TIØ 1: Financial Engineering in Energy Markets

Afzal Siddiqui

Department of Statistical Science University College London London WC1E 6BT, UK afzal@stats.ucl.ac.uk

COURSE OUTLINE

- \bigstar Introduction (Chs 1–2)
- \star Mathematical Background (Chs 3–4)
- \star Investment and Operational Timing (Chs 5–6)
- \star Entry, Exit, Lay-Up, and Scrapping (Ch 7)
- \star Recent Theoretical Work I: Capacity Sizing
- ★ Recent Theoretical Work II: Risk Aversion and Multiple Risk Factors
- ★ Applications to the Energy Sector I: Capacity Sizing, Timing, and Operational Flexibility
- ★ Applications to the Energy Sector II: Modularity and Technology Choice

LECTURE OUTLINE

- \star Optimal stopping time problem
- \star Risk-averse decision makers
- \bigstar Analytical solutions with two sources of uncertainty

TRADITIONAL NPV APPROACH

- \star Example from McDonald (2002): oil extraction under certainty at a rate of one barrel per year forever
 - Current price of oil is $P_0 = 15$, discount rate is $\rho = 0.05$, growth rate of oil is $\alpha = 0.01$, operating cost is c = 8, and investment cost is I = 180
- \star Is it optimal to extract the oil now?
 - ▶ Assuming that the price of oil grows exponentially, the NPV from immediate extraction is $V(P_0) = \int_0^\infty e^{-\rho t} \{P_0 e^{\alpha t} - c\} dt - I =$ $\frac{P_0}{\rho - \alpha} - \frac{c}{\rho} - I = 215 - 180 = 35$ Since $V(P_0) > 0$, it is optimal to extract
- \star But, would it not be better to wait longer?

OPTIMAL INVESTMENT TIMING

- \star Think instead about value of perpetual investment opportunity
 - $F(P_0) = \max_T \int_T^\infty e^{-\rho t} \{P_0 e^{\alpha t} c \rho I\} dt = \max_T \frac{P_0}{\rho \alpha} e^{(\alpha \rho)T} \frac{c}{\rho} e^{-\rho T} I e^{-\rho T}$

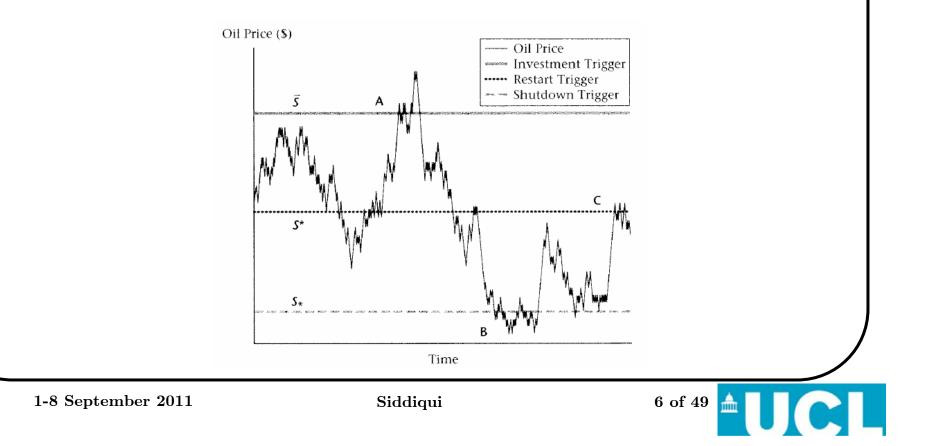
$$\Rightarrow T^* = \frac{1}{\alpha} \ln \left(\frac{c+\rho I}{P_0}\right) = 12.5163$$

- Or, invest when $P_{T^*} = 17$
- Indeed, the initial value of the investment opportunity is $F(P_0) = 45.46 > 35 = V(P_0)$
- \bigstar By delaying investment to the optimal time period, it is possible to maximise NPV

\bigstar How does this work when the price is stochastic?

The process evolves according to a GBM, i.e., $dP_t = \alpha P_t dt + \sigma P_t dz_t$ with initial price $P_0 = p$

• Note that $(dP_t)^2 = \sigma^2 (P_t)^2 dt$



OPTIMAL INVESTMENT UNDER UNCERTAINTY

★ If the project were started now, then its expected NPV is $V(p) = \mathcal{E}_p \left[\int_0^\infty e^{-\rho t} \left\{ P_t - (c + \rho I) \right\} dt \right] = \frac{p}{\rho - \alpha} - \frac{c}{\rho} - I$

 \star Canonical real options problem:

$$F(p) = \sup_{\tau \in \mathcal{S}} \mathcal{E}_p \left[\int_{\tau}^{\infty} e^{-\rho t} \left\{ P_t - (c + \rho I) \right\} dt \right]$$

$$\Rightarrow F(p) = \sup_{\tau \in \mathcal{S}} \mathcal{E}_p \left[e^{-\rho \tau} V(P_\tau) \right] = \max_{P_I \ge p} \left\{ \left(\frac{p}{P_I} \right)^{\beta_1} V(P_I) \right\}$$

► β_1 (β_2) is the positive (negative) root of $\frac{1}{2}\sigma^2\zeta(\zeta-1) + \alpha\zeta - \rho = 0$

7 of 49

1-8 September 2011

STOCHASTIC DISCOUNT FACTOR

 \star Proposition: The conditional expectation of the stochastic discount factor, $\mathcal{E}_{p}[e^{-\rho\tau}]$, is the power function, $\left(\frac{p}{P_I}\right)^{\beta_1}$, where $\tau \equiv \min\left\{t : P_t \ge P_I\right\}$

★ Proof: Let
$$g(p) \equiv \mathcal{E}_p \left[e^{-\rho \tau} \right]$$

> $g(p) = o(dt)e^{-\rho dt} + (1 - o(dt))e^{-\rho dt}\mathcal{E}_p \left[g(p + dP) \right]$
> $\Rightarrow \quad g(p) = o(dt)e^{-\rho dt} + (1 - o(dt))e^{-\rho dt}\mathcal{E}_p \left[g(p) + dPg'(p) + \frac{1}{2}(dP)^2 g''(p) + o(dt) \right]$
> $\Rightarrow g(p) = o(dt) + e^{-\rho dt}g(p) + e^{-\rho dt}\alpha pg'(p)dt + e^{-\rho dt}\frac{1}{2}\sigma^2 p^2 g''(p)dt$
> $\Rightarrow g(p) = o(dt) + (1 - \rho dt)g(p) + (1 - \rho dt)\alpha pg'(p)dt + (1 - odt)\frac{1}{2}\sigma^2 p^2 g''(p)dt$
> $\Rightarrow -\rho g(p) + \alpha pg'(p) + \frac{1}{2}\sigma^2 p^2 g''(p) = \frac{o(dt)}{dt}$
> $\Rightarrow g(p) = a_1 p^{\beta_1} + a_2 p^{\beta_2}$
> $\lim_{p \to 0} g(p) = 0 \Rightarrow a_2 = 0$ and $g(P_I) = 1 \Rightarrow a_1 = \frac{1}{P_I^{\beta_1}}$
1-8 September 2011 Siddiqui 8 of 49

OPTIMAL INVESTMENT THRESHOLD UNDER UNCERTAINTY

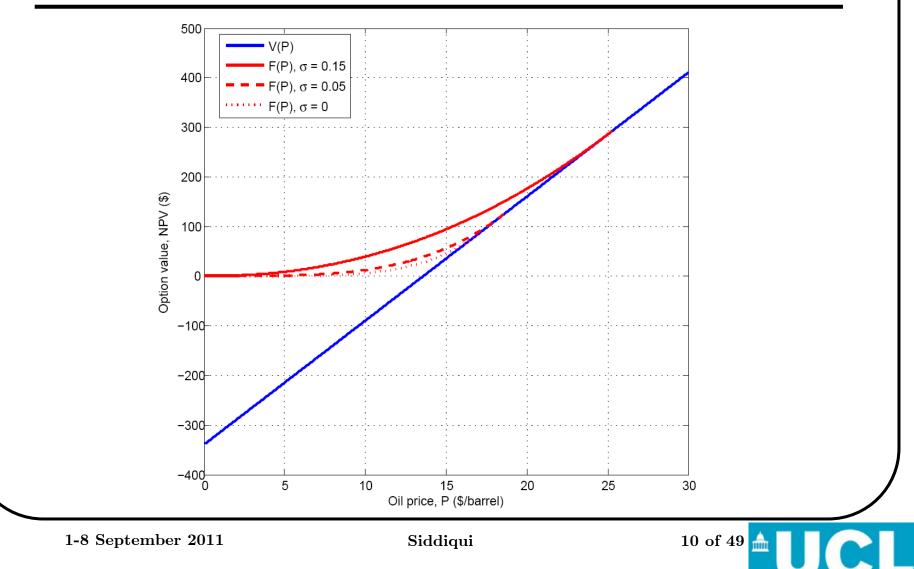
 \star Solve for optimal investment threshold, P_I :

$$F(p) = \max_{P_I \ge p} \left\{ \left(\frac{p}{P_I}\right)^{\beta_1} V(P_I) \right\}$$

