TIØ 1: Financial Engineering in Energy Markets

Afzal Siddiqui

Department of Statistical Science University College London London WC1E 6BT, UK afzal@stats.ucl.ac.uk

COURSE OUTLINE

- \bigstar Introduction (Chs 1–2)
- \star Mathematical Background (Chs 3–4)
- \star Investment and Operational Timing (Chs 5–6)
- \star Entry, Exit, Lay-Up, and Scrapping (Ch 7)
- \star Recent Theoretical Work I: Capacity Sizing
- ★ Recent Theoretical Work II: Risk Aversion and Multiple Risk Factors
- ★ Applications to the Energy Sector I: Capacity Sizing, Timing, and Operational Flexibility
- ★ Applications to the Energy Sector II: Modularity and Technology Choice

LECTURE OUTLINE

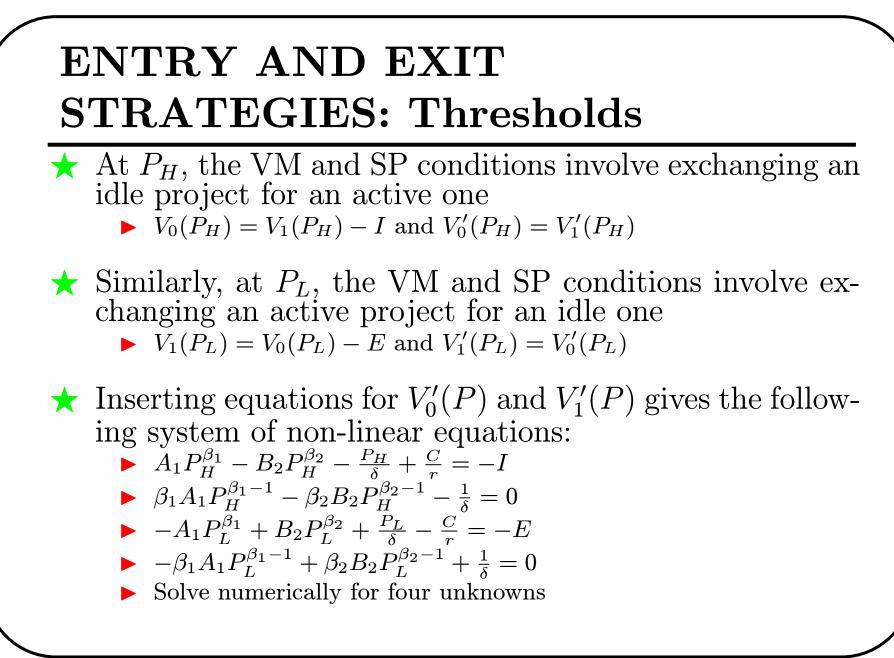
- \bigstar Entry and exit strategies
- \bigstar Lay-up, re-activation, and scrapping

ENTRY AND EXIT STRATEGIES: Setup

- \star Costless suspension and resumption of operations is not always realistic
 - Suspension may lead to dissipation of human capital or deterioration of equipment
 - ▶ In order to resume operations from a suspended state, the entire investment cost must be borne again
- ★ Suppose output price, P, follows a GBM and variable operation cost is C
- ★ Investment cost is I, whereas abandonment cost is E (may be negative as long as I + E > 0)
 - Intuitively, invest (abandon) when price reaches upper (lower) threshold P_H (P_L)
 - Once invested (abandoned), maintain status quo until lower (upper) threshold is reached
 - Note that the options are compound: part of the value of an active firm, $V_1(P)$, is the option to abandon
 - Similarly for the value of an idle firm, $V_0(P)$

