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COURSE OUTLINE

F Introduction (Chs 1—2)
F Mathematical Background (Chs 3—4)
F Investment and Operational Timing (Chs 5—6)
F Entry, Exit, Lay-Up, and Scrapping (Ch 7)
F Recent Theoretical Work I: Capacity Sizing
F Recent Theoretical Work II: Risk Aversion and Multiple
Risk Factors

F Applications to the Energy Sector I: Capacity Sizing,
Timing, and Operational Flexibility

F Applications to the Energy Sector II: Modularity and
Technology Choice
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LECTURE OUTLINE

F Optimal stopping time problem
F Risk-averse decision makers
F Analytical solutions with two sources of uncertainty
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TRADITIONAL NPV APPROACH

F Example from McDonald (2002): oil extraction under
certainty at a rate of one barrel per year forever
I Current price of oil is P0 = 15, discount rate is ρ = 0.05, growth
rate of oil is α = 0.01, operating cost is c = 8, and investment cost
is I = 180

F Is it optimal to extract the oil now?
I Assuming that the price of oil grows exponentially, the NPV from
immediate extraction is V (P0) =

R∞
0
e−ρt

©
P0e

αt − c
ª
dt − I =

P0
ρ−α − c

ρ − I = 215− 180 = 35
I Since V (P0) > 0, it is optimal to extract

F But, would it not be better to wait longer?

F Investment cost is being discounted, and the value of the
oil is growing
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OPTIMAL INVESTMENT TIMING
F Think instead about value of perpetual investment op-
portunity
I F (P0) = maxT

R∞
T
e−ρt

©
P0e

αt − c − ρI}dt = maxT P0
ρ−αe

(α−ρ)T −
c
ρe
−ρT − Ie−ρT

I ⇒ T ∗ = 1
α
ln
³
c+ρI
P0

´
= 12.5163

I Or, invest when PT∗ = 17
I Indeed, the initial value of the investment opportunity is F (P0) =
45.46 > 35 = V (P0)

F By delaying investment to the optimal time period, it is
possible to maximise NPV

F How does this work when the price is stochastic?
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OPTIMAL INVESTMENT UNDER 
UNCERTAINTY
F Price process evolves according to a GBM, i.e.,
dPt = αPtdt+ σPtdzt with initial price P0 = p

I Note that (dPt)
2 = σ2(Pt)

2dt
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OPTIMAL INVESTMENT UNDER 
UNCERTAINTY
F If the project were started now, then its expected NPV
is V (p) = Ep

£R∞
0
e−ρt {Pt − (c+ ρI)} dt

¤
= p

ρ−α − c
ρ
− I

F Canonical real options problem:

F (p) = sup
τ∈S

Ep
∙Z ∞

τ

e−ρt {Pt − (c+ ρI)} dt
¸

⇒ F (p) = sup
τ∈S

Ep
£
e−ρτV (Pτ )

¤
= max

PI≥p

(µ
p

PI

¶β1

V (PI)

)
I β1 (β2) is the positive (negative) root of

1
2σ

2ζ(ζ − 1) +αζ − ρ = 0
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STOCHASTIC DISCOUNT FACTOR
F Proposition: The conditional expectation of the stochas-
tic discount factor, Ep [e−ρτ ], is the power function,³
p
PI

´β1
, where τ ≡ min {t : Pt ≥ PI}

F Proof: Let g(p) ≡ Ep [e−ρτ ]
I g(p) = o(dt)e−ρdt + (1− o(dt))e−ρdtEp [g(p+ dP )]
I ⇒ g(p) = o(dt)e−ρdt + (1 −
o(dt))e−ρdtEp

h
g(p) + dPg

0
(p) + 1

2
(dP )2g

00
(p) + o(dt)

i
I ⇒ g(p) = o(dt) + e−ρdtg(p) + e−ρdtαpg

0
(p)dt+ e−ρdt 1

2
σ2p2g

00
(p)dt

I ⇒ g(p) = o(dt) + (1 − ρdt)g(p) + (1 − ρdt)αpg
0
(p)dt + (1 −

ρdt) 1
2
σ2p2g

00
(p)dt

I ⇒ −ρg(p) + αpg
0
(p) + 1

2
σ2p2g

00
(p) = o(dt)

dt

I ⇒ g(p) = a1p
β1 + a2p

β2

I limp→0 g(p) = 0⇒ a2 = 0 and g(PI) = 1⇒ a1 =
1

P
β1
I
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OPTIMAL INVESTMENT 
THRESHOLD UNDER 
UNCERTAINTY
F Solve for optimal investment threshold, PI :

