TIØ 1: Financial Engineering in Energy Markets

Afzal Siddiqui

Department of Statistical Science
University College London
London WC1E 6BT, UK
afzal@stats.ucl.ac.uk

COURSE OUTLINE

* Introduction (Chs 1-2)
* Mathematical Background (Chs 3-4)

夫 Investment and Operational Timing (Chs 5-6)
\star Entry, Exit, Lay-Up, and Scrapping (Ch 7)
\star Recent Theoretical Work I: Capacity Sizing

* Recent Theoretical Work II: Risk Aversion and Multiple Risk Factors
* Applications to the Energy Sector I: Capacity Sizing, Timing, and Operational Flexibility
* Applications to the Energy Sector II: Modularity and Technology Choice

LECTURE OUTLINE

\star Continuous scaling
\star Discrete scaling

CONTINUOUS CAPACITY SCALING: Dangl (1999)

Often, size of the capacity is an endogeneous variable
Dangl (1999) addresses this within the context of investment and sizing under uncertainty

- Assume that the firm with a perpetual option to invest faces a downward-sloping inverse demand curve
- Marginal investment costs are non-increasing in the capacity size
- Tradeoff between smaller capacity (higher price, but higher per unit investment cost) and larger capacity (lower price, but lower per unit investment cost)
* Approach becomes analytically intractable unless one of the conditions is relaxed, i.e., either firm is a price taker or has constant marginal investment cost

CONTINUOUS CAPACITY SCALING: Price Taker without Operational Flexibility

\star Suppose $\theta_{t}=P_{t}-c_{t}$, where $d \theta_{t}=\alpha t+\sigma d z_{t}$ and $\theta_{0}=\theta$
\star Investment cost is $I(Q)=\eta Q^{\gamma}, \gamma \geq 1$
\star Instantaneous profit flow is $\pi\left(\theta_{t}, Q\right)=\theta_{t} Q$
\star Assume exogeneous discount rate $\rho>\alpha \geq 0$

* Formally, the problem is $F(\theta) \equiv$ $\max \left\{e^{-\rho d t} \mathcal{E}_{\theta}[F(\theta+d \theta)], \max _{Q}[V(\theta, Q)-I(Q)]\right\}$
* Expected project PV is $V(\theta, Q)=\mathcal{E}_{\theta}\left[\int_{0}^{\infty} e^{-\rho t} \pi\left(\theta_{t}, Q\right) d t\right]$
- $V(\theta, Q)=\int_{0}^{\infty} Q e^{-\rho t} \mathcal{E}_{\theta}\left[\theta_{t} Q\right] d t$
- $\Rightarrow V(\theta, Q)=\int_{0}^{\infty} Q e^{-\rho t}(\theta+\alpha t) d t=\frac{Q}{\rho^{2}}[\theta \rho+\alpha]$

CONTINUOUS CAPACITY SCALING: Price Taker without Operational Flexibility

* Solution to the inner extremum yields $Q^{*}(\theta)=\left[\frac{\theta \rho+\alpha}{\gamma \eta \rho^{2}}\right]^{\gamma-1}$
- The maximised expected project NPV is $V\left(\theta, Q^{*}(\theta)\right)-I\left(Q^{*}(\theta)\right)=$ $\left[\frac{\theta \rho+\alpha}{\gamma \eta \rho^{2}}\right]^{\frac{1}{\gamma-1}}\left[\frac{\theta \rho+\alpha}{\rho^{2}}\right]\left(\frac{\gamma-1}{\gamma}\right)$
* Option value is $F(\theta)=a_{1} e^{\beta_{1} \theta}$, where β_{1} is the positive root of $\frac{1}{2} \beta^{2} \sigma^{2}+\alpha \beta-\rho=0$
- VM: $a_{1} e^{\beta_{1} \theta^{*}}=\left[\frac{\theta^{*} \rho+\alpha}{\gamma \eta \rho^{2}}\right]^{\frac{1}{\gamma-1}}\left[\frac{\theta^{*} \rho+\alpha}{\rho^{2}}\right]\left(\frac{\gamma-1}{\gamma}\right)$
- SP: $\beta_{1} a_{1} e^{\beta_{1} \theta^{*}}=\left[\frac{\theta^{*} \rho+\alpha}{\gamma \eta \rho^{2}}\right]^{\frac{1}{\gamma-1}}\left(\frac{1}{\rho}\right)$
- Thus, $\theta^{*}=\frac{\gamma}{\beta_{1}(\gamma-1)}-\frac{\alpha}{\rho}, a_{1}=\left[\frac{\theta^{*} \rho+\alpha}{\eta \gamma \rho^{2}}\right]^{\frac{1}{\gamma-1}} \frac{e^{-\beta_{1} \theta^{*}}}{\rho \beta_{1}}$, and $Q^{*}\left(\theta^{*}\right)=$ $\left[\frac{1}{\beta_{1} \eta \rho(\gamma-1)}\right]^{\frac{1}{\gamma-1}}$
* The distinction between $V\left(\theta, Q^{*}(\theta)\right)-I\left(Q^{*}(\theta)\right)$ and $V\left(\theta, Q^{*}\left(\theta^{*}\right)\right)-I\left(Q^{*}\left(\theta^{*}\right)\right)$ is that the latter is a linear func-