• First-order necessary condition yields $P_I = \frac{\beta_1}{\beta_1 - 1} (\rho - \alpha) \left(\frac{c}{\rho} + I\right)$ • Note that in the case without uncertainty, $\beta_1 = \frac{\rho}{\alpha} \Rightarrow P_I = c + \rho I$

- ★ For a level of volatility of $\sigma = 0.15$, $P_I = 25.28$, and the value of the investment opportunity is F(p) = 94.35
- ★ Compared to the case with certainty, the investment opportunity is worth more but is also less likely to be exercised

INVESTMENT THRESHOLDS AND VALUES



INVESTMENT UNDER UNCERTAINTY WITH ABANDONMENT

 \star If the project is abandoned after investment, then the expected incremental payoff is:

$$V^{A}(p) = \mathcal{E}_{p}\left[\int_{0}^{\infty} e^{-\rho t}\left\{\left(c - \rho K_{s}\right) - P_{t}\right\}dt\right] = \frac{c}{\rho} - K_{s} - \frac{p}{\rho - \alpha}$$

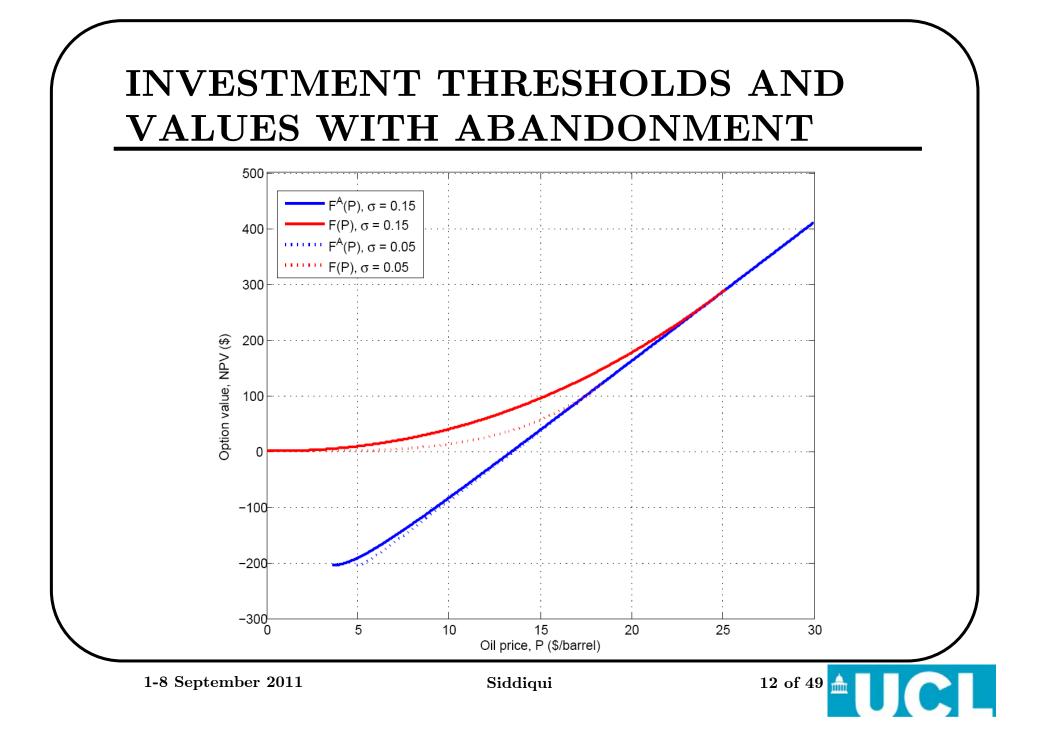
 \star Solve for optimal abandonment threshold, P_* :

$$F^{A}(p) = \max_{P_{*} \leq p} \left\{ \left(\frac{p}{P_{*}}\right)^{\beta_{2}} V^{A}(P_{*}) \right\} + V(p)$$

First-order necessary condition yields $P_* = \frac{\beta_2}{\beta_2 - 1} (\rho - \alpha) \left(\frac{c}{\rho} - K_s \right)$ Solve numerically for P_I : $F(p) = \max_{P_I \ge p} \left\{ \left(\frac{p}{P_I} \right)^{\beta_1} \left\{ V(P_I) + \left(\frac{P_I}{P_*} \right)^{\beta_2} V^A(P_*) \right\} \right\}$

11 of 49

1-8 September 2011



INVESTMENT UNDER UNCERTAINTY WITH SUSPENSION AND RESUMPTION

 \bigstar If the project is resumed from a suspended state, then the expected incremental payoff is:

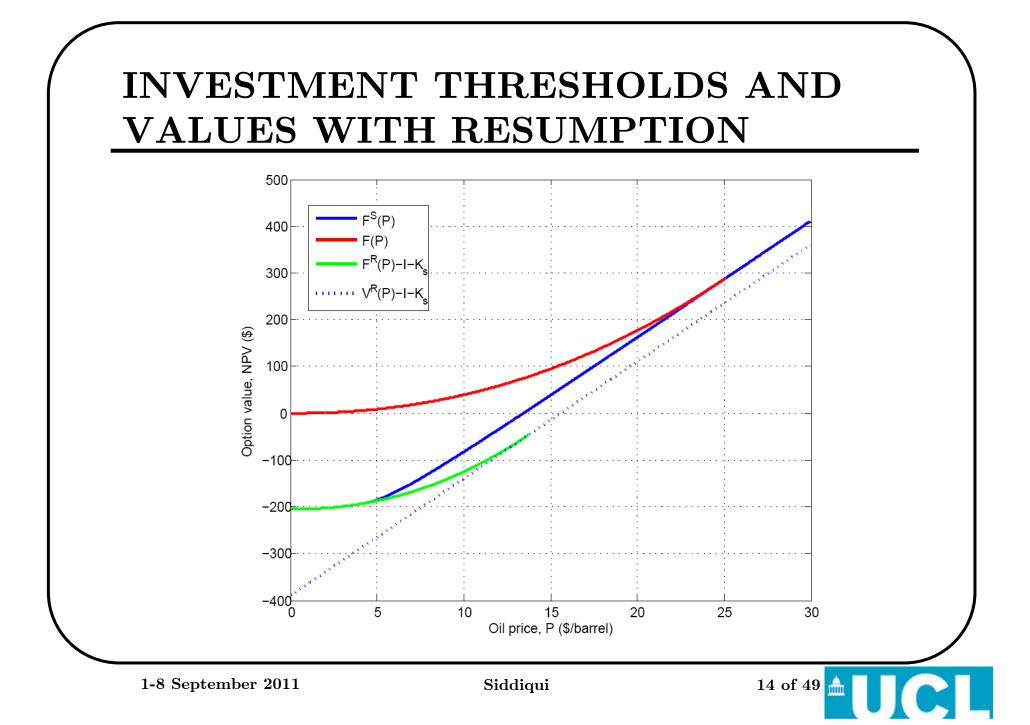
$$V^{R}(p) = \mathcal{E}_{p}\left[\int_{0}^{\infty} e^{-\rho t} \left\{P_{t} - (c + \rho K_{r})\right\} dt\right] = \frac{p}{\rho - \alpha} - \frac{c}{\rho} - K_{r}$$