F (p) = max
PI≥p

(µ
p

PI

¶β1

V (PI)

)

I First-order necessary condition yields PI =
β1

β1−1 (ρ− α)
³
c
ρ
+ I

´
I Note that in the case without uncertainty, β1 =

ρ
α
⇒ PI = c+ ρI

F For a level of volatility of σ = 0.15, PI = 25.28, and the
value of the investment opportunity is F (p) = 94.35

F Compared to the case with certainty, the investment op-
portunity is worth more but is also less likely to be ex-
ercised
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INVESTMENT THRESHOLDS AND 
VALUES
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INVESTMENT UNDER 
UNCERTAINTY WITH 
ABANDONMENT
F If the project is abandoned after investment, then the
expected incremental payoff is:

V A(p) = Ep
∙Z ∞

0

e−ρt {(c− ρKs)− Pt} dt
¸
=
c

ρ
−Ks−

p

ρ− α

F Solve for optimal abandonment threshold, P∗:

FA(p) = max
P∗≤p

(µ
p

P∗

¶β2

V A(P∗)

)
+ V (p)

I First-order necessary condition yields P∗ =
β2

β2−1 (ρ−α)
³
c
ρ
−Ks

´
I Solve numerically for PI : F (p) =

maxPI≥p

½³
p
PI

´β1 ½
V (PI) +

³
PI
P∗

´β2
V A(P∗)

¾¾
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INVESTMENT THRESHOLDS AND 
VALUES WITH ABANDONMENT
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INVESTMENT UNDER 
UNCERTAINTY WITH SUSPENSION 
AND RESUMPTION
F If the project is resumed from a suspended state, then
the expected incremental payoff is:

V R(p) = Ep
∙Z ∞

0

e−ρt {Pt − (c+ ρKr)} dt
¸
=

p

ρ− α
− c
ρ
−Kr

F Solve for optimal resumption threshold, P ∗:

FR(p) = max
P ∗≥p

½³ p
P ∗

´β1
V R(P ∗)

¾
I First-order necessary condition yields P ∗ = β1

β1−1 (ρ−α)
³
c
ρ
+Kr

´
I Substitute P ∗ back into FS(p) to solve numerically for P∗ and then
repeat for F (p) to obtain PI
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INVESTMENT THRESHOLDS AND 
VALUES WITH RESUMPTION
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INVESTMENT WITH INFINITE 
SUSPENSION AND RESUMPTION 
OPTIONS
F Start with the expected value of a sus-
pended project: Vc(p,∞,∞;P∗, P ∗) =¡
p
P∗
¢β1 (Vo(P ∗,∞,∞;P∗, P ∗)−Kr)

F Also note the expected value of an active
project: Vo(p,∞,∞;P∗, P ∗) = p

ρ−α − c
ρ
+³

p
P∗

´β2 ³
c
ρ
−Ks − P∗

ρ−α + Vc(P∗,∞,∞;P∗, P ∗)
´

I Solve the two equations numerically, i.e., start with initial thresh-
olds and successively iterate until convergence

F Finally, solve for PI numerically: F (p,∞,∞;P∗, P ∗) =
maxPI≥p

³
p
PI

´β1
{Vo(PI ,∞,∞;P∗, P ∗)− I}
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INVESTMENT THRESHOLDS AND 
VALUES WITH COMPLETE 
FLEXIBILITY
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INVESTMENT THRESHOLDS WITH 
COMPLETE FLEXIBILITY



1-8 September 2011 Siddiqui 18 of 49

NUMERICAL RESULTS:  Data from 
McDonald (2002)

F P0 = 15, c = 8, ρ = 0.05,α = 0.01, I = 180,Ks =
25,Kr = 25
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INCORPORATION OF RISK 
AVERSION

F Hugonnier and Morellec (2007) take the perspective of a
risk-averse decision maker with the perpetual option to
invest in a project without operational flexibility