CONTINUOUS CAPACITY SCALING: Price Taker with Operational Flexibility

* Now, suppose that the firm may costlessly suspend and resume the project once installed
- Expected project PV is $V(\theta, Q)=\frac{Q}{\rho^{2}}[\theta \rho+\alpha]+d_{2} e^{\beta_{2} \theta}$ if $\theta \geq 0$ and $V(\theta, Q)=k_{1} e^{\beta_{1} \theta}$ otherwise
- Find k_{1} and d_{2} via VM and SP of the two branches of $V(\theta, Q)$ at $\theta=0$
$-k_{1}=\frac{Q \beta_{2}}{\left(\beta_{2}-\beta_{1}\right) \rho}\left[\frac{\alpha}{\rho}-\frac{1}{\beta_{2}}\right]$ and $d_{2}=\frac{Q \beta_{1}}{\left(\beta_{2}-\beta_{1}\right) \rho}\left[\frac{\alpha}{\rho}-\frac{1}{\beta_{1}}\right]$
\star Inner extremum to determine capacity size, $Q^{*}(x)$: $\max _{Q} \frac{Q}{\rho^{2}}[\theta \rho+\alpha]+d_{2}(Q) e^{\beta_{2} \theta}-\eta Q^{\gamma}$
- FONC implies $\frac{\rho \theta+\alpha}{\rho^{2}}+d_{2}^{\prime}(Q) e^{\beta_{2} \theta}=\eta \gamma Q^{\gamma-1}$, where $d_{2}^{\prime}(Q)=$ $\frac{\beta_{1}}{\rho\left(\beta_{2}-\beta_{1}\right)}\left[\frac{\alpha}{\rho}-\frac{1}{\beta_{1}}\right]$
- Thus, $Q^{*}(\theta)=\left\{\frac{1}{\eta \gamma}\left[\frac{\theta \rho+\alpha}{\rho^{2}}+\frac{\beta_{1}}{\rho\left(\beta_{2}-\beta_{1}\right)}\left(\frac{\alpha}{\rho}-\frac{1}{\beta_{1}}\right) e^{\beta_{2} \theta}\right]\right\}^{\frac{1}{\gamma-1}}$
\star Option value is $F(\theta)=a_{1} e^{\beta_{1} \theta}$, where θ^{*}, a_{1}, and $Q^{*}\left(\theta^{*}\right)$ must be found numerically

CONTINUOUS CAPACITY SCALING: Numerical Example without Operational Flexibility (Waiting Region)

CONTINUOUS CAPACITY SCALING: Numerical Example without Operational Flexibility (Immediate Investment)

CONTINUOUS CAPACITY SCALING: Numerical Example with Operational Flexibility (Waiting Region)

Value of Option to Invest in Transmission Capacity

CONTINUOUS CAPACITY SCALING: Numerical Example with Operational Flexibility (Immediate Investment)

CONTINUOUS CAPACITY SCALING: Investment Thresholds

CONTINUOUS CAPACITY SCALING: Optimal Capacity (Waiting Region)

CONTINUOUS CAPACITY SCALING: Optimal Capacity (Immediate Investment)

Optimal Transmission Capacity as a Function of Volatility ($\mathrm{X}_{0}>\mathrm{X}_{1}$ initially)

DISCRETE CAPACITY SCALING: Dixit (1993)

* Suppose that there are N discrete projects
- Each has capital cost K_{i} and output scale $X_{i}, i=1, \ldots, N$, ranked in increasing order
- Assume output price follows GBM, i.e., $d P_{t}=\mu P_{t} d t+\sigma P_{t} z_{t}$
- Discount rate is $\rho>\mu \geq 0$

Expected NPV of project i given initial price p is $V_{i}(p)=\frac{p X_{i}}{\rho-\mu}-K_{i}$
\star With N projects, the expected value of a now-or-never investment is $V(p)=\max _{i=1, \ldots, N}\left\{V_{i}(p)\right\}$
\star Option value of investment is $F(p)=B p^{\beta_{1}}$, where β_{1} is the positive root of $\frac{1}{2} \sigma^{2} \beta(\beta-1)+\mu \beta-\rho=0$