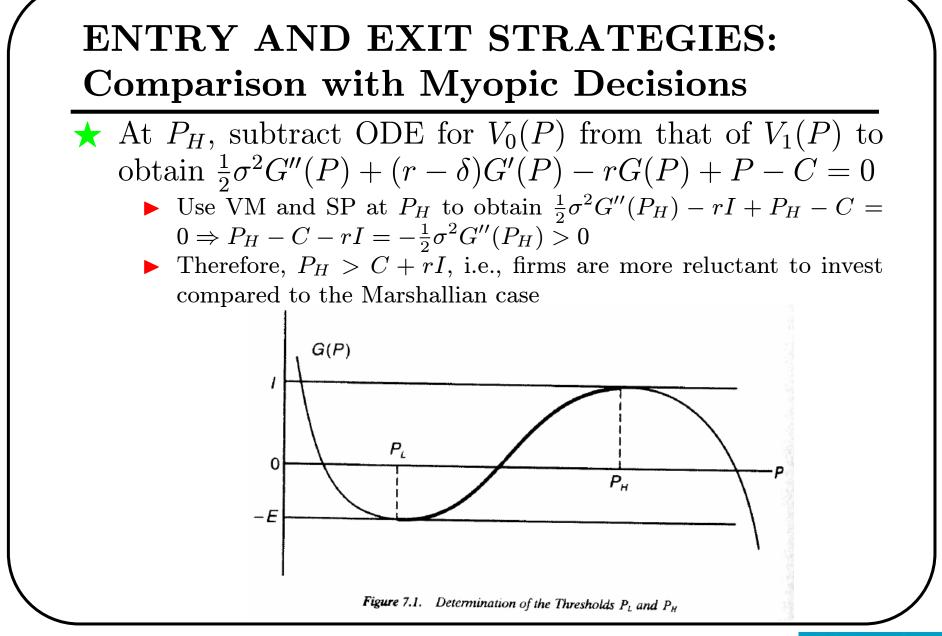
ENTRY AND EXIT STRATEGIES: Solution

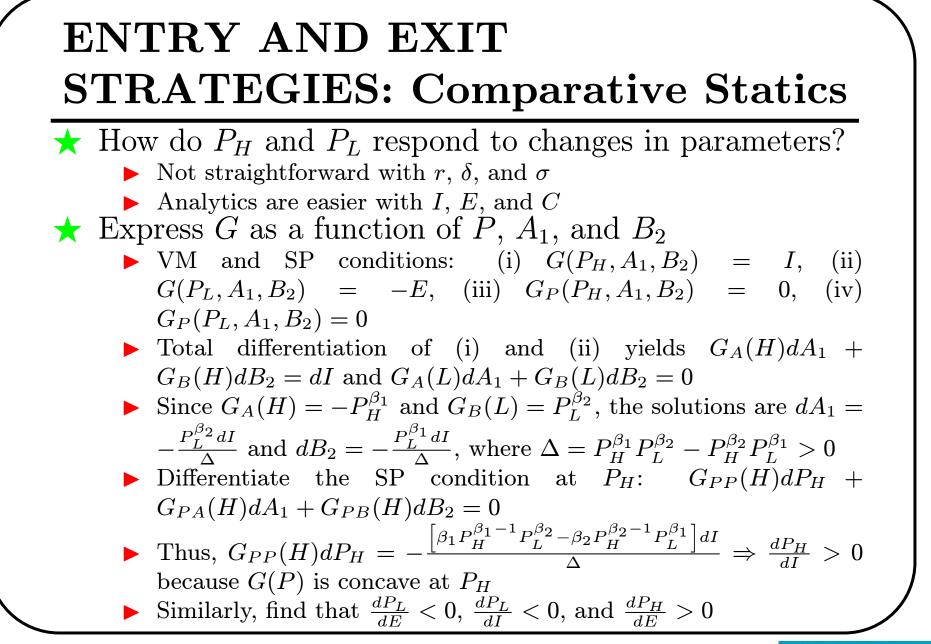
- ★ Obtain an ODE for $V_0(P)$ following the contingent claims approach
 - $\frac{1}{2}\sigma^2 P^2 V_0''(P) + (r-\delta)PV_0'(P) rV_0(P) = 0$
 - General solution is $V_0(P) = A_1 P^{\beta_1} + A_2 P^{\beta_2}$
 - ▶ Boundary condition for an idle firm: $\lim_{P\to 0} V_0(P) = 0 \Rightarrow A_2 = 0$
 - Thus, the value of an idle firm is $V_0(P) = A_1 P^{\beta_1}$ for $P \in (0, P_H)$
- ★ Since an active firm pays instantaneous cash flow (P-C)dt, the ODE for $V_1(P)$ is $\frac{1}{2}\sigma^2 P^2 V_1''(P) + (r-\delta)PV_1'(P) rV_1(P) + P C = 0$
 - General solution is $V_1(P) = B_1 P^{\beta_1} + B_2 P^{\beta_2} + \frac{P}{\delta} \frac{C}{r}$
 - Since the last two terms are the expected NPV of cash flows, the first two terms must be the option value of abandonment
 - ► Boundary condition: abandonment option is nearly worthless at high prices, i.e., $\lim_{P\to\infty} V_1(P) = \frac{P}{\delta} \frac{C}{r}$
 - Therefore, $B_1 = 0$ and $V_1(P) = B_2 P^{\beta_2} + \frac{P}{\delta} \frac{C}{r}$ for (P_L, ∞)



