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COURSE OUTLINE

Introduction (Chs 1-2)

Mathematical Background (Chs 3—4)

Investment and Operational Timing (Chs 5-6)

Entry, Exit, Lay-Up, and Scrapping (Ch 7)

Recent Theoretical Work I: Capacity Sizing

Recent Theoretical Work II: Risk Aversion and Multiple
Risk Factors

Applications to the Energy Sector I. Capacity Sizing,
Timing, and Operational Flexibility

Applications to the Energy Sector II: Modularity and
Technology Choice

1-8 September 2011 Siddiqui 2 of 25




-~

LECTURE OUTLINE

\_

Entry and exit strategies
Lay-up, re-activation, and scrapping
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/" ENTRY AND EXIT I
STRATEGIES: Setup

Costless suspension and resumption or operations 1S not
always realistic
» Suspension may lead to dissipation of human capital or deteriora-
tion of equipment
» In order to resume operations from a suspended state, the entire
investment cost must be borne again

Suppose output price, P, follows a GBM and variable
operation cost is C
Investment cost is I, whereas abandonment cost is E
(may be negative as long as I + E > 0)
» Intuitively, invest (abandon) when price reaches upper (lower)
threshold Py (PL)
» Once invested (abandoned), maintain status quo until lower (up-
per) threshold is reached
» Note that the options are compound: part of the value of an active
\ firm, V1 (P), is the option to abandon /
» Similarly for the value of an idle firm, V4(P)
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/" ENTRY AND EXIT I
STRATEGIES: Solution

Obtain an ODE for V(P) following the contingent claims
approach
> Lo2P2VJ(P) + (r — §)PVY(P) — rVo(P) = 0
» General solution is Vo(P) = Ay PP + A, PP?
» Boundary condition for an idle firm: limp_,o Vo(P) =0= A2 =0
» Thus, the value of an idle firm is Vo(P) = A; P! for P € (0, Py)

Since an active firm pays instantaneous cash flow
(P — C)dt, the ODE for Vi(P) is 302P?V{(P) + (r —
NHPVI(P)—rVi(P)+ P—-C=0
» General solution is Vi(P) = ByP”* + BoP2 4+ L — &
» Since the last two terms are the expected NPV of cash flows, the
first two terms must be the option value of abandonment

» Boundary condition: abandonment option is nearly worthless at

high prices, i.e., limp_, o V1(P) = % — %
» Therefore, By =0 and V1 (P) = BoP”2 + £ — £ for (Pp, o)
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/" ENTRY AND EXIT
STRATEGIES: Thresholds

~

\_

At Py, the VM and SP conditions involve exchanging an
idle project for an active one
> ‘/()(PH) = Vl(PH) — I and VOI(PH) = Vll(PH)

Similarly, at P, the VM and SP conditions involve ex-
changing an active project for an idle one
> Vl(PL) VO(PL) F and Vl (PL) VO (PL)

Inserting equations for V;(P) and V{(P) gives the follow-
ing system of non-linear equations:
> AP — BoPp — FH 4 € = T
BLAIP ! — BaBoPr ! — 2 =0
~ AP+ BoPP?+ e S = F
—B1 A P 1+5 B P52 t+1=0

Solve numerically for four unknowns /

vvyyy
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/ ENTRY AND EXIT STRATEGIES: \

Comparison with Myopic Decisions

Marshallian theory concludes that investment should oc-
cur when P=C +rl
» Similarly, abandon if the price drops below the operating cost mi-
nus the amortised abandonment cost, C' — rE
» However, these conclusions are based on the assumption that the
given price will prevail forever

In order to compare Py and Pr, with C+rl and C —rFE,
respectively, define G(P) = Vi(P) — Vo(P) = B, PP +
P _C _ Alpﬂl

’ For (Pr, Prr), G(P) is the incremental value of becoming active

For low P, G(P) — B2P"2  i.e., decreasing and convex in P

For high P, G(P) — —A; PP, i.e., decreasing and concave in P

VM and SP conditions become: (i) G(Py) = I, (ii) G'(Pg) = 0,

(iii) G(Pr) = —E, and (iv) G'(PL) =0

Figure 7.1 indicates the S shape over (Pr, Px) /
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/ ENTRY AND EXIT STRATEGIES: \