 \star Solve for optimal resumption threshold, P^* :

$$F^{R}(p) = \max_{P^* \ge p} \left\{ \left(\frac{p}{P^*}\right)^{\beta_1} V^{R}(P^*) \right\}$$

First-order necessary condition yields P* = β₁/β₁−1 (ρ − α) (c/ρ + K_r)
 Substitute P* back into F^S(p) to solve numerically for P_{*} and then repeat for F(p) to obtain P_I

13 of 49 🔚



INVESTMENT WITH INFINITE SUSPENSION AND RESUMPTION OPTIONS

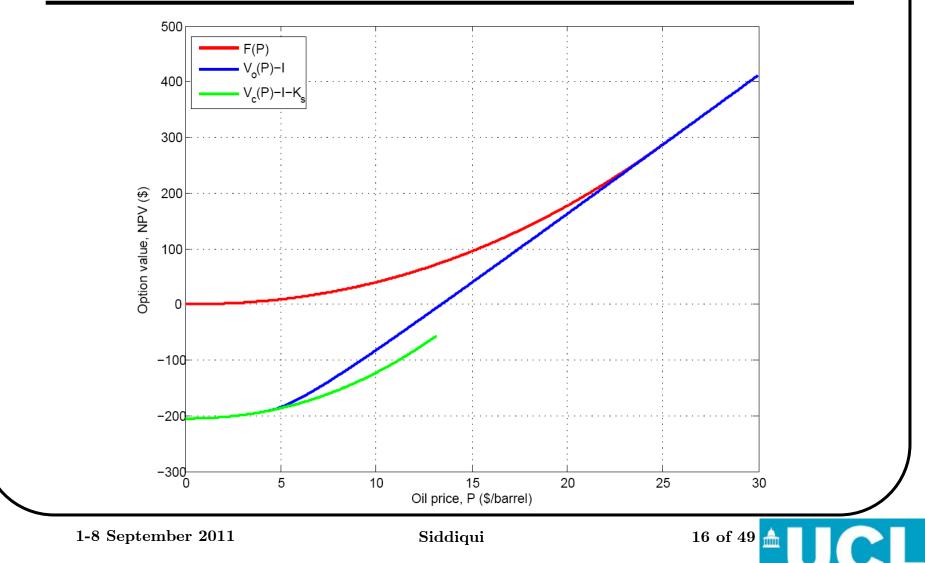
- ★ Start with the expected value of a suspended project: $V_c(p, \infty, \infty; P_*, P^*) = \left(\frac{p}{P^*}\right)^{\beta_1} (V_o(P^*, \infty, \infty; P_*, P^*) K_r)$
- $\bigstar Also note the expected value of an active project: <math>V_o(p, \infty, \infty; P_*, P^*) = \frac{p}{\rho \alpha} \frac{c}{\rho} + \left(\frac{p}{P_*}\right)^{\beta_2} \left(\frac{c}{\rho} K_s \frac{P_*}{\rho \alpha} + V_c(P_*, \infty, \infty; P_*, P^*)\right)$
 - ▶ Solve the two equations numerically, i.e., start with initial thresholds and successively iterate until convergence

15 of 49 🚠

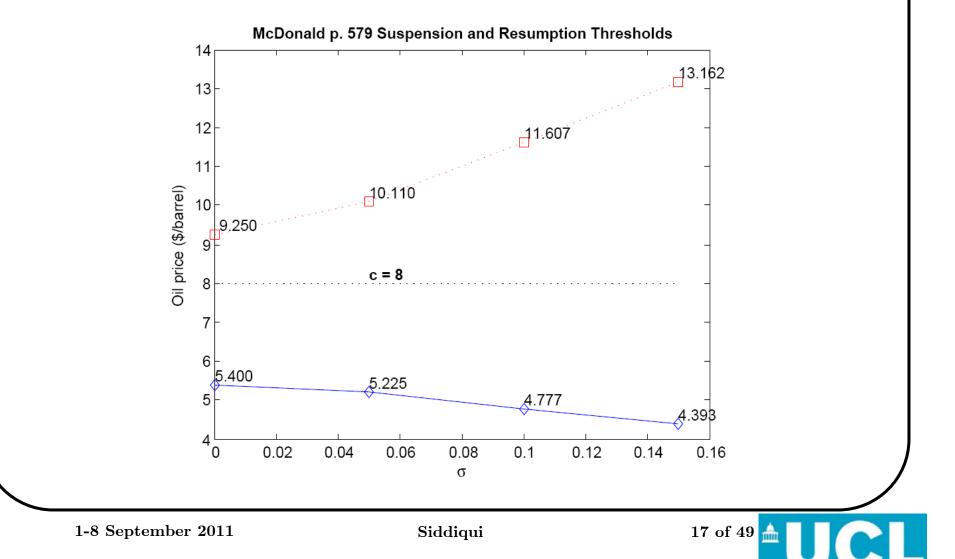
★ Finally, solve for P_I numerically: $F(p, \infty, \infty; P_*, P^*) = \max_{P_I \ge p} \left(\frac{p}{P_I}\right)^{\beta_1} \{V_o(P_I, \infty, \infty; P_*, P^*) - I\}$

1-8 September 2011

INVESTMENT THRESHOLDS AND VALUES WITH COMPLETE FLEXIBILITY



INVESTMENT THRESHOLDS WITH COMPLETE FLEXIBILITY



NUMERICAL RESULTS: Data from McDonald (2002)

★ $P_0 = 15, c = 8, \rho = 0.05, \alpha = 0.01, I = 180, K_s = 25, K_r = 25$

-	σ	N_s	N_r	P_I	P_*	P^*	$F(P_0)$
-	0.05	0	0	18.5846	-	-	56.0527
	0.10	0	0	21.5927	-	-	74.6799
	0.15	0	0	25.2791	-	-	94.3469
-	0.05	1	0	18.5846	4.9396	-	56.0527
	0.10	1	0	21.5821	4.2514	-	74.7062
	0.15	1	0	25.1587	3.6315	-	94.6154
	0.05	1	1	18.5846	5.2246	10.1122	56.0527
	0.10	1	1	21.5784	4.7702	11.7489	74.7153
	0.15	1	1	25.1233	4.3625	13.7548	94.6946
-	0.05	∞	∞	18.5846	5.2246	10.1104	56.0527
	0.10	∞	∞	21.5784	4.7766	11.6070	74.7154
_	0.15	∞	∞	25.1219	4.3926	13.1619	94.6977

1-8 September 2011

INCORPORATION OF RISK AVERSION

- ★ Hugonnier and Morellec (2007) take the perspective of a risk-averse decision maker with the perpetual option to invest in a project without operational flexibility
- ★ Chronopoulos, De Reyck, and Siddiqui (2011) consider a case with operational flexibility
 - Includes embedded options to shut down and re-start the project (infinitely) many times after initial investment
 - Solve for optimal investment and operational thresholds along with option value of investment opportunity
- ★ Take the approach of McDonald and Siegel (1986) to solve nested optimal stopping time problems
 - ► Specify a CRRA utility-of-wealth function
 - ▶ Apply result from Karatzas and Shreve (1999) concerning the discounted expected value of a function of a GBM process

19 of 49 🚠

▶ Solve embedded sub-problems backwards

RISK-AVERSE PROBLEM FORMULATION: Assumptions

- \star Decision maker has the perpetual right to start the project at any time for deterministic investment cost, I
- \star Price process evolves according to a GBM, i.e., $dP_t =$ $\alpha P_t dt + \sigma P_t dz_t$ with initial price $P_0 = p$

