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COURSE OUTLINE

F Introduction (Chs 1—2)
F Mathematical Background (Chs 3—4)
F Investment and Operational Timing (Chs 5—6)
F Entry, Exit, Lay-Up, and Scrapping (Ch 7)
F Recent Theoretical Work I: Capacity Sizing
F Recent Theoretical Work II: Risk Aversion and Multiple
Risk Factors

F Applications to the Energy Sector I: Capacity Sizing,
Timing, and Operational Flexibility

F Applications to the Energy Sector II: Modularity and
Technology Choice
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LECTURE OUTLINE

F Entry and exit strategies
F Lay-up, re-activation, and scrapping
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ENTRY AND EXIT 
STRATEGIES: Setup
F Costless suspension and resumption of operations is not
always realistic
I Suspension may lead to dissipation of human capital or deteriora-
tion of equipment

I In order to resume operations from a suspended state, the entire
investment cost must be borne again

F Suppose output price, P , follows a GBM and variable
operation cost is C

F Investment cost is I, whereas abandonment cost is E
(may be negative as long as I + E > 0)
I Intuitively, invest (abandon) when price reaches upper (lower)
threshold PH (PL)

I Once invested (abandoned), maintain status quo until lower (up-
per) threshold is reached

I Note that the options are compound: part of the value of an active
firm, V1(P ), is the option to abandon

I Similarly for the value of an idle firm, V0(P )
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ENTRY AND EXIT 
STRATEGIES: Solution
F Obtain an ODE for V0(P ) following the contingent claims
approach
I 1

2
σ2P 2V 00

0 (P ) + (r − δ)PV 0
0(P )− rV0(P ) = 0

I General solution is V0(P ) = A1P
β1 +A2P

β2

I Boundary condition for an idle firm: limP→0 V0(P ) = 0⇒ A2 = 0
I Thus, the value of an idle firm is V0(P ) = A1P

β1 for P ∈ (0, PH)

F Since an active firm pays instantaneous cash flow
(P − C)dt, the ODE for V1(P ) is 1

2
σ2P 2V 001 (P ) + (r −

δ)PV 01(P )− rV1(P ) + P − C = 0
I General solution is V1(P ) = B1P

β1 +B2P
β2 + P

δ
− C

r

I Since the last two terms are the expected NPV of cash flows, the
first two terms must be the option value of abandonment

I Boundary condition: abandonment option is nearly worthless at
high prices, i.e., limP→∞ V1(P ) = P

δ
− C

r

I Therefore, B1 = 0 and V1(P ) = B2P
β2 + P

δ
− C

r
for (PL,∞)
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ENTRY AND EXIT 
STRATEGIES: Thresholds
F At PH , the VM and SP conditions involve exchanging an
idle project for an active one
I V0(PH) = V1(PH)− I and V 0

0(PH) = V
0
1(PH)

F Similarly, at PL, the VM and SP conditions involve ex-
changing an active project for an idle one
I V1(PL) = V0(PL)− E and V 0

1 (PL) = V
0
0(PL)

F Inserting equations for V 00(P ) and V
0
1(P ) gives the follow-

ing system of non-linear equations:
I A1P

β1
H −B2P β2H − PH

δ
+ C

r
= −I

I β1A1P
β1−1
H − β2B2P β2−1H − 1

δ
= 0

I −A1P β1L +B2P
β2
L + PL

δ
− C

r
= −E

I −β1A1Pβ1−1L + β2B2P
β2−1
L + 1

δ
= 0

I Solve numerically for four unknowns
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ENTRY AND EXIT STRATEGIES: 
Comparison with Myopic Decisions
F Marshallian theory concludes that investment should oc-
cur when P = C + rI
I Similarly, abandon if the price drops below the operating cost mi-
nus the amortised abandonment cost, C − rE

I However, these conclusions are based on the assumption that the
given price will prevail forever

F In order to compare PH and PL with C+rI and C−rE,
respectively, define G(P ) = V1(P ) − V0(P ) = B2P

β2 +
P
δ
− C

r
−A1P β1

I For (PL, PH), G(P ) is the incremental value of becoming active
I For low P , G(P )→ B2P