DISCRETE CAPACITY SCALING: Dixit (1993)

DISCRETE CAPACITY SCALING: Dixit (1993)

\star Procedure for finding p^{*} and B via VM and SP conditions with $V(p)$

1. Calculate p_{i}^{*} and B_{i} for each project independently: $p_{i}^{*}=$ $\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{K_{i}(\rho-\mu)}{X_{i}}, B_{i}=\left(\frac{\beta_{1}-1}{K_{i}}\right)^{\beta_{1}-1}\left(\frac{X_{i}}{\beta_{1}(\rho-\mu)}\right)^{\beta_{1}}$
2. Select project j with largest B_{i}, i.e., the largest $\frac{X_{i}^{\beta_{1}}}{K_{i}^{\beta_{1}-1}}(j \equiv$ $\left.\arg \max _{i=1, \ldots, N}\left\{B_{i}\right\}\right)$
3. If $p<p_{j}^{*}$, the wait until price hits p_{j}^{*} and invest in project j; otherwise, invest immediately in the project with the highest $V_{i}(p)$

* However, what if $j=2$ and the current price is equal to the indifference price between projects 2 and $3, \tilde{p}_{23}$?

Décamps, Mariotti, and Villeneuve (2006) argue that it would never be optimal to invest at this point

DISCRETE CAPACITY SCALING: DMV (2006)

DISCRETE CAPACITY SCALING: DMV (2006)

\star Consider only two projects such that $B_{1}>B_{2}$ and $\tilde{p}=$ $\frac{(\rho-\mu)\left(K_{2}-K_{2}\right)}{X_{2}-X_{1}}$ is the indifference point

- Invest in project 1 if $p \in\left[p_{1}, p_{3}\right]$ and invest in project 2 if $p \in$ $\left[p_{4}, \infty\right)$
- Otherwise, if $p \in\left[0, p_{1}\right)$, then wait for project 1 ; or, if $p \in\left(p_{3}, p_{4}\right)$, then wait for project 2 (1) if price increases (decreases)

Option value is $F(p)=B_{1} p^{\beta_{1}}$ for $0 \leq p<p_{1}$ and $F(p)=$ $D_{1} p^{\beta_{1}}+D_{2} p^{\beta_{2}}$ for $p_{3}<p<p_{4}$, where β_{2} is the negative root of the quadratic $\frac{1}{2} \sigma^{2} \beta(\beta-1)+\mu \beta-\rho=0$

1. $F\left(p_{3}\right)=V_{1}\left(p_{3}\right) \Rightarrow D_{1} p_{3}^{\beta_{1}}+D_{2} p_{3}^{\beta_{2}}=\frac{p_{3} X_{1}}{\rho-\mu}-K_{1}$
2. $F^{\prime}\left(p_{3}\right)=V_{1}^{\prime}\left(p_{3}\right) \Rightarrow \beta_{1} D_{1} p_{3}^{\beta_{1}-1}+\beta_{2} D_{2} p_{3}^{\beta_{2}-1}=\frac{X_{1}}{\rho-\mu}$
3. $F\left(p_{4}\right)=V_{2}\left(p_{4}\right) \Rightarrow D_{1} p_{4}^{\beta_{1}}+D_{2} p_{4}^{\beta_{2}}=\frac{p_{4} X_{2}}{\rho-\mu}-K_{2}$
4. $F^{\prime}\left(p_{4}\right)=V_{2}^{\prime}\left(p_{4}\right) \Rightarrow \beta_{1} D_{1} p_{4}^{\beta_{1}-1}+\beta_{2} D_{2} p_{4}^{\beta_{2}-1}=\frac{X_{2}}{\rho-\mu}$

DISCRETE CAPACITY SCALING: DMV (2006) Example

DISCRETE CAPACITY SCALING: DMV (2006) Example

DISCRETE CAPACITY SCALING: DMV (2006) Example

Table 1. Numerical illustration for $\mu=0, \rho=0.04, \sigma=0.2, X_{1}=1$ and $K_{1}=10$

	\tilde{p}	p_{3}	p_{4}	Δ
$X_{2}=1.9, K_{2}=40$	1.333	0.948	1.727	9.4%
$X_{2}=2.9, K_{2}=90$	1.684	0.886	2.493	29.8%
$X_{2}=3.9, K_{2}=160$	2.069	0.862	3.286	52.7%

