi(P) = KP^{\gamma}$

- Intuition is that without control, profit changes linearly in price, but variation makes it possible to increase faster (decrease slower) when P rises (falls)
- ★ Standard ODE for the project value is $\frac{1}{2}\sigma^2 P^2 V''(P) + (r-\delta)PV'(P) rV(P) + KP^{\gamma} = 0$
 - Guess particular solution of the form $K_1 P^{\gamma}$ and find that $K_1 = \frac{K}{r (r \delta)\gamma \frac{1}{2}\sigma^2\gamma(\gamma 1)} \Rightarrow V(P) = \frac{KP^{\gamma}}{\delta'}$

1-8 September 2011



DEPRECIATION: Exponential Decay with a Single Investment Option

- \star Suppose that the lifetime of the project, T, follows a Poisson process with parameter λ , i.e., density function is $e^{-\lambda T}$
 - \blacktriangleright Given that the lifetime is T years, the expected PV of the project is $V_T(P) = \mathcal{E}_P \int_0^T P_t e^{-\mu t} dt = \int_0^T \mathcal{E}_P[P_t] e^{-\mu t} dt = \frac{P}{\delta} (1 - e^{-\delta T})^T$
 - With a random lifetime: $V(P) = \mathcal{E}[V_T(P)]$ = $\int_0^\infty \lambda e^{-\lambda T} \frac{P}{\delta} \left(1 - e^{-\delta T}\right) dT = \frac{P}{\lambda + \delta}$

▶ Project functions less well over time, which eats into its cash flows

 \star Value of option to invest may be obtained using contingent claims: $F(P) = A_1 P^{\beta_1}$

VM and SP conditions reveal
$$P^* = \frac{\beta_1}{\beta_1 - 1} (\delta + \lambda) I$$

DEPRECIATION: Exponential Decay with Re-investment

- \star Upon termination, re-investment is available at cost I
- ★ If no investment has occurred, then the option value to invest is again $F(P) = A_1 P^{\beta_1}$
- \star Let J(P) be the value of an active project along with all future replacement options (use dynamic programming)
 - When $P < P^*$, there is a profit flow and probability λdt that the project will die in the next dt time units
 - Conditional expectation: $J(P) = Pdt + (1 \lambda dt)e^{-\rho dt}\mathcal{E}[J(P + dP)] + \lambda dt e^{-\rho dt}\mathcal{E}[F(P + dP)]$
 - Note that $\mathcal{E}[J(P+dP)] = J(P) + J'(P)\alpha Pdt + \frac{1}{2}J''(P)\sigma^2 P^2 dt$ and $\mathcal{E}[F(P+dP)] = F(P) + F'(P)\alpha Pdt + \frac{1}{2}\sigma^2 P^2 F''(P)dt$
 - Thus, $J(P) = Pdt + (1 (\rho + \lambda)dt)[J(P) + J'(P)\alpha Pdt + \frac{1}{2}\sigma^2 P^2 J''(P)dt] + \lambda dt A_1 P^{\beta_1}[1 + \alpha\beta_1 dt + \frac{1}{2}\sigma^2\beta_1(\beta_1 1)dt] \Rightarrow \frac{1}{2}\sigma^2 P^2 J''(P) + \alpha P J'(P) (\rho + \lambda)J(P) + \lambda A_1 P^{\beta_1} + P = 0$
 - ► Solution is $J(P) = B_1 P^{\beta'_1} + \frac{P}{\rho + \lambda \alpha} + A_1 P^{\beta_1}$, where β'_1 is the positive root of $\frac{1}{2}\sigma^2\xi(\xi 1) + \alpha\xi (\rho + \lambda) = 0$

1-8 September 2011

DEPRECIATION: Exponential Decay with Re-investment

- ★ For $P \ge P^*$, re-investment is immediate upon termination
 - Conditional expectation: $J(P) = Pdt + (1 \lambda dt)e^{-\rho dt}\mathcal{E}[J(P + dP)] + \lambda dt e^{-\rho dt}\mathcal{E}[J(P + dP) I]$
 - Thus, $J(P) = Pdt + (1 (\rho + \lambda)dt)[J(P) + J'(P)\alpha Pdt + \frac{1}{2}\sigma^2 P^2 J''(P)dt] + \lambda dt J(P) \lambda I dt \Rightarrow \frac{1}{2}\sigma^2 P^2 J''(P) + \alpha P J'(P) \rho J(P) + P \lambda I = 0$

