TIØ 1: Financial Engineering in Energy Markets

Afzal Siddiqui

Department of Statistical Science University College London London WC1E 6BT, UK afzal@stats.ucl.ac.uk

COURSE OUTLINE

- \bigstar Introduction (Chs 1–2)
- \star Mathematical Background (Chs 3–4)
- \star Investment and Operational Timing (Chs 5–6)
- \star Entry, Exit, Lay-Up, and Scrapping (Ch 7)
- \star Recent Theoretical Work I: Capacity Sizing
- ★ Recent Theoretical Work II: Risk Aversion and Multiple Risk Factors
- ★ Applications to the Energy Sector I: Capacity Sizing, Timing, and Operational Flexibility
- ★ Applications to the Energy Sector II: Modularity and Technology Choice

LECTURE OUTLINE

- \star Continuous scaling
- \star Discrete scaling

CONTINUOUS CAPACITY SCALING: Dangl (1999)

- \star Often, size of the capacity is an endogeneous variable
- \star Dangl (1999) addresses this within the context of investment and sizing under uncertainty
 - ▶ Assume that the firm with a perpetual option to invest faces a downward-sloping inverse demand curve
 - ▶ Marginal investment costs are non-increasing in the capacity size
 - Tradeoff between smaller capacity (higher price, but higher per unit investment cost) and larger capacity (lower price, but lower per unit investment cost)
- ★ Approach becomes analytically intractable unless one of the conditions is relaxed, i.e., either firm is a price taker or has constant marginal investment cost

CONTINUOUS CAPACITY SCALING: Price Taker without Operational Flexibility

★ Suppose $\theta_t = P_t - c_t$, where $d\theta_t = \alpha t + \sigma dz_t$ and $\theta_0 = \theta$

★ Investment cost is $I(Q) = \eta Q^{\gamma}, \gamma \ge 1$

 \star Instantaneous profit flow is $\pi(\theta_t, Q) = \theta_t Q$

 \bigstar Assume exogeneous discount rate $\rho > \alpha \ge 0$

★ Formally, the problem is
$$F(\theta) \equiv \max\left\{e^{-\rho dt} \mathcal{E}_{\theta}\left[F(\theta + d\theta)\right], \max_{Q}\left[V(\theta, Q) - I(Q)\right]\right\}$$

★ Expected project PV is $V(\theta, Q) = \mathcal{E}_{\theta} \left[\int_{0}^{\infty} e^{-\rho t} \pi(\theta_{t}, Q) dt \right]$ ► $V(\theta, Q) = \int_{0}^{\infty} Q e^{-\rho t} \mathcal{E}_{\theta}[\theta_{t}Q] dt$ ► $\Rightarrow V(\theta, Q) = \int_{0}^{\infty} Q e^{-\rho t} (\theta + \alpha t) dt = \frac{Q}{\rho^{2}} [\theta \rho + \alpha]$

CONTINUOUS CAPACITY SCALING: Price Taker without Operational Flexibility

★ Solution to the inner extremum yields $Q^*(\theta) = \left| \frac{\theta \rho + \alpha}{\gamma \eta \rho^2} \right|^{\gamma}$

- ► The maximised expected project NPV is $V(\theta, Q^*(\theta)) I(Q^*(\theta)) = \left[\frac{\theta\rho + \alpha}{\gamma \eta \rho^2}\right]^{\frac{1}{\gamma 1}} \left[\frac{\theta\rho + \alpha}{\rho^2}\right] \left(\frac{\gamma 1}{\gamma}\right)$
- ★ Option value is $F(\theta) = a_1 e^{\beta_1 \theta}$, where β_1 is the positive root of $\frac{1}{2}\beta^2\sigma^2 + \alpha\beta \rho = 0$

VM:
$$a_1 e^{\beta_1 \theta^*} = \left[\frac{\theta^* \rho + \alpha}{\gamma \eta \rho^2}\right]^{\frac{1}{\gamma - 1}} \left[\frac{\theta^* \rho + \alpha}{\rho^2}\right] \left(\frac{\gamma - 1}{\gamma}\right)$$

SP: $\beta_1 a_1 e^{\beta_1 \theta^*} = \left[\frac{\theta^* \rho + \alpha}{\gamma \eta \rho^2}\right]^{\frac{1}{\gamma - 1}} \left(\frac{1}{\rho}\right)$