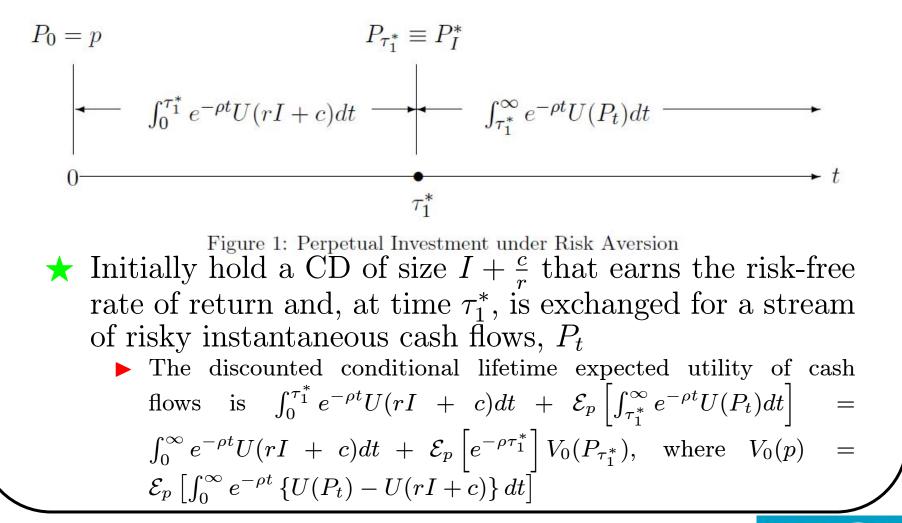
 \blacktriangleright An active project incurs a deterministic operating cost of c

★ Utility-of-wealth function is $U(w) = \frac{w^{1-\gamma}}{1-\gamma}$ for $0 \le \gamma < 1$

- \star The project may also entail (infinitely) many embedded options to shut down and re-start costlessly
 - \star Risk-free and subjective interest rates are r and ρ , respectively (both greater than α)

20 of 49

RISK-AVERSE PROBLEM: Timeline of Cash Flows without Operational Flexibility



1-8 September 2011

21 of 49 🚮

RISK-AVERSE PROBLEM: No Operational Flexibility

From Karatzas and Shreve (1999), the ex-
pected NPV of active project is
$$V_0(P_{\tau_1}) = \mathcal{E}_{P_{\tau_1}} \left[\int_0^\infty e^{-\rho t} \left(U(P_t) - U(rI+c) \right) dt \right] = \frac{\beta_1 \beta_2 p^{1-\gamma}}{\rho(1-\gamma)(1-\beta_2-\gamma)(1-\beta_1-\gamma)} - \frac{(c+rI)^{1-\gamma}}{\rho(1-\gamma)}$$

★ Value of investment opportunity: $F_0(p) = \sup_{\tau_1 \in \mathcal{S}} \mathcal{E}_p \left[e^{-\rho \tau_1} \right] V_0 \left(P_{\tau_1} \right) = \max_{P_I \ge p} \left(\frac{p}{P_I} \right)^{\beta_1} V_0(P_I)$

★ Optimal investment threshold is $P_I^*(\gamma) = (c+rI) \left[\frac{\beta_2 - 1 + \gamma}{\beta_2}\right]^{\frac{1}{1-\gamma}}$

X

22 of 49

RISK-AVERSE PROBLEM: Effect of Risk Aversion on Investment Threshold

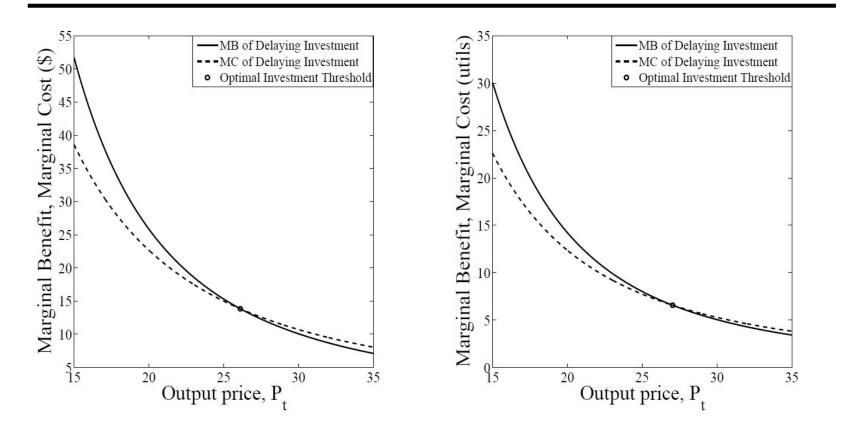


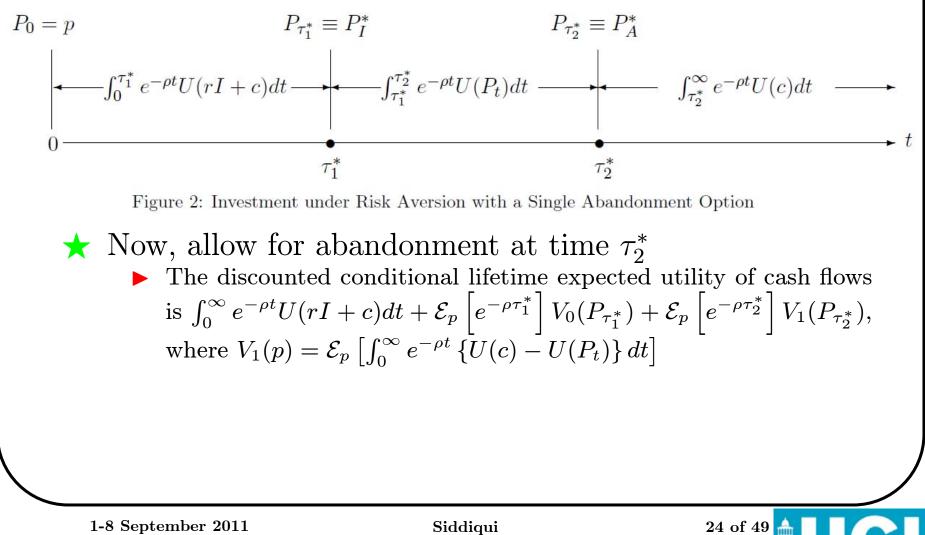
Figure 5: Marginal benefit versus marginal cost under risk neutrality (left) and risk aversion, $\gamma = 0.25$, (right) for an irreversible investment opportunity

1-8 September 2011

Siddiqui

23 of 49 📥 🗌

K-AVERSE PROBLEM: Timeline of Cash Flows with Single Abandonment Option



RISK-AVERSE PROBLEM: Single Abandonment Option

- ★ Expected discounted utility of cash flows at time τ_1 is $V_0(P_{\tau_1}) + \sup_{\tau_2 \ge \tau_1} \mathcal{E}_{P_{\tau_1}} \left[e^{-\rho(\tau_2 - \tau_1)} V_1(P_{\tau_2}) \right]$
- ★ Value of investment opportunity: $F_1(p) =$ $\sup_{\tau_1 \in \mathcal{S}} \mathcal{E}_p \left[e^{-\rho \tau_1} \left\{ V_0 \left(P_{\tau_1} \right) + \sup_{\tau_2 \geq \tau_1} \mathcal{E}_{P_{\tau_1}} \left[e^{-\rho (\tau_2 - \tau_1)} V_1 \left(P_{\tau_2} \right) \right] \right\} \right]$ ► $\Rightarrow F_1(p) = \max_{P_I \geq p} \left(\frac{p}{P_I} \right)^{\beta_1} \left[V_0(P_I) + F_A(P_I) \right], \text{ where } F_A(P_I) =$ $\max_{P_A \leq P_I} \left(\frac{P_I}{P_A} \right)^{\beta_2} V_1(P_A)$
 - Optimal abandonment threshold is $P_A^*(\gamma) = c \left[\frac{\beta_1 1 + \gamma}{\beta_1}\right]^{\frac{1}{1 \gamma}}$ FONC for investment: $\frac{\beta_2}{1 \beta_2 \gamma} (P_I^*)^{1 \gamma} + (c + rI)^{1 \gamma} \left(\frac{P_I^*}{P_A^*}\right)^{\beta_2} \frac{\rho(\beta_1 \beta_2)}{\beta_1} (1 \gamma) V_1(P_A^*) = 0$