F Chronopoulos, De Reyck, and Siddiqui (2011) consider a
case with operational flexibility
I Includes embedded options to shut down and re-start the project
(infinitely) many times after initial investment

I Solve for optimal investment and operational thresholds along with
option value of investment opportunity

F Take the approach of McDonald and Siegel (1986) to
solve nested optimal stopping time problems
I Specify a CRRA utility-of-wealth function
I Apply result from Karatzas and Shreve (1999) concerning the dis-
counted expected value of a function of a GBM process

I Solve embedded sub-problems backwards
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RISK-AVERSE PROBLEM 
FORMULATION: Assumptions
F Decision maker has the perpetual right to start the
project at any time for deterministic investment cost, I

F Price process evolves according to a GBM, i.e., dPt =
αPtdt+ σPtdzt with initial price P0 = p
I An active project incurs a deterministic operating cost of c

F Utility-of-wealth function is U(w) = w1−γ
1−γ for 0 ≤ γ < 1

F The project may also entail (infinitely) many embedded
options to shut down and re-start costlessly

F Risk-free and subjective interest rates are r and ρ, re-
spectively (both greater than α)
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RISK-AVERSE PROBLEM: Timeline of 
Cash Flows without Operational 
Flexibility

F Initially hold a CD of size I + c
r
that earns the risk-free

rate of return and, at time τ ∗1 , is exchanged for a stream
of risky instantaneous cash flows, Pt
I The discounted conditional lifetime expected utility of cash

flows is
R τ∗1
0
e−ρtU(rI + c)dt + Ep

hR∞
τ∗1
e−ρtU(Pt)dt

i
=R∞

0
e−ρtU(rI + c)dt + Ep

h
e−ρτ

∗
1

i
V0(Pτ∗1 ), where V0(p) =

Ep
£R∞
0
e−ρt {U(Pt)− U(rI + c)} dt

¤
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RISK-AVERSE PROBLEM: No 
Operational Flexibility

F From Karatzas and Shreve (1999), the ex-
pected NPV of active project is V0(Pτ1) =
EPτ1

£R∞
0
e−ρt (U (Pt)− U (rI + c)) dt

¤
=

β1β2p1−γ

ρ(1−γ)(1−β2−γ)(1−β1−γ) −
(c+rI)1−γ

ρ(1−γ)

F Value of investment opportunity: F0(p) =

supτ1∈S Ep [e−ρτ1]V0 (Pτ1) = maxPI≥p
³
p
PI

´β1
V0(PI)

F Optimal investment threshold is P ∗I (γ) =

(c+ rI)
h
β2−1+γ

β2

i 1
1−γ
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RISK-AVERSE PROBLEM: Effect of 
Risk Aversion on Investment Threshold
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RISK-AVERSE PROBLEM: Timeline of 
Cash Flows with Single Abandonment 
Option

F Now, allow for abandonment at time τ ∗2
I The discounted conditional lifetime expected utility of cash flows

is
R∞
0
e−ρtU(rI + c)dt+ Ep

h
e−ρτ

∗
1

i
V0(Pτ∗1 ) + Ep

h
e−ρτ

∗
2

i
V1(Pτ∗2 ),

where V1(p) = Ep
£R∞
0
e−ρt {U(c)− U(Pt)} dt

¤
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RISK-AVERSE PROBLEM: Single 
Abandonment Option

F Expected discounted utility of cash flows at time τ1 is
V0(Pτ1) + supτ2≥τ1 EPτ1

£
e−ρ(τ2−τ1)V1(Pτ2)

¤
F Value of investment opportunity: F1(p) =
supτ1∈S Ep

£
e−ρτ1

©
V0 (Pτ1) + supτ2≥τ1 EPτ1

£
e−ρ(τ2−τ1)V1(Pτ2)

¤ª¤
I ⇒ F1(p) = maxPI≥p

³
p
PI

´β1
[V0(PI) + FA(PI)], where FA(PI) =

maxPA≤PI

³
PI
PA

´β2
V1(PA)

I Optimal abandonment threshold is P ∗A(γ) = c
h
β1−1+γ

β1

i 1
1−γ

I FONC for investment: β2
1−β2−γ (P

∗
I )