ENTRY AND EXIT STRATEGIES: Comparison with Myopic Decisions

- ★ Marshallian theory concludes that investment should occur when P = C + rI
 - ▶ Similarly, a bandon if the price drops below the operating cost minus the amortised a bandonment cost, C - rE
 - ▶ However, these conclusions are based on the assumption that the given price will prevail forever
- ★ In order to compare P_H and P_L with C + rI and C rE, respectively, define $G(P) = V_1(P) - V_0(P) = B_2 P^{\beta_2} + \frac{P}{\delta} - \frac{C}{\pi} - A_1 P^{\beta_1}$
 - For (P_L, P_H) , G(P) is the incremental value of becoming active
 - For low $P, G(P) \to B_2 P^{\beta_2}$, i.e., decreasing and convex in P
 - ▶ For high $P, G(P) \rightarrow -A_1 P^{\beta_1}$, i.e., decreasing and concave in P
 - VM and SP conditions become: (i) $G(P_H) = I$, (ii) $G'(P_H) = 0$, (iii) $G(P_L) = -E$, and (iv) $G'(P_L) = 0$
 - Figure 7.1 indicates the S shape over (P_L, P_H)





ENTRY AND EXIT

STRATEGIES: Numerical Example

 \bigstar An example from the copper industry

- ▶ Mine produces 10 million pounds of copper per year forever
- ▶ I = 20 and E = 2 (in million \$), while C = \$0.80 per pound
- $\mu = 0.06, \ \delta = \mu \alpha = 0.04, \ r = 0.04$ (all real rates per annum), and $\sigma = 0.20$ (allow for a range of estimates)

★ Solve system of four VM and SP equations numerically using initial guesses for P_H , P_L , A_1 , and B_2

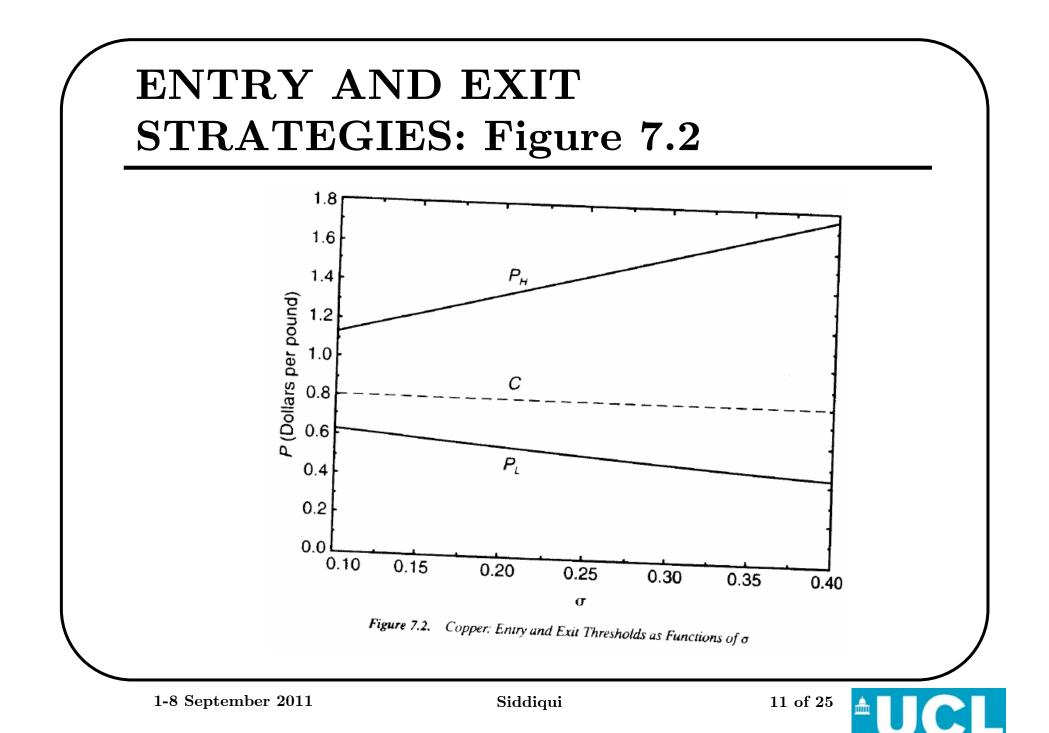
- Marshallian: $NPV_1 = -20 + \frac{10P}{0.04} \frac{8}{0.04}$ (in million \$), which implies $P_H^0 = 0.88$, and $NPV_0 = -2 \frac{10P}{0.04} + \frac{8}{0.04} \Rightarrow P_L^0 = 0.79$
- ▶ Figure 7.2 indicates how uncertainty drives these thresholds further apart from each other as uncertainty increases