1-8 September 2011

25 of 49

RISK-AVERSE PROBLEM: Effect of Abandonment Option on Investment Threshold

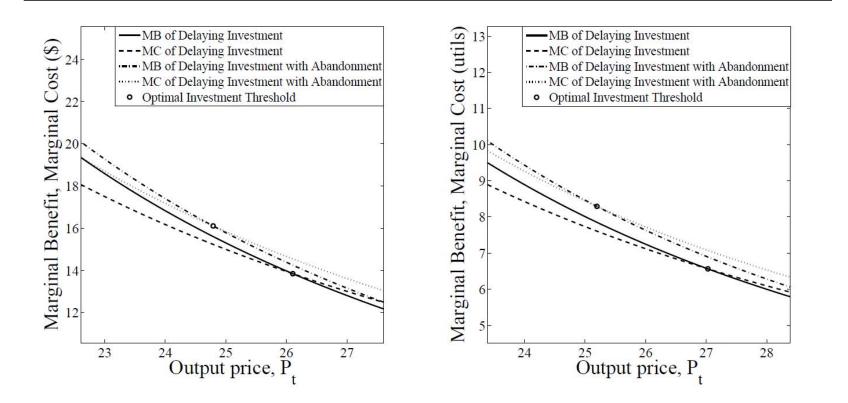
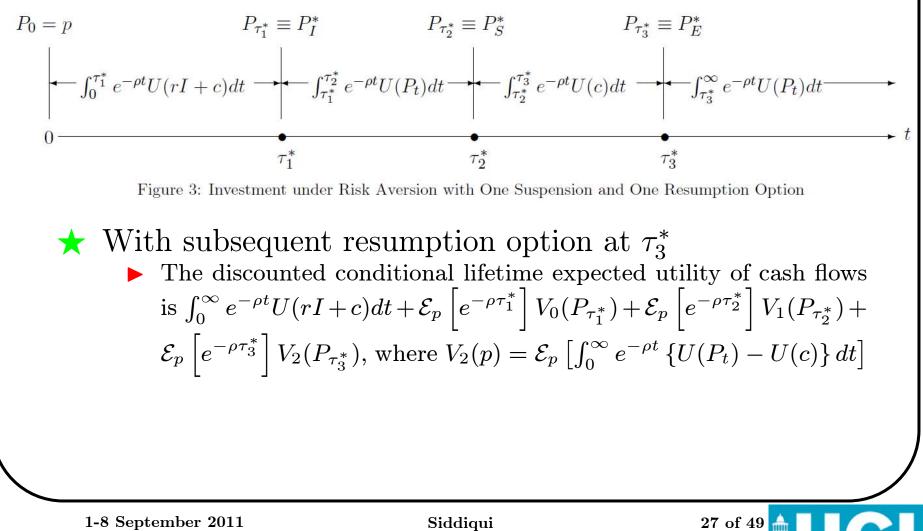


Figure 10: Marginal benefit versus marginal cost under risk neutrality (left) and risk aversion, $\gamma = 0.25$ (right) for an investment opportunity with an embedded abandonment option

Siddiqui

26 of 49

K-AVERSE PROBLEM: Timeline of Cash Flows with Single Suspension and **Resumption Option**



RISK-AVERSE PROBLEM: Single
suspension and Resumption Option
Time-
$$\tau_1$$
 expected discounted util-
ity of cash flows: $V_0(P_{\tau_1}) +$
 $\sup_{\tau_2 \ge \tau_1} \mathcal{E}_{P_{\tau_1}} \left[e^{-\rho(\tau_2 - \tau_1)} \left[V_1(P_{\tau_2}) + \sup_{\tau_3 \ge \tau_2} \mathcal{E}_{P_{\tau_2}} \left[e^{-\rho(\tau_3 - \tau_2)} V_2(P_{\tau_3}) \right] \right] \right]$
 \star Value of investment opportunity: $F_2(p) =$
 $\max_{P_I \ge p} \left(\frac{p}{P_I} \right)^{\beta_1} \left[V_0(P_I) + F_S(P_I) \right]$
 \star $F_S(P_I) = \max_{P_S \le P_I} \left(\frac{P_S}{P_S} \right)^{\beta_2} \left\{ V_1(P_S) + F_E(P_S) \right\}$
 \star Optimal resumption threshold is $P_E^*(\gamma) = c \left[\frac{\beta_2 - 1 + \gamma}{\beta_2} \right]^{\frac{1}{1 - \gamma}}$

RISK-AVERSE PROBLEM: Effect of Suspension and Resumption Options on Investment Threshold

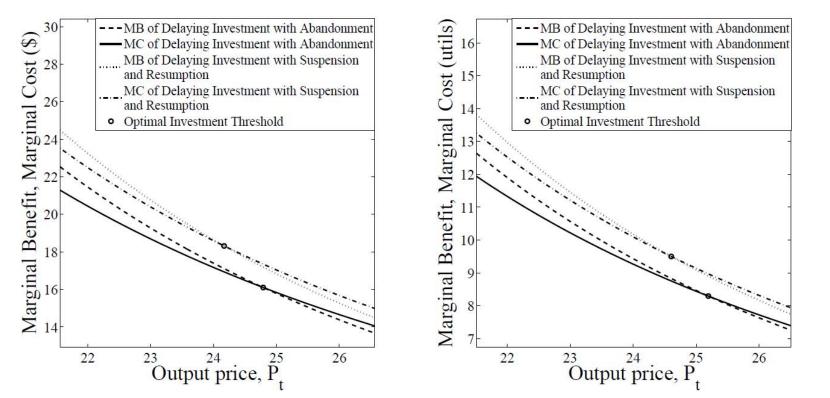


Figure 12: Marginal benefit versus marginal cost under risk neutrality (left) and risk aversion, $\gamma = 0.25$, (right) for an investment opportunity with a suspension and resumption option

29 of 49

RISK-AVERSE PROBLEM: Complete Operational Flexibility

At the resumption threshold, P_E , the expected utility of cash flows of an active firm is $V_o(P_E, \infty, \infty; P_S, P_E) =$ $V_2(P_E) + \left(\frac{P_E}{P_S}\right)^{\beta_2} V_1(P_S) + \left(\frac{P_E}{P_S}\right)^{\beta_2} \left(\frac{P_S}{P_E}\right)^{\beta_1} V_2(P_E) + \cdots$ $\blacktriangleright \Rightarrow V_o(P_E, \infty, \infty; P_S, P_E) = \sum_{i=0}^{\infty} \left\{ \left(\frac{P_E}{P_S} \right)^{\beta_2} \left(\frac{P_S}{P_E} \right)^{\beta_1} \right\}^i V_2(P_E) +$ $\left(\frac{P_E}{P_S}\right)^{\beta_2} \sum_{i=0}^{\infty} \left\{ \left(\frac{P_E}{P_S}\right)^{\beta_2} \left(\frac{P_S}{P_E}\right)^{\beta_1} \right\}^i V_1(P_S)$ $\frac{1}{1-\left(\frac{P_E}{P_S}\right)^{\beta_2} \left(\frac{P_S}{P_T}\right)^{\beta_1}} \left\{ V_2(P_E) + \left(\frac{P_E}{P_S}\right)^{\beta_2} V_1(P_S) \right\}$ $V_c(P_S, \infty, \infty; P_S, P_E) = \left(\frac{P_S}{P_E}\right)^{\beta_1} V_o(P_E, \infty, \infty; P_S, P_E)$

$$F_{\infty}(p) = \max_{P_I \ge p} \left(\frac{p}{P_I}\right)^{\beta_1} \left[\mathcal{E}_{P_I} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] dt \right] + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] dt \right] dt + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] dt \right] dt + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] dt \right] dt + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] dt \right] dt + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] dt \right] dt + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] dt \right] dt + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] dt + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+rI) \right\} dt \right] dt \right] dt + \frac{1}{2} \left[\int_0^\infty e^{-\rho t} \left\{ U(P_t) - U(c+$$

1-8 September 2011

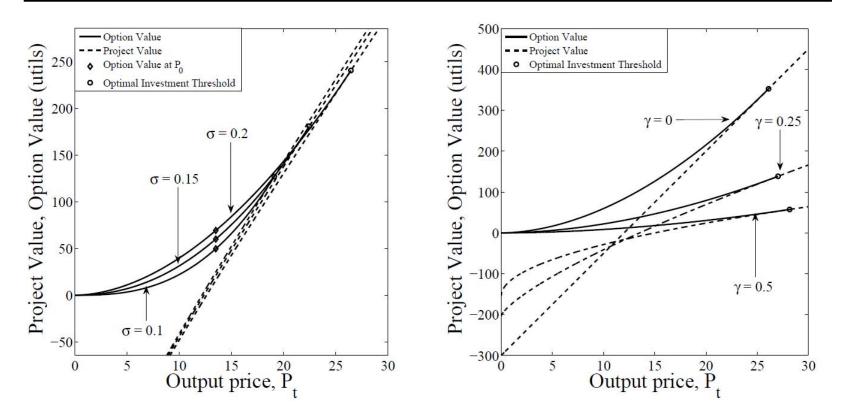


Figure 6: Option value and project value versus P_t for $\gamma = 0.25$ and $\sigma = 0, 0.15, 0.2$ (left), and option value and project value versus P_t for $\sigma = 0.2$ and $\gamma = 0, 0.25, 0.5$ (right)