β2 , i.e., decreasing and convex in P
I For high P , G(P )→ −A1P β1 , i.e., decreasing and concave in P
I VM and SP conditions become: (i) G(PH) = I, (ii) G0(PH) = 0,
(iii) G(PL) = −E, and (iv) G0(PL) = 0

I Figure 7.1 indicates the S shape over (PL, PH)
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ENTRY AND EXIT STRATEGIES: 
Comparison with Myopic Decisions

F At PH , subtract ODE for V0(P ) from that of V1(P ) to
obtain 1

2
σ2G00(P ) + (r − δ)G0(P )− rG(P ) + P − C = 0

I Use VM and SP at PH to obtain 1
2
σ2G00(PH) − rI + PH − C =

0⇒ PH − C − rI = − 1
2
σ2G00(PH) > 0

I Therefore, PH > C + rI, i.e., firms are more reluctant to invest
compared to the Marshallian case
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ENTRY AND EXIT 
STRATEGIES: Comparative Statics
F How do PH and PL respond to changes in parameters?

I Not straightforward with r, δ, and σ
I Analytics are easier with I, E, and C

F Express G as a function of P , A1, and B2
I VM and SP conditions: (i) G(PH , A1, B2) = I, (ii)
G(PL, A1, B2) = −E, (iii) GP (PH , A1, B2) = 0, (iv)
GP (PL, A1, B2) = 0

I Total differentiation of (i) and (ii) yields GA(H)dA1 +
GB(H)dB2 = dI and GA(L)dA1 +GB(L)dB2 = 0

I Since GA(H) = −P β1H and GB(L) = P
β2
L , the solutions are dA1 =

−P
β2
L dI

∆
and dB2 = −P

β1
L dI

∆
, where ∆ = P β1H Pβ2L − Pβ2H P β1L > 0

I Differentiate the SP condition at PH : GPP (H)dPH +
GPA(H)dA1 +GPB(H)dB2 = 0

I Thus, GPP (H)dPH = −
h
β1P

β1−1
H P

β2
L
−β2Pβ2−1H P

β1
L

i
dI

∆
⇒ dPH

dI
> 0

because G(P ) is concave at PH
I Similarly, find that dPL

dE
< 0, dPL

dI
< 0, and dPH

dE
> 0
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ENTRY AND EXIT 
STRATEGIES: Numerical Example
F An example from the copper industry

I Mine produces 10 million pounds of copper per year forever
I I = 20 and E = 2 (in million $), while C = $0.80 per pound
I μ = 0.06, δ = μ − α = 0.04, r = 0.04 (all real rates per annum),
and σ = 0.20 (allow for a range of estimates)

F Solve system of four VM and SP equations numerically
using initial guesses for PH , PL, A1, and B2
I Marshallian: NPV1 = −20+ 10P

0.04
− 8
0.04

(in million $), which implies
P 0H = 0.88, and NPV0 = −2− 10P

0.04
+ 8

0.04
⇒ P 0L = 0.79

I Figure 7.2 indicates how uncertainty drives these thresholds further
apart from each other as uncertainty increases

I As C increases, investment becomes more difficult, while abandon-
ment is easier (Figure 7.3)

I Neither threshold is very sensitive to E although the zone of inac-
tion widens as it becomes more difficult to abandon (Figure 7.4)

I The value curves are parallel at PH and differ by I (and differ by
E at PL) in Figure 7.5

I Function G(P ) has the characteristic S shape (Figure 7.6)
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ENTRY AND EXIT 
STRATEGIES: Figure 7.2



1-8 September 2011 Siddiqui 12 of 25

ENTRY AND EXIT 
STRATEGIES: Figure 7.3



1-8 September 2011 Siddiqui 13 of 25

ENTRY AND EXIT 
STRATEGIES: Figure 7.4
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ENTRY AND EXIT 
STRATEGIES: Figure 7.5
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ENTRY AND EXIT 
STRATEGIES: Figure 7.6
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LAY-UP, RE-ACTIVATION, AND 
SCRAPPING: States and Value 
Functions
F In addition to investment and abandonment, a producer
may have other intermediate options, such as moth-
balling
I Mothballing requires sunk cost, EM , and ongoing maintenance
cost, M < C

I From a mothballed state, either re-activate operations by paying
a sunk cost, R < I, or abandon as before at cost ES such that
E = ES +EM