DISCRETE CAPACITY SCALING: DMV (2006) with Switching

DISCRETE CAPACITY SCALING: DMV (2006) with Switching

* Now, suppose that project 1 comes with a switching option, i.e., it is possible to pay the investment cost K_{2} and switch to project 2
- Expected NPV of project 2 is still $V_{2}(p)=\frac{p X_{2}}{\rho-\mu}-K_{2}$
- Expected NPV of project 1 is now $V_{1}^{s}(p)=\frac{p X_{1}}{\rho-\mu}-K_{1}+B_{12}^{s} p^{\beta_{1}}$ for $p<p_{12}^{s}$ and $V_{1}^{s}(p)=\frac{p X_{2}}{\rho-\mu}-K_{1}-K_{2}$ otherwise
- VM and SP of the two branches of $V_{1}^{s}(p)$ yields $p_{12}^{s}=$ $\left[\frac{K_{2}(\rho-\mu)}{X_{2}-X_{1}}\right]\left(\frac{\beta_{1}}{\beta_{1}-1}\right)$ and $B_{12}^{s}=\left(\frac{K_{2}}{\beta_{1}-1}\right)\left(p_{12}^{s}\right)^{-\beta_{1}}$
- Indifference price between projects 1 and $2, \tilde{p}^{s}$, must now be found numerically
* Option value of independent investment in project 2 is the same as before: $F_{2}(p)=B_{2} p^{\beta_{1}}$
* But, option value of independent investment in project 1 with switching option is $F_{1}^{s}(p)=B_{1}^{s} p^{\beta_{1}}$ for $0 \leq p<p_{1}^{s}$, where A_{1}^{s} and p_{1}^{s} depend on whether $\frac{X_{1}}{K_{1}}>\frac{X_{2}-X_{1}}{K_{2}}$

DISGRETE-GAPACITY

SCALING: DMV (2006) with Switching

\star If $\frac{X_{1}}{K_{1}}>\frac{X_{2}-X_{1}}{K_{2}}$, then invest first in project 1 with switching option and wait for opportunity to upgrade to project 2

- Thus, $p_{1}^{s}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{K_{1}(\rho-\mu)}{X_{1}}=p_{1}<p_{12}^{s}$ and $B_{1}^{s}=B_{1}+B_{12}^{s}$
\star Otherwise, $p_{1}^{s}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{\left(K_{1}+K_{2}\right)(\rho-\mu)}{X_{2}}$ and $B_{1}^{s}=\frac{X_{2}\left(p_{1}^{s}\right)^{1-\beta_{1}}}{\beta_{1}(\rho-\mu)}$
Finally, check whether $B_{2}>B_{1}^{s}$
- If so, then ignore project 1 with the switching option
- Otherwise, find dichotomous option value via VM and SP

1. $F\left(p_{3}^{s}\right)=V_{1}^{s}\left(p_{3}^{s}\right) \Rightarrow D_{1}^{s}\left(p_{3}^{s}\right)^{\beta_{1}}+D_{2}^{s}\left(p_{3}^{s}\right)^{\beta_{2}}=\frac{p_{3}^{s} X_{1}}{\rho-\mu}-K_{1}+$ $B_{12}^{s}\left(p_{3}^{s}\right)^{\beta_{1}}$
2. $F^{\prime}\left(p_{3}^{s}\right)=V^{s \prime}\left(p_{3}^{s}\right) \Rightarrow \beta_{1} D_{1}^{s}\left(p_{3}^{s}\right)^{\beta_{1}-1}+\beta_{2} D_{2}^{s}\left(p_{3}^{s}\right)^{\beta_{2}-1}=\frac{X_{1}}{\rho-\mu}+$ $\beta_{1} B_{12}^{s}\left(p_{3}^{s}\right)^{\beta_{1}-1}$
3. $F\left(p_{4}^{s}\right)=V_{2}\left(p_{4}^{s}\right) \Rightarrow D_{1}^{s}\left(p_{4}^{s}\right)^{\beta_{1}}+D_{2}^{s}\left(p_{4}^{s}\right)^{\beta_{2}}=\frac{p_{4}^{s} X_{2}}{\rho-\mu}-K_{2}$
4. $F^{\prime}\left(p_{4}^{s}\right)=V_{2}^{\prime}\left(p_{4}^{s}\right) \Rightarrow \beta_{1} D_{1}^{s}\left(p_{4}^{s}\right)^{\beta_{1}-1}+\beta_{2} D_{2}^{s}\left(p_{4}^{s}\right)^{\beta_{2}-1}=\frac{X_{2}}{\rho-\mu}$

DISCRETE-GAPACITY SCALING: DMV (2006) with Switching Example

DISGRETE-GAPACITY SCALING: DMV (2006) with Switching Example

QUESTIONS