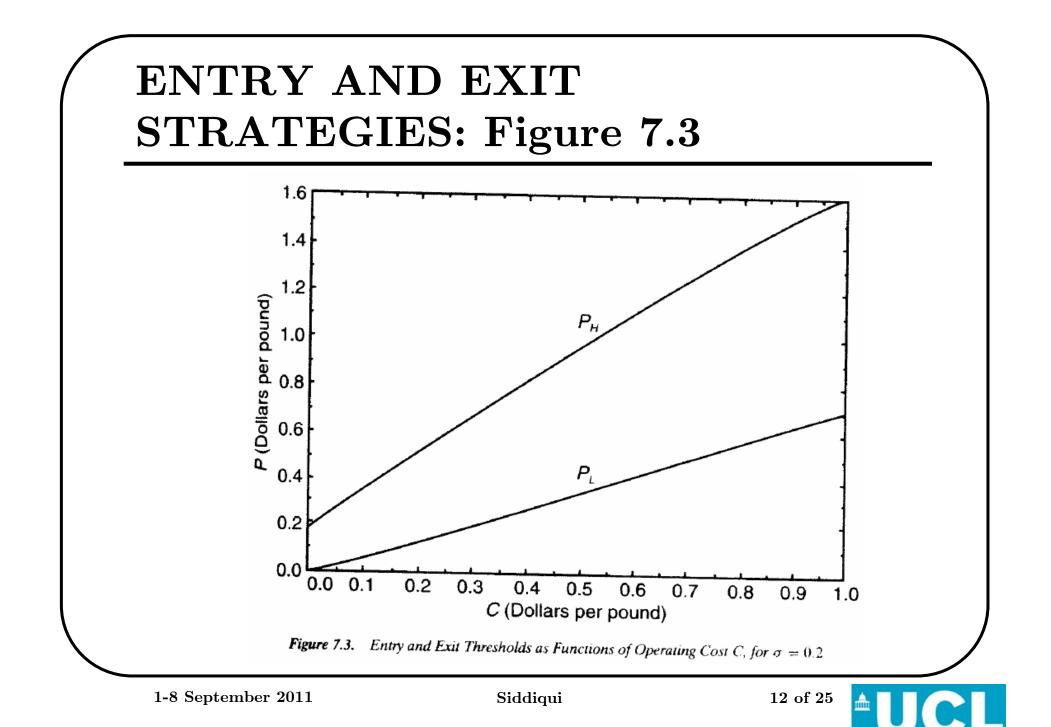
• As C increases, investment becomes more difficult, while abandonment is easier (Figure 7.3)