I Thus, there will be four price thresholds: PH , PM , PR, and PS

F There are three possible states
I Idle: V0(P ) = A1P

β1 for (0, PH)
I Active: V1(P ) = B2P

β2 + P
δ
− C

r
for (PM ,∞)

I Mothballed: Vm(P ) = D1P
β1 +D2P

β2 − M
r
for (PS , PR)

I Since two transitions are possible from the mothballed state, there
are a total of four possible transitions
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LAY-UP, RE-ACTIVATION, AND 
SCRAPPING: Optimal Switching
F Write four VM and four SP conditions to solve for eight
unknowns
I Idle to active: V0(PH) = V1(PH)− I and V 0

0(PH) = V
0
1(PH)

I Active to mothballed: V1(PM ) = Vm(PM ) − EM and V 0
1 (PM ) =

V 0
m(PM )

I Mothballed to active: Vm(PR) = V1(PR) − R and V 0
m(PR) =

V 0
1(PR)

I Mothballed to idle: Vm(PS) = V0(PS)−ES and V 0
m(PS) = V

0
0(PS)

F Examine the set of equations relating mothballing to an
active state
I −D1P

β1
R + (B2 −D2)P

β2
R + PR

δ
− (C−M)

r
= R

I −β1D1P
β1−1
R + β2(B2 −D2)P

β2−1
R + 1

δ
= 0

I −D1P
β1
M + (B2 −D2)P

β2
M + PM

δ
− (C−M)

r
= −EM

I −β1D1P
β1−1
M + β2(B2 −D2)P

β2−1
M + 1

δ
= 0

I Solve for four unknowns PM , PR, B2 −D2, and D1 as before
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LAY-UP, RE-ACTIVATION, AND 
SCRAPPING: Optimal Switching
F Now consider the set of equations relating idle/active and
mothballing/idle states
I −A1P β1H +B2P

β2
H + PH

δ − C
r = I

I −β1A1Pβ1−1H + β2B2P
β2−1
H + 1

δ
= 0

I (D1 −A1)P β1S +D2P
β2
S − M

r = −ES
I −β1(D1 −A1)Pβ1−1S + β2D2P

β2−1
S = 0

I Solve for six unknowns PH , PS , A1, B2, D1 − A1, and D2 using
solutions for D1 and B2 −D2

F Comparative statics
I IfM and R are zero, then we have costless suspension/resumption
I Increasing R while holding M constant: PR increases, PM de-
creases; also, both PH and PS increase

I May reach a point with R high enough that mothballing is not
used, i.e., proceed directly to abandon

I Similar story for increasing M while holding R constant: since
saving from mothballing is reduced, both PR and PM decrease,
while PH and PS both increase



1-8 September 2011 Siddiqui 19 of 25

LAY-UP, RE-ACTIVATION, AND 
SCRAPPING: Numerical Example
F Illustrate intuition with example from the VLCC indus-
try
I Assume I = 40, EM = 0.20, ES = −3.4 and R = 0.79, while the
annual maintenance cost is M = 0.515 (all in million $)

I Annual operating cost is C = 4.4, and the revenue, P , follows a
GBM with P0 = 7.3, α = 0, and σ = 0.15, and have r = 0.05 and
δ = 0.05

F Comparative statics
I As R increases, PH , PS , and PR increase, while PM decreases
(Figure 7.8)

I Increasing EM has a similar impact (Figure 7.9)
I HigherM increases PH , decreases PM , decreases PR, and increases
PS (Figure 7.10)

I Increasing C increases PH , increases PM , increases PR, and in-
creases PS (Figure 7.11)

I Increasing σ increases PH , decreases PM , increases PR, and de-
creases PS (Figure 7.12)
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LAY-UP, RE-ACTIVATION, AND 
SCRAPPING: Figure 7.8
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LAY-UP, RE-ACTIVATION, AND 
SCRAPPING: Figure 7.9
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LAY-UP, RE-ACTIVATION, AND 
SCRAPPING: Figure 7.10
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LAY-UP, RE-ACTIVATION, AND 
SCRAPPING: Figure 7.11



1-8 September 2011 Siddiqui 24 of 25

LAY-UP, RE-ACTIVATION, AND 
SCRAPPING: Figure 7.12
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QUESTIONS