• Thus,
$$\theta^* = \frac{\gamma}{\beta_1(\gamma-1)} - \frac{\alpha}{\rho}$$
, $a_1 = \left[\frac{\theta^* \rho + \alpha}{\eta \gamma \rho^2}\right]^{\frac{\gamma}{\gamma-1}} \frac{e^{-\beta_1 \theta^*}}{\rho \beta_1}$, and $Q^*(\theta^*) = \left[\frac{1}{\beta_1 n \rho(\gamma-1)}\right]^{\frac{1}{\gamma-1}}$

★ The distinction between $V(\theta, Q^*(\theta)) - I(Q^*(\theta))$ and $V(\theta, Q^*(\theta^*)) - I(Q^*(\theta^*))$ is that the latter is a linear func-

CONTINUOUS CAPACITY SCALING: Investment Thresholds

13 of 28 <u></u>

CONTINUOUS CAPACITY SCALING: Optimal Capacity (Immediate Investment)

DISCRETE CAPACITY SCALING: Dixit (1993)

- ★ Procedure for finding p^* and B via VM and SP conditions with V(p)
 - 1. Calculate p_i^* and B_i for each project independently: $p_i^* = \left(\frac{\beta_1}{\beta_1-1}\right) \frac{K_i(\rho-\mu)}{X_i}, B_i = \left(\frac{\beta_1-1}{K_i}\right)^{\beta_1-1} \left(\frac{X_i}{\beta_1(\rho-\mu)}\right)^{\beta_1}$
 - 2. Select project j with largest B_i , i.e., the largest $\frac{X_i^{\beta_1}}{K_i^{\beta_1-1}}$ $(j \equiv \arg \max_{i=1,...,N} \{B_i\})$
 - 3. If $p < p_j^*$, the wait until price hits p_j^* and invest in project j; otherwise, invest immediately in the project with the highest $V_i(p)$
- ★ However, what if j = 2 and the current price is equal to the indifference price between projects 2 and 3, \tilde{p}_{23} ?

★ Décamps, Mariotti, and Villeneuve (2006) argue that it would never be optimal to invest at this point

DISCRETE CAPACITY SCALING: DMV (2006)

- ★ Consider only two projects such that $B_1 > B_2$ and $\tilde{p} = \frac{(\rho \mu)(K_2 K_2)}{X_2 X_1}$ is the indifference point
 - Invest in project 1 if $p \in [p_1, p_3]$ and invest in project 2 if $p \in [p_4, \infty)$
 - Otherwise, if $p \in [0, p_1)$, then wait for project 1; or, if $p \in (p_3, p_4)$, then wait for project 2 (1) if price increases (decreases)

• Option value is
$$F(p) = B_1 p^{\beta_1}$$
 for $0 \le p < p_1$ and $F(p) = D_1 p^{\beta_1} + D_2 p^{\beta_2}$ for $p_3 , where β_2 is the negative
root of the quadratic $\frac{1}{2}\sigma^2\beta(\beta-1) + \mu\beta - \rho = 0$
1. $F(p_3) = V_1(p_3) \Rightarrow D_1 p_3^{\beta_1} + D_2 p_3^{\beta_2} = \frac{p_3 X_1}{\rho-\mu} - K_1$
2. $F'(p_3) = V'_1(p_3) \Rightarrow \beta_1 D_1 p_3^{\beta_1-1} + \beta_2 D_2 p_3^{\beta_2-1} = \frac{X_1}{\rho-\mu}$
3. $F(p_4) = V_2(p_4) \Rightarrow D_1 p_4^{\beta_1} + D_2 p_4^{\beta_2} = \frac{p_4 X_2}{\rho-\mu} - K_2$
4. $F'(p_4) = V'_2(p_4) \Rightarrow \beta_1 D_1 p_4^{\beta_1-1} + \beta_2 D_2 p_4^{\beta_2-1} = \frac{X_2}{\rho-\mu}$$

DISCRETE CAPACITY SCALING: DMV (2006) Example

Table 1. Numerical illustration for $\mu = 0$, $\rho = 0.04$, $\sigma = 0.2$, $X_1 = 1$ and $K_1 = 10$