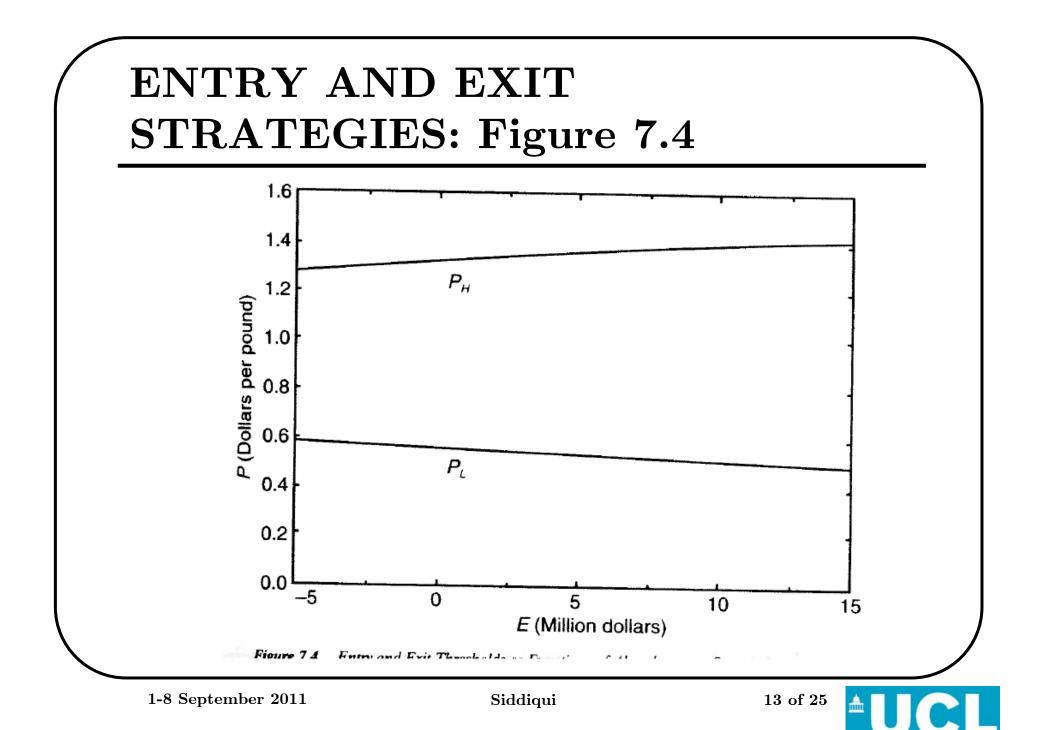
Neither threshold is very sensitive to E although the zone of inaction widens as it becomes more difficult to abandon (Figure 7.4)

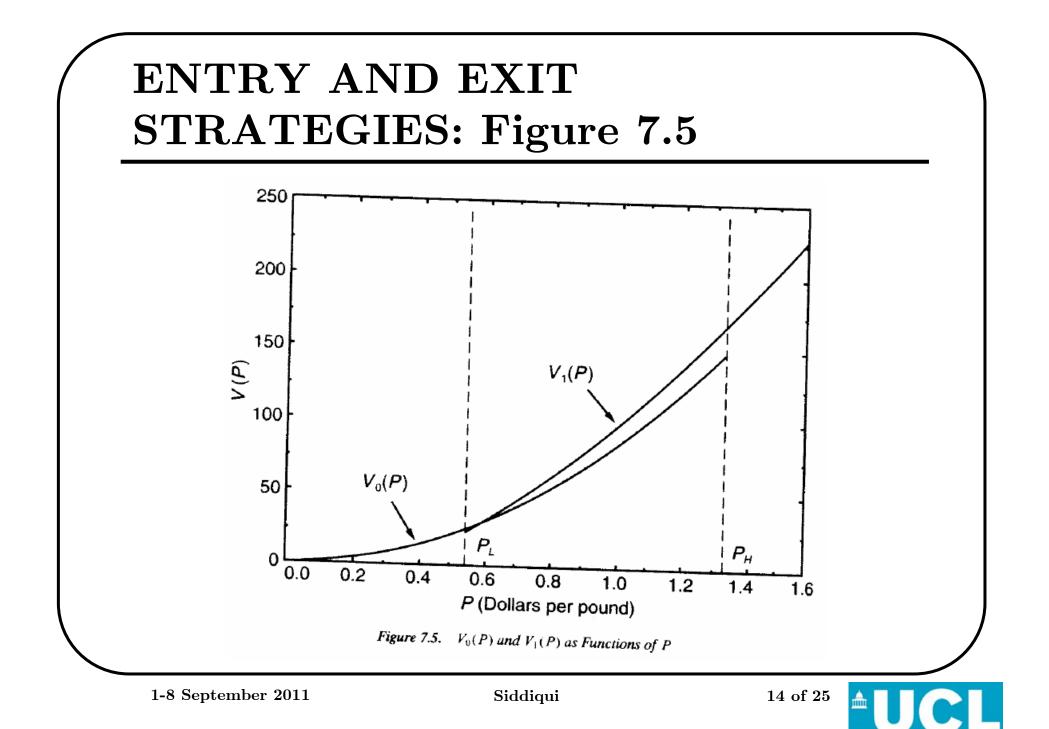
• The value curves are parallel at P_H and differ by I (and differ by E at P_L) in Figure 7.5