Solution is
$$J(P) = B_2 P^{\beta_2} + \frac{P}{\rho - \alpha} - \frac{\lambda I}{\rho}$$

Two branches of J(P) meet tangentially at P^* and have the usual VM and SP conditions with F(P)

★ Find $P^* = \frac{\beta'_1}{\beta'_1 - 1} (\delta + \lambda) I$, i.e., lower investment threshold than when only a single option was available

PRICE AND COST UNCERTAINTY

- \star Both P and I follow correlated GBMs
 - $\mathsf{P} = \alpha_P P dt + \sigma_P P dz_P, \ dI = \alpha_I I dt + \sigma_I I dz_I, \ \mathcal{E}[(dz_P)^2] = dt, \\ \mathcal{E}[(dz_I)^2] = dt, \ \text{and} \ \mathcal{E}[dz_P dz_I] = \rho dt$
 - Expected NPV of project is $V(P, I) = \frac{P}{\delta_P} I$, and we want F(P, I)
 - Construct risk-free portfolio: $\Phi = F n_P P n_I I \Rightarrow d\Phi = dF n_P dP n_I dI$
 - $dF = F_P dP + F_I dI + \frac{1}{2} F_{PP} (dP)^2 + \frac{1}{2} F_{II} (dI)^2 + F_{PI} (dPdI) \Rightarrow dF = F_P dP + F_I dI + \frac{1}{2} F_{PP} \sigma_P^2 P^2 dt + \frac{1}{2} F_{II} \sigma_I^2 I^2 dt + F_{PI} \sigma_P \sigma_I PI \rho dt$
 - Substitution implies $d\Phi = (\tilde{F}_P n_P)dP + (F_I n_I)dI + \frac{1}{2}F_{PP}\sigma_P^2P^2dt + \frac{1}{2}F_{II}\sigma_I^2I^2dt + F_{PI}\sigma_P\sigma_IPI\rho dt$

▶ In order for Φ to be risk free, we must have $n_P = F_P$ and $n_I = F_I$

Add the convenience yield to obtain the total portfolio return: $\frac{1}{2}F_{PP}\sigma_P^2P^2dt + \frac{1}{2}F_{II}\sigma_I^2I^2dt + F_{PI}\sigma_P\sigma_IPI\rho dt - F_P\delta_PPdt - F_I\delta_IIdt$

- $\blacktriangleright \text{ Risk-free rate of return: } r\Phi dt = rFdt rF_PPdt rF_IIdt$
- Obtain PDE: $\frac{1}{2}F_{PP}\sigma_P^2P^2 + \frac{1}{2}F_{II}\sigma_I^2I^2 + F_{PI}\sigma_P\sigma_IPI\rho + (r \delta_P)F_PP + (r \delta_I)F_II rF = 0$
- VM: $F(P^*(I), I) = \frac{P^*(I)}{\delta_P} I$, SP1: $F_P(P^*(I), I) = \frac{1}{\delta_P}$, and SP2:

1-8 September $P_{20}^{*}(I), I) = -1$

PRICE AND COST UNCERTAINTY

 \bigstar Use transformation to convert PDE to ODE

• Let
$$p = \frac{P}{I}$$
 and $f(p) = \frac{F(P,I)}{I}$

- Thus, $F_P = f'(p)$, $F_I = f(p) pf'(p)$, $F_{PP} = f''(p)I^{-1}$, $F_{II} = \frac{p^2 f''(p)}{I}$, and $F_{PI} = -\frac{pf''(p)}{I}$
- The ODE is $\frac{1}{2} \left(\sigma_P^2 2\rho \sigma_P \sigma_I + \sigma_I^2 \right) p^2 f''(p) + (\delta_I \delta_P) p f'(p) \delta_I f(p) = 0$
- VM: $f(p^*) = \frac{p^*}{\delta_P} 1$ and SP: $f'(p^*) = \frac{1}{\delta_P}$
- Therefore, $f(p) = a_1 p^{\gamma_1}$, where γ_1 is the positive root of $\frac{1}{2} \left(\sigma_P^2 2\rho \sigma_P \sigma_I + \sigma_I^2 \right) \beta(\beta 1) + (\delta_I \delta_P)\beta \delta_I = 0$

• Thus,
$$p^* = \frac{\gamma_1}{\gamma_1 - 1} \delta_P$$

- ▶ In other words, higher uncertainty causes the free boundary to rotate upwards (Figure 6.8)
- What happens when ρ is increased?