Comparison with Myopic Decisions

At Py, subtract ODE for V4(P) from that of Vi(P) to

obtain £0?G"(P) + (r — §)G'(P) —rG(P)+ P—-C =0

» Use VM and SP at Py to obtain 16°G"(Py) — 11+ Py — C =
0= Py —C—rl=—10°G"(Pu) >0

» Therefore, Py > C + rl, i.e., firms are more reluctant to invest

compared to the Marshallian case

\ Figure 7.1.  Determination of the Thresholds P, and Py /
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/" ENTRY AND EXIT I
STRATEGIES: Comparative Statics

How do Py and Pp, respond to changes in parameters?

» Not straightforward with r, ¢, and o

» Analytics are easier with I, FE, and C

Express GG as a function of P, A;, and B,

» VM and SP conditions: (i) G(Pm,A:1,B2) = I, (ii)
G(PL,Al,Bg) = —E, (111) GP(PH,Al,BQ) = 0, (IV)
Gp(Pr,A1,B2) =0

» Total differentiation of (i) and (ii) yields Ga(H)dA: +
GpB (H)dBQ — dI and GA(L)dAl + GpB (L)dBQ =0

» Since Ga(H) = —P5' and Gg(L) = P2, the solutions are dA; =

B B

P and dBy = — P2 where A = PP — PR PP s g

» Differentiate the SP condition at Pgu: Gpp(H)dPuy +
GPA(H)dAl + GPB(H)dBQ =0

—1 1
[51 prl sz —ﬂgpfﬁ Pgl ] dl

» Thus, Gpp(H)dPy = — ~ = L1 >
because G(P) is concave at Pg
» Similarly, find that % < 0, ddiIL < 0, and % > 0

1-8 September 2011 Siddiqui 9 of 25



/" ENTRY AND EXIT I
STRATEGIES: Numerical Example

\_

An example from the copper industry

» Mine produces 10 million pounds of copper per year forever

» [ =20 and F =2 (in million $), while C' = $0.80 per pound

» 1 =0.06,0 = p—a=0.04, r = 0.04 (all real rates per annum),

and o = 0.20 (allow for a range of estimates)

Solve system of four VM and SP equations numerically
using initial guesses for Py, P, Ay, and B,

» Marshallian: NPV; = —20+ 220 ——2_ (in million $), which implies

0.04 ~0.04
P =0.88, and NPVy = -2 — 2% 4+ 2 = PP = 0.79
» Figure 7.2 indicates how uncertainty drives these thresholds further
apart from each other as uncertainty increases
» As C increases, investment becomes more difficult, while abandon-
ment is easier (Figure 7.3)
» Neither threshold is very sensitive to E although the zone of inac-
tion widens as it becomes more difficult to abandon (Figure 7.4)
» The value curves are parallel at Py and differ by I (and differ by

E at Pr) in Figure 7.5

» Function G(f7) has the characteristic 5 shape (I'igure (.0
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/" ENTRY AND EXIT
STRATEGIES: Figure 7.2
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/" ENTRY AND EXIT I
STRATEGIES: Figure 7.3
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/" ENTRY AND EXIT
STRATEGIES: Figure 7.4
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/" ENTRY AND EXIT I
STRATEGIES: Figure 7.5
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\ Figure 7.5. V,(P)uand Vi(P) as Functions of P /
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/" ENTRY AND EXIT
STRATEGIES: Figure 7.6
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Functions

/mvrwrm \
SCRAPPING: States and Value

\_

In addition to mmvestment and abandonment, a producer
may have other intermediate options, such as moth-

balling

» Mothballing requires sunk cost, Fjs, and ongoing maintenance

cost, M < C

» From a mothballed state, either re-activate operations by paying
a sunk cost, R < I, or abandon as before at cost Es such that