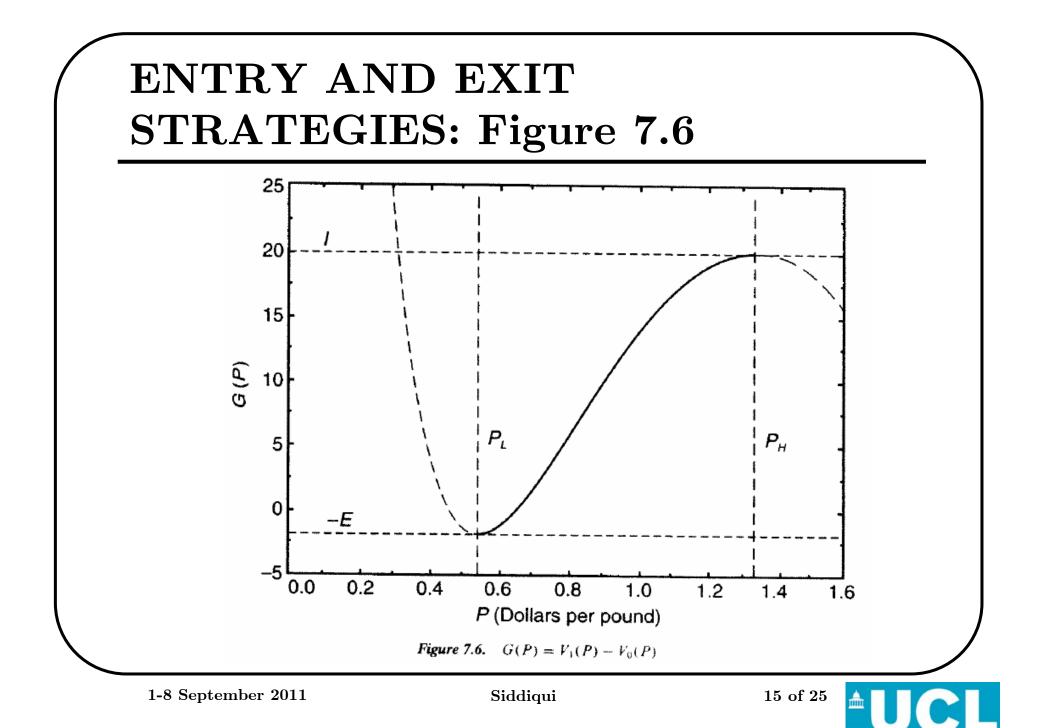
Function G(P) has the characteristic S shape (Figure 7.6) 1-8 September 2011 G(P) has the characteristic S shape (Figure 7.6) Siddiqui











LAY-UP, RE-ACTIVATION, AND SCRAPPING: States and Value Functions

- \star In addition to investment and abandonment, a producer may have other intermediate options, such as mothballing
 - Mothballing requires sunk cost, E_M , and ongoing maintenance cost, M < C
 - From a mothballed state, either re-activate operations by paying a sunk cost, R < I, or abandon as before at cost E_S such that $E = E_S + E_M$

▶ Thus, there will be four price thresholds: P_H , P_M , P_R , and P_S

- \star There are three possible states
 - Idle: $V_0(P) = \overline{A}_1 P^{\beta_1}$ for $(0, P_H)$
 - Active: $V_1(P) = B_2 P^{\beta_2} + \frac{P}{\delta} \frac{C}{r}$ for (P_M, ∞)
 - Mothballed: $V_m(P) = D_1 P^{\beta_1} + D_2 P^{\beta_2} \frac{M}{r}$ for (P_S, P_R)
 - Since two transitions are possible from the mothballed state, there are a total of four possible transitions