1-8 September 2011

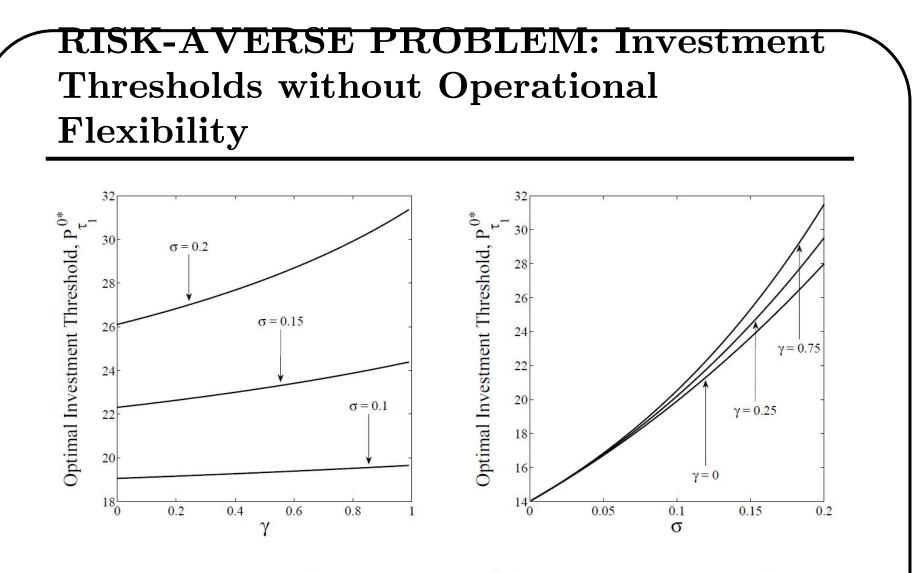
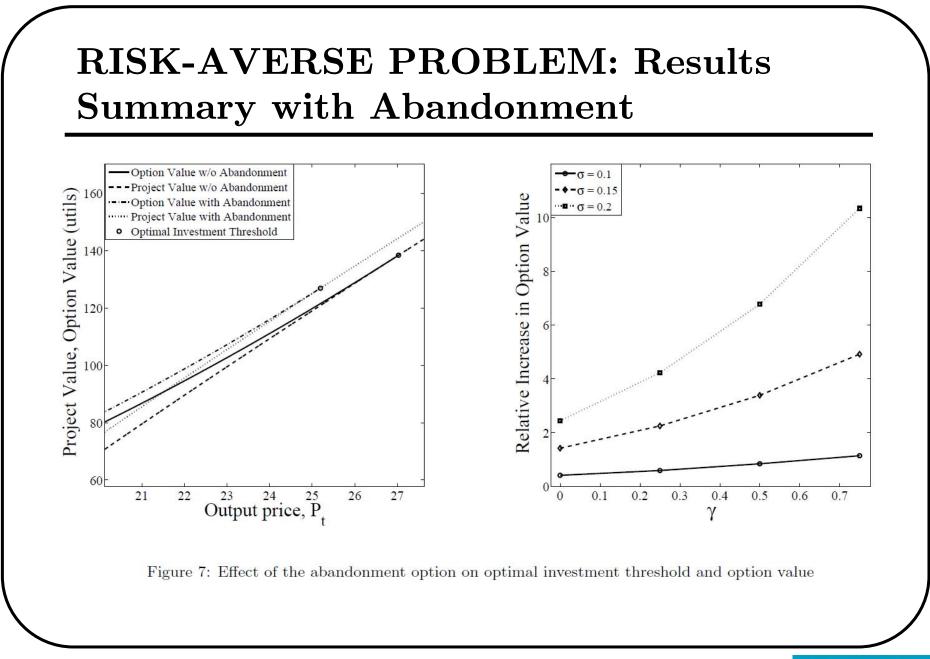


Figure 4: Optimal investment threshold versus γ for $\sigma = 0.1, 0.15, 0.2$ (left), and optimal investment threshold versus σ for $\gamma = 0, 0.25, 0.5$ (right).

1-8 September 2011

32 of 49

â.



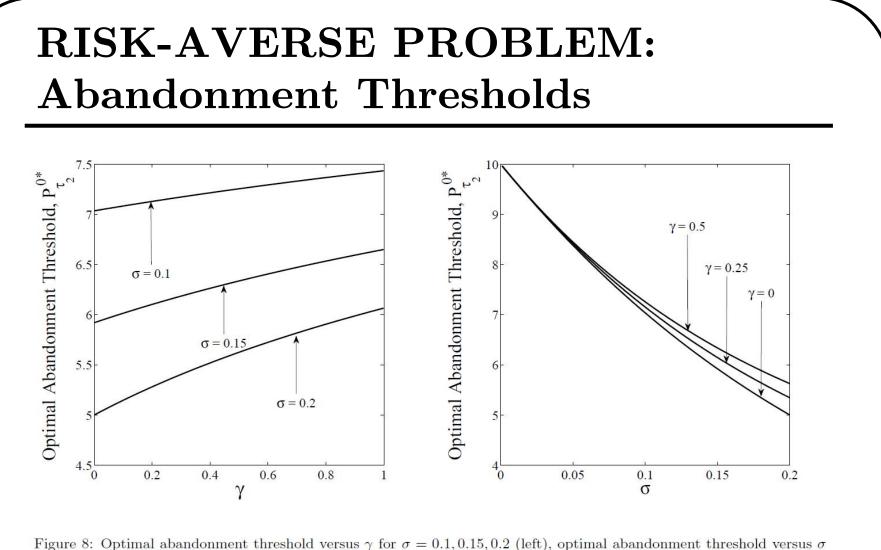
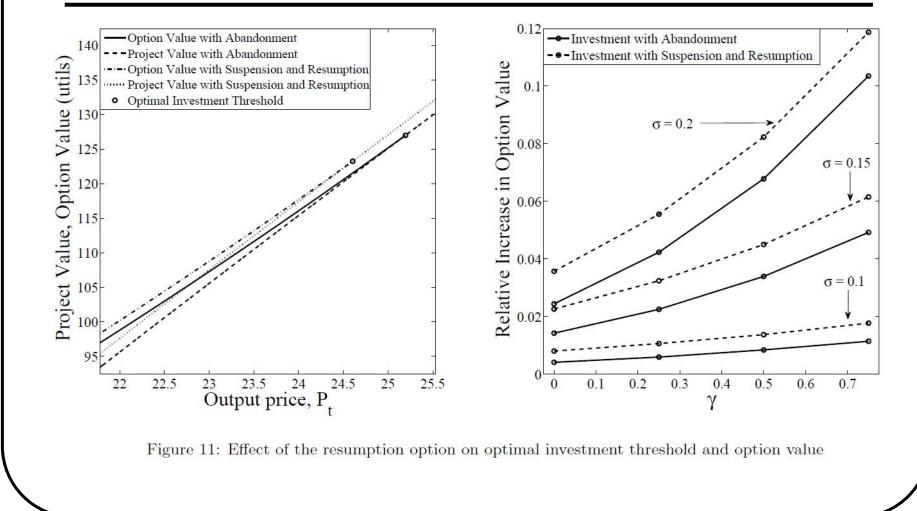


Figure 8: Optimal abandonment threshold versus γ for $\sigma = 0.1, 0.15, 0.2$ (left), optimal abandonment threshold versus σ for $\gamma = 0, 0.25, 0.5$ (right)