E=Fs+ Eum

» Thus, there will be four price thresholds: Pry, Py, Pr, and Ps

There are three possible states
» Idle: Vo(P) = A, P" for (0, Py)
Active: Vi(P) = BoP?? + £ — £ for (Pu, o0)

vvyy

are a total of four possible transitions

Mothballed: V;,,(P) = D1 P°* + D, P%? — X for (Pg, Pg)
Since two transitions are possible from the mothballed state, there

_/
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/ LAY-UP, RE-ACTIVATION, AND\

SCRAPPING: Optimal Switching

Write four VM and four SP conditions to solve for eight
unknowns

» Idle to active: Vo(Pr) = Vi(Pr) — I and Vg (Pr) = V{(Pr)

» Active to mothballed: Vi(Pay) = Vin(Pv) — Em and Vi (Py) =

Vi (Par)
» Mothballed to active: V,,(Pr) = Vi(Pr) — R and V,,(Pr) =
Vi (Pr)

» Mothballed to idle: V;,,(Ps) = Vo(Ps) — Es and V,,,(Ps) = Vi (Ps)
Examine the set of equations relating mothballing to an
active state

> —DiPgt + (By — Do)Pp2 + T2 (€20 _ g
~B1D1Pgt ! + Ba(Bas — D2)Pp? t + 1 =0
—D1 Py} + (By — Do) Py + 2 — 2 — By
—31D1P]€}_1 + B2(B2 — DQ)P]@Z_l + % =0

\ Solve for four unknowns Py, Pr, Bo — D2, and D; as before /
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/LAY-UP, RE-ACTIVATION, AND\
SCRAPPING: Optimal Switching

Now consider the set of equations relating 1dle/active and
mothballing/idle states
> —A1PJ + BePpp + 2 - € =]
—61A1PI§1_1 + ﬁ2B2PI§2_1 - % =0
(D1 — A1)PS* + D2PS* — X = —Fg
—f1(D1 — A1)Pg' ! 4 B2 D2 Pg? T =0
Solve for six unknowns Py, Ps, A1, B2, D1 — A1, and D> using
solutions for Dy and By — Do
Comparative statics
» If M and R are zero, then we have costless suspension /resumption
» Increasing R while holding M constant: Pgr increases, Pj; de-
creases; also, both Py and Ps increase
» May reach a point with R high enough that mothballing is not
used, i.e., proceed directly to abandon
» Similar story for increasing M while holding R constant: since
\ saving from mothballing is reduced, both Pr and Py decrease,/
while P and Pgo both increase
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/LAY-UP, RE-ACTIVATION, AND\
SCRAPPING: Numerical Example

[llustrate mtuition with example trom the VLCC indus-
try
» Assume I = 40, Ep; = 0.20, Fs = —3.4 and R = 0.79, while the
annual maintenance cost is M = 0.515 (all in million $)
» Annual operating cost is C = 4.4, and the revenue, P, follows a
GBM with Py = 7.3, « = 0, and o = 0.15, and have r = 0.05 and
0 =0.05
Comparative statics
» As R increases, Py, Ps, and Pgr increase, while Pj; decreases
(Figure 7.8)
» Increasing Fys has a similar impact (Figure 7.9)
» Higher M increases Pr, decreases Py, decreases Pr, and increases
Ps (Figure 7.10)
» Increasing C increases Py, increases Pps, increases Pr, and in-
creases Ps (Figure 7.11)

» Increasing o increases Py, decreases Py, increases Pr, and de-
creases Ps (Figure 7.12)
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/" LAY-UP, RE-ACTIVATION, AND
SCRAPPING: Figure 7.8
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/" LAY-UP, RE-ACTIVATION, AND

SCRAPPING: Figure 7.9
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/" LAY-UP, RE-ACTIVATION, AND

SCRAPPING: Figure 7.10
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/" LAY-UP, RE-ACTIVATION, AND
SCRAPPING: Figure 7.11
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/" LAY-UP, RE-ACTIVATION, AND
SCRAPPING: Figure 7.12
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