	\tilde{p}	p_3	p_4	Δ
$X_2 = 1.9, K_2 = 40$	1.333	0.948	1.727	9.4%
$X_2 = 2.9, K_2 = 90$	1.684	0.886	2.493	29.8%
$X_2 = 3.9, K_2 = 160$	2.069	0.862	3.286	52.7%

DISCRETE CAPACITY SCALING: DMV (2006) with Switching

- ★ Now, suppose that project 1 comes with a switching option, i.e., it is possible to pay the investment cost K_2 and switch to project 2
 - Expected NPV of project 2 is still $V_2(p) = \frac{pX_2}{\rho \mu} K_2$
 - Expected NPV of project 1 is now $V_1^s(p) = \frac{pX_1}{\rho \mu} K_1 + B_{12}^s p^{\beta_1}$ for $p < p_{12}^s$ and $V_1^s(p) = \frac{pX_2}{\rho \mu} K_1 K_2$ otherwise
 - $\blacktriangleright \text{ VM and SP of the two branches of } V_1^s(p) \text{ yields } p_{12}^s = \left[\frac{K_2(\rho-\mu)}{X_2-X_1}\right] \left(\frac{\beta_1}{\beta_1-1}\right) \text{ and } B_{12}^s = \left(\frac{K_2}{\beta_1-1}\right) (p_{12}^s)^{-\beta_1}$
 - Indifference price between projects 1 and 2, $\tilde{p^s}$, must now be found numerically
- ★ Option value of independent investment in project 2 is the same as before: $F_2(p) = B_2 p^{\beta_1}$
- ★ But, option value of independent investment in project 1 with switching option is $F_1^s(p) = B_1^s p^{\beta_1}$ for $0 \le p < p_1^s$, where A_1^s and p_1^s depend on whether $\frac{X_1}{K_1} > \frac{X_2 - X_1}{K_2}$

ETE CAPA SCALING: DMV (2006) with Switching

- \star If $\frac{X_1}{K_1} > \frac{X_2 X_1}{K_2}$, then invest first in project 1 with switching option and wait for opportunity to upgrade to project • Thus, $p_1^s = \left(\frac{\beta_1}{\beta_1 - 1}\right) \frac{K_1(\rho - \mu)}{X_1} = p_1 < p_{12}^s$ and $B_1^s = B_1 + B_{12}^s$ ★ Otherwise, $p_1^s = \left(\frac{\beta_1}{\beta_1 - 1}\right) \frac{(K_1 + K_2)(\rho - \mu)}{X_2}$ and $B_1^s = \frac{X_2(p_1^s)^{1 - \beta_1}}{\beta_1(\rho - \mu)}$
- \star Finally, check whether $B_2 > B_1^s$
 - ▶ If so, then ignore project 1 with the switching option
 - ▶ Otherwise, find dichotomous option value via VM and SP
 - 1. $F(p_3^s) = V_1^s(p_3^s) \Rightarrow D_1^s(p_3^s)^{\beta_1} + D_2^s(p_3^s)^{\beta_2} = \frac{p_3^s X_1}{q-u} K_1 + K_1$ $B_{12}^{s} (p_{3}^{s})^{\beta_{1}}$
 - 2. $F'(p_3^s) = V_1^{s'}(p_3^s) \Rightarrow \beta_1 D_1^s (p_3^s)^{\beta_1 1} + \beta_2 D_2^s (p_3^s)^{\beta_2 1} = \frac{X_1}{a \mu} + \beta_2 D_2^s (p_3^s)^{\beta_2 \mu} = \frac{X_1}{a \mu} + \beta_2$ $\beta_1 B_{12}^s (p_3^s)^{\beta_1 - 1}$
 - 3. $F(p_4^s) = V_2(p_4^s) \Rightarrow D_1^s (p_4^s)^{\beta_1} + D_2^s (p_4^s)^{\beta_2} = \frac{p_4^s X_2}{\rho \mu} K_2$ 4. $F'(p_A^s) = V'_2(p_A^s) \Rightarrow \beta_1 D_1^s (p_A^s)^{\beta_1 - 1} + \beta_2 D_2^s (p_A^s)^{\beta_2 - 1} = \frac{X_2}{\rho - \mu}$

DISCRETE CAPACITY SCALING: DMV (2006) with Switching Example