1−γ + (c + rI)1−γ −³
P∗I
P∗A

´β2 ρ(β1−β2)
β1

(1− γ)V1(P ∗A) = 0
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RISK-AVERSE PROBLEM: Effect of 
Abandonment Option on Investment 
Threshold
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RISK-AVERSE PROBLEM: Timeline of 
Cash Flows with Single Suspension and 
Resumption Option

F With subsequent resumption option at τ ∗3
I The discounted conditional lifetime expected utility of cash flows

is
R∞
0
e−ρtU(rI+ c)dt+Ep

h
e−ρτ

∗
1

i
V0(Pτ∗1 )+Ep

h
e−ρτ

∗
2

i
V1(Pτ∗2 )+

Ep
h
e−ρτ

∗
3

i
V2(Pτ∗3 ), where V2(p) = Ep

£R∞
0
e−ρt {U(Pt)− U(c)} dt

¤
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RISK-AVERSE PROBLEM: Single 
Suspension and Resumption Option

F Time-τ1 expected discounted util-
ity of cash flows: V0(Pτ1) +
supτ2≥τ1 EPτ1

£
e−ρ(τ2−τ1)

£
V1(Pτ2) + supτ3≥τ2 EPτ2

£
e−ρ(τ3−τ2)V2(Pτ3)

¤¤¤
F Value of investment opportunity: F2(p) =

maxPI≥p
³
p
PI

´β1
[V0(PI) + FS(PI)]

I FS(PI ) = maxPS≤PI

³
PI
PS

´β2 {V1(PS) + FE(PS)}
I FE(PS) = maxPE≥PS

³
PS
PE

´β1
V2(PE)

F Optimal resumption threshold is P ∗E(γ) = c
h
β2−1+γ

β2

i 1
1−γ
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RISK-AVERSE PROBLEM: Effect of 
Suspension and Resumption Options on 
Investment Threshold
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RISK-AVERSE PROBLEM: Complete 
Operational Flexibility

F At the resumption threshold, PE , the expected utility of
cash flows of an active firm is Vo(PE ,∞,∞;PS , PE) =
V2(PE) +

³
PE
PS

´β2
V1(PS) +

³
PE
PS

´β2 ³
PS
PE

´β1
V2(PE) + · · ·

I ⇒ Vo(PE ,∞,∞;PS , PE) =
P∞

i=0

½³
PE
PS

´β2 ³ PS
PE

´β1¾i
V2(PE) +³

PE
PS

´β2 P∞
i=0

½³
PE
PS

´β2 ³ PS
PE

´β1¾i
V1(PS) =

1

1−
³
PE
PS

´β2³ PS
PE

´β1
½
V2(PE) +

³
PE
PS

´β2
V1(PS)

¾
I Vc(PS ,∞,∞;PS , PE) =

³
PS
PE

´β1
Vo(PE ,∞,∞;PS , PE)

I

F∞(p) = max
PI≥p

µ
p

PI

¶β1 ∙
EPI
∙Z ∞

0

e−ρt {U(Pt)− U(c+ rI)} dt
¸
+

µ
PI
PS

¶β2
Vc(PS ,∞,∞;PS , PE)

#



1-8 September 2011 Siddiqui 31 of 49

RISK-AVERSE PROBLEM: Value 
Curves without Operational Flexibility
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RISK-AVERSE PROBLEM: Investment 
Thresholds without Operational 
Flexibility



1-8 September 2011 Siddiqui 33 of 49

RISK-AVERSE PROBLEM: Results 
Summary with Abandonment
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RISK-AVERSE PROBLEM: 
Abandonment Thresholds
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RISK-AVERSE PROBLEM: Results 
Summary with Single Suspension and 
Resumption 
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RISK-AVERSE PROBLEM: Impact of 
Operational Flexibility and Risk Aversion 
on Optimal Decision Thresholds 
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RISK-AVERSE PROBLEM: Results 
Summary with Complete Flexibility 
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TWO SOURCES OF UNCERTAINTY: 
Analytical Solutions
F For a perpetual investment problem with payoff of
the form V (P,C) = P

ρ−α − C
ρ
, where both Pt and Ct

follow correlated GBMs, use homogeneity to convert the
resulting PDE to an ODE and solve analytically for the
free boundary, P ∗(C) (Dixit and Pindyck (1994))