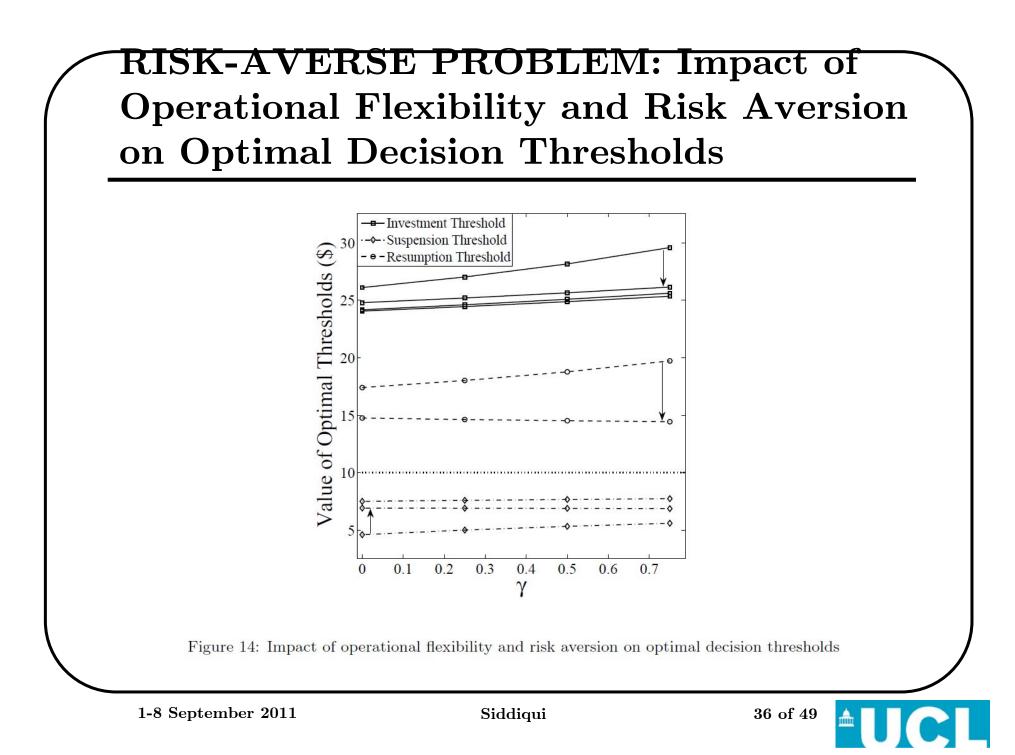
1-8 September 2011

Â

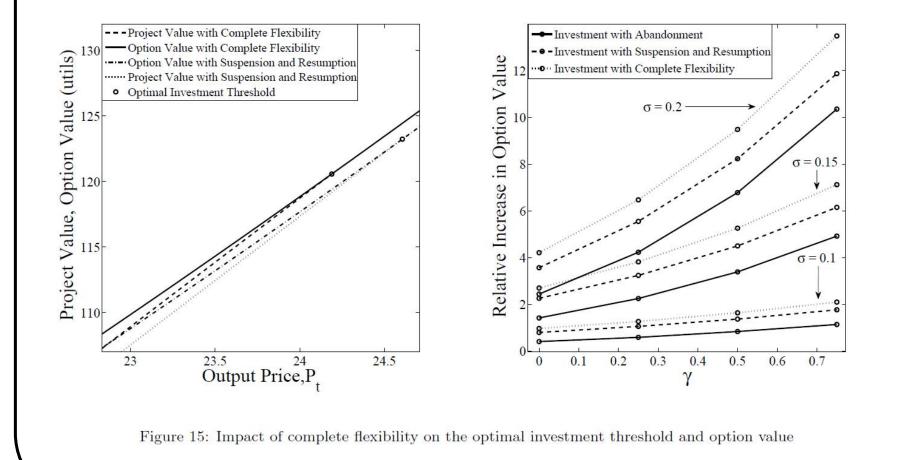
RISK-AVERSE PROBLEM: Results Summary with Single Suspension and Resumption



â



RISK-AVERSE PROBLEM: Results Summary with Complete Flexibility



TWO SOURCES OF UNCERTAINTY: Analytical Solutions

- ★ For a perpetual investment problem with payoff of the form $V(P,C) = \frac{P}{\rho-\alpha} - \frac{C}{\rho}$, where both P_t and C_t follow correlated GBMs, use homogeneity to convert the resulting PDE to an ODE and solve analytically for the free boundary, $P^*(C)$ (Dixit and Pindyck (1994))
- ★ But, what if the payoff is of the form $V(P,C) = \frac{P}{\rho-\alpha} \frac{C}{\rho} I?$

• Homogeneity no longer holds because of the I term

- ▶ Pindyck (2002) examines an environmental control problem and proposes an analytical solution of the form $F(P,C) = aP^{\beta}C^{\eta}$
- ▶ Adkins and Paxson (2008) formalise the proof with geometric interpretation

 Heydari, Ovenden, and Siddiqui (2011) apply this technique to a problem with CCS retrofits