LAY-UP, RE-ACTIVATION, AND SCRAPPING: Optimal Switching

- \bigstar Write four VM and four SP conditions to solve for eight unknowns
 - ► Idle to active: $V_0(P_H) = V_1(P_H) I$ and $V'_0(P_H) = V'_1(P_H)$
 - Active to mothballed: $V_1(P_M) = V_m(P_M) E_M$ and $V'_1(P_M) = V'_m(P_M)$
 - Mothballed to active: $V_m(P_R) = V_1(P_R) R$ and $V'_m(P_R) = V'_1(P_R)$

Mothballed to idle: $V_m(P_S) = V_0(P_S) - E_S$ and $V'_m(P_S) = V'_0(P_S)$ \star Examine the set of equations relating mothballing to an active state

$$-D_1 P_R^{\beta_1} + (B_2 - D_2) P_R^{\beta_2} + \frac{P_R}{\delta} - \frac{(C - M)}{r} = R -\beta_1 D_1 P_R^{\beta_1 - 1} + \beta_2 (B_2 - D_2) P_R^{\beta_2 - 1} + \frac{1}{\delta} = 0 -D_1 P_M^{\beta_1} + (B_2 - D_2) P_M^{\beta_2} + \frac{P_M}{\delta} - \frac{(C - M)}{r} = -E_M -\beta_1 D_1 P_M^{\beta_1 - 1} + \beta_2 (B_2 - D_2) P_M^{\beta_2 - 1} + \frac{1}{\delta} = 0 Solve for four unknowns $P_M, P_R, B_2 - D_2$, and D_1 as before$$

LAY-UP, RE-ACTIVATION, AND SCRAPPING: Optimal Switching

- \star Now consider the set of equations relating idle/active and mothballing/idle states
 - $-A_1 P_H^{\beta_1} + B_2 P_H^{\beta_2} + \frac{P_H}{\delta} \frac{C}{r} = I$
 - $-\beta_1 A_1 P_H^{\beta_1 1} + \beta_2 B_2 P_H^{\beta_2 1} + \frac{1}{\delta} = 0$
 - $(D_1 A_1)P_S^{\beta_1} + D_2 P_S^{\beta_2} \frac{M}{r} = -E_S$
 - $-\beta_1 (D_1 A_1) P_S^{\beta_1 1} + \beta_2 D_2 P_S^{\beta_2 1} = 0$
 - Solve for six unknowns P_H , P_S , A_1 , B_2 , $D_1 A_1$, and D_2 using solutions for D_1 and $B_2 D_2$

 \star Comparative statics

- \blacktriangleright If M and R are zero, then we have costless suspension/resumption
- ▶ Increasing R while holding M constant: P_R increases, P_M decreases; also, both P_H and P_S increase
- May reach a point with R high enough that mothballing is not used, i.e., proceed directly to abandon

Similar story for increasing M while holding R constant: since saving from mothballing is reduced, both P_R and P_M decrease, while P_H and P_S both increase

LAY-UP, RE-ACTIVATION, AND SCRAPPING: Numerical Example

- \star Illustrate intuition with example from the VLCC industry
 - Assume I = 40, $E_M = 0.20$, $E_S = -3.4$ and R = 0.79, while the annual maintenance cost is M = 0.515 (all in million \$)
 - Annual operating cost is C = 4.4, and the revenue, P, follows a GBM with $P_0 = 7.3$, $\alpha = 0$, and $\sigma = 0.15$, and have r = 0.05 and $\delta = 0.05$
- \star Comparative statics
 - As R increases, P_H , P_S , and P_R increase, while P_M decreases (Figure 7.8)
 - Increasing E_M has a similar impact (Figure 7.9)
 - Higher M increases P_H , decreases P_M , decreases P_R , and increases P_S (Figure 7.10)
 - Increasing C increases P_H , increases P_M , increases P_R , and increases P_S (Figure 7.11)
 - Increasing σ increases P_H , decreases P_M , increases P_R , and decreases P_S (Figure 7.12)