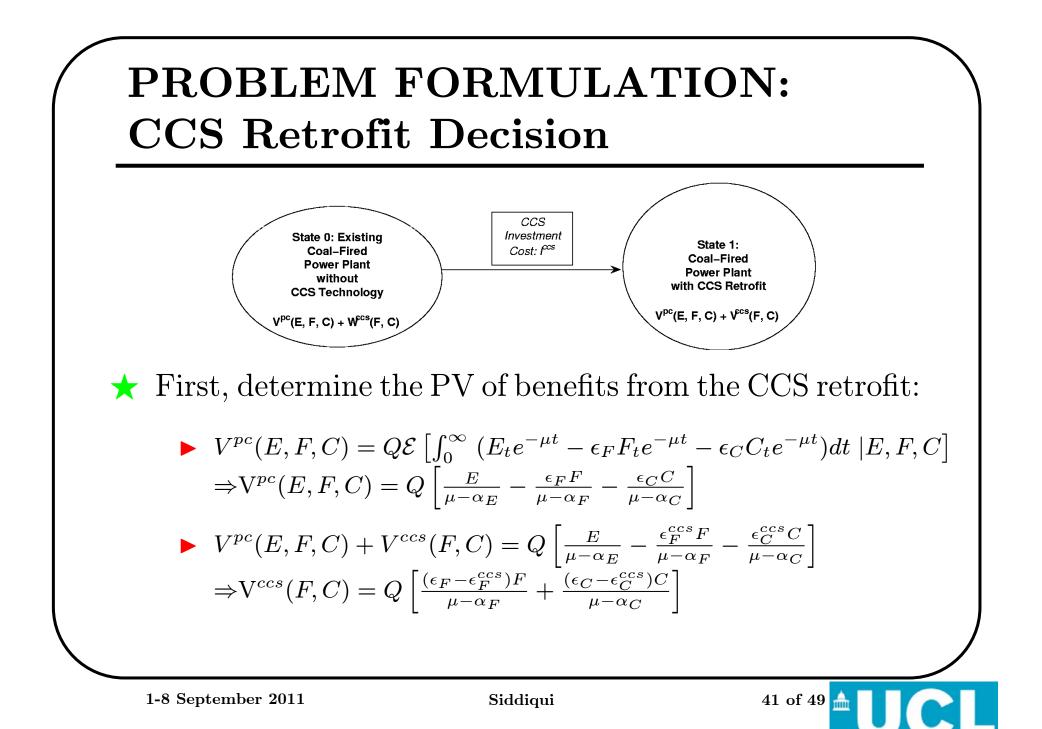
PROBLEM FORMULATION: Assumptions

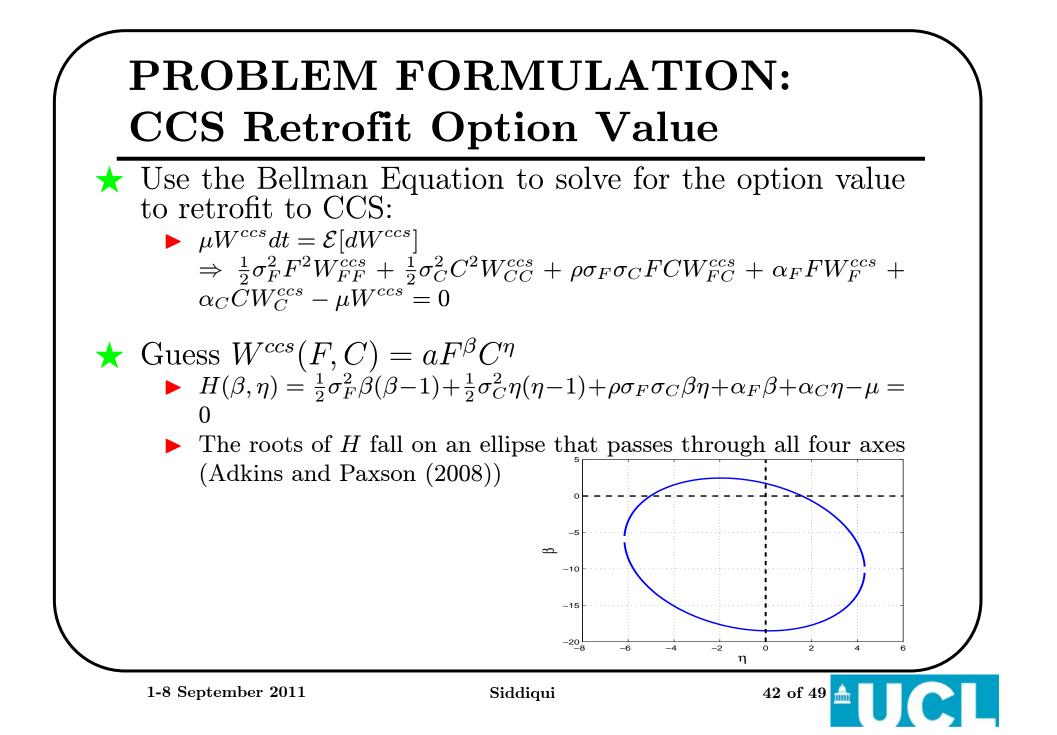
- ★ Long-term electricity $(E_t \text{ in } \$/\text{MWh}_e)$, coal $(F_t \text{ in } \$/\text{MWh})$, and CO₂ $(C_t \text{ in } \$/\text{t})$ prices are exogenous and evolve according to correlated GBMs, i.e.,
 - $b dE_t = \alpha_E E_t dt + \sigma_E E_t dz_E, dF_t = \alpha_F F_t dt + \sigma_F F_t dz_F, dC_t = \alpha_C C_t dt + \sigma_C C_t dz_C, \text{ and } \mathcal{E}[dz_i dz_j] = \rho_{ij} dt \forall i, j$
- ★ In response to CO₂ emissions restrictions, the plant owner may retrofit with CCS for an investment cost of I^{ccs} (in \$) to obtain a reduction in the emissions rate, ϵ_C (in t/MWh_e), along with an increase in the heat rate, ϵ_F (in MWh/MWh_e)

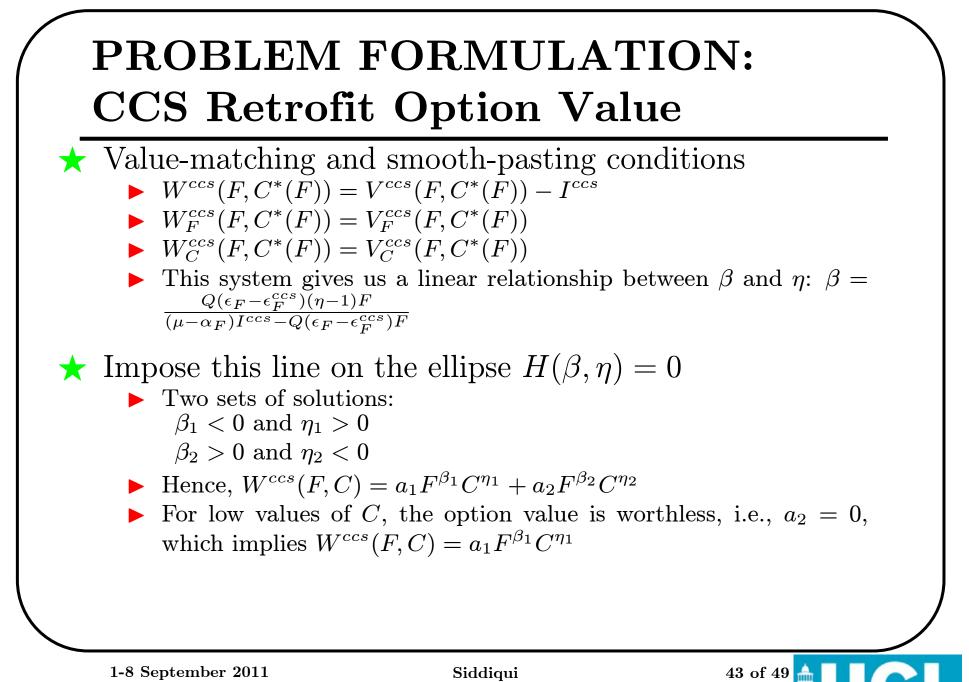
39 of 49 🚮

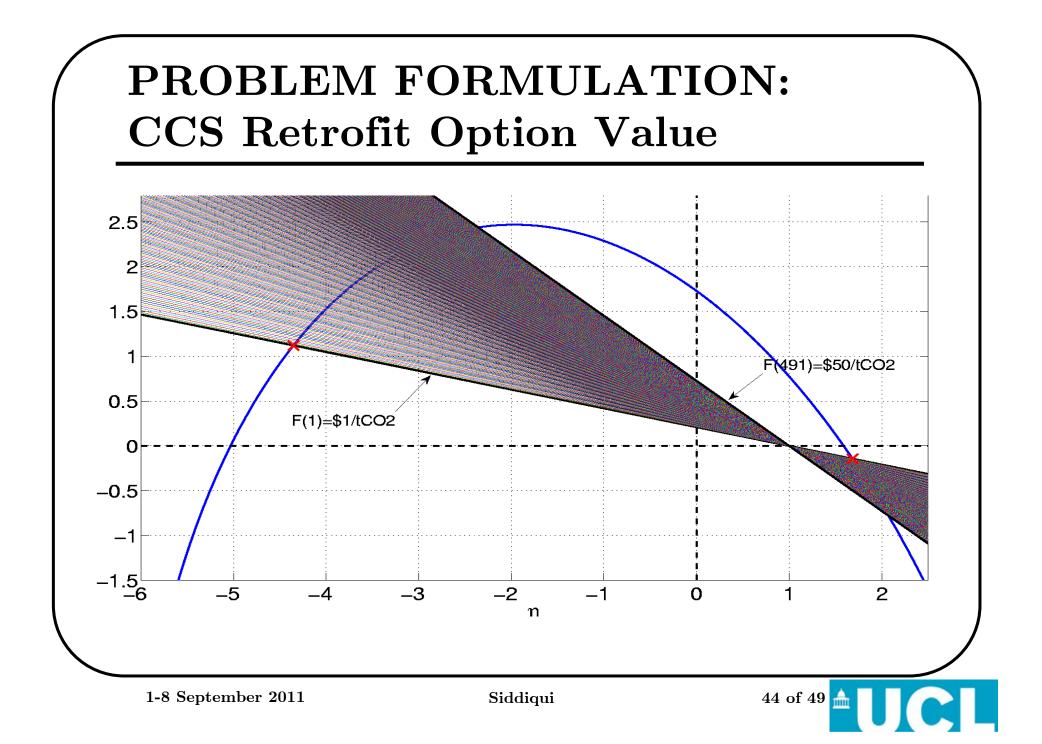
PROBLEM FORMULATION: Assumptions (continued)

- ★ Annual electricity production of plant, Q (in MWh_e), is unaffected by retrofit decision
- \star Retrofit occurs instantaneously upon decision
- \star Infinite lifetime for the plant regardless of retrofit option
- \bigstar The exogenous discount rate is μ









NUMERICAL EXAMPLE: Data Q σ_C $lpha_F$ α_C σ_F ϵ_C μ ρ ϵ_F 2.200.09 0.050.050.20 0.400.20 0.735 $4380 \; GWh_e$ ϵ_F^{ccs} ϵ_C^{ccs} I^{ccs} 0.112 \$1.3 billion C_0 F_0 15.50/MWh 31.81/t45 of 49 <u> </u>

Siddiqui

1-8 September 2011