F But, what if the payoff is of the form V (P,C) = P
ρ−α −

C
ρ
− I?
I Homogeneity no longer holds because of the I term
I Pindyck (2002) examines an environmental control problem and
proposes an analytical solution of the form F (P,C) = aPβCη

I Adkins and Paxson (2008) formalise the proof with geometric in-
terpretation

I Heydari, Ovenden, and Siddiqui (2011) apply this technique to a
problem with CCS retrofits
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PROBLEM FORMULATION:  
Assumptions
F Long-term electricity (Et in $/MWhe), coal (Ft in
$/MWh), and CO2 (Ct in $/t) prices are exogenous and
evolve according to correlated GBMs, i.e.,
I dEt = αEEtdt + σEEtdzE , dFt = αFFtdt + σFFtdzF , dCt =

αCCtdt+ σCCtdzC , and E[dzidzj ] = ρijdt ∀i, j

F In response to CO2 emissions restrictions, the plant
owner may retrofit with CCS for an investment cost of
Iccs (in $) to obtain a reduction in the emissions rate, ²C
(in t/MWhe), along with an increase in the heat rate, ²F
(in MWh/MWhe)
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PROBLEM FORMULATION:  
Assumptions (continued)

F Annual electricity production of plant, Q (in MWhe), is
unaffected by retrofit decision

F Retrofit occurs instantaneously upon decision

F Infinite lifetime for the plant regardless of retrofit option

F The exogenous discount rate is μ
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PROBLEM FORMULATION:  
CCS Retrofit Decision

F First, determine the PV of benefits from the CCS retrofit:

I V pc(E,F,C) = QE
£R∞
0
(Ete

−μt − ²FFte−μt − ²CCte−μt)dt |E,F,C
¤

⇒Vpc(E,F,C) = Q
h

E
μ−αE −

²FF
μ−αF −

²CC
μ−αC

i
I V pc(E,F,C) + V ccs(F,C) = Q

h
E

μ−αE −
²ccsF F

μ−αF −
²ccsC C

μ−αC

i
⇒Vccs(F,C) = Q

h
(²F−²ccsF )F

μ−αF +
(²C−²ccsC )C

μ−αC

i
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PROBLEM FORMULATION:  
CCS Retrofit Option Value

−8 −6 −4 −2 0 2 4 6
−20

−15

−10

−5

0

5

η

β

F Use the Bellman Equation to solve for the option value
to retrofit to CCS:
I μW ccsdt = E [dW ccs]
⇒ 1

2σ
2
FF

2W ccs
FF +

1
2σ

2
CC

2W ccs
CC + ρσFσCFCW

ccs
FC + αFFW

ccs
F +

αCCW
ccs
C − μW ccs = 0

F Guess W ccs(F,C) = aF βCη

I H(β, η) = 1
2
σ2Fβ(β−1)+ 1

2
σ2Cη(η−1)+ρσFσCβη+αFβ+αCη−μ =

0
I The roots of H fall on an ellipse that passes through all four axes
(Adkins and Paxson (2008))
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PROBLEM FORMULATION:  
CCS Retrofit Option Value

F Value-matching and smooth-pasting conditions
I W ccs(F,C∗(F )) = V ccs(F,C∗(F ))− Iccs
I W ccs

F (F,C∗(F )) = V ccs
F (F,C∗(F ))

I W ccs
C (F,C∗(F )) = V ccs

C (F,C∗(F ))
I This system gives us a linear relationship between β and η: β =

Q(²F−²ccsF )(η−1)F
(μ−αF )Iccs−Q(²F−²ccsF )F

F Impose this line on the ellipse H(β, η) = 0
I Two sets of solutions:

β1 < 0 and η1 > 0
β2 > 0 and η2 < 0

I Hence, W ccs(F,C) = a1F
β1Cη1 + a2F

β2Cη2

I For low values of C, the option value is worthless, i.e., a2 = 0,
which implies W ccs(F,C) = a1F

β1Cη1
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PROBLEM FORMULATION:  
CCS Retrofit Option Value
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NUMERICAL EXAMPLE: Data

F0 C0
$15.50/MWh $31.81/t

μ αF αC σF σC ρ ²F ²C Q

0.09 0.05 0.05 0.20 0.40 0.20 2.20 0.735 4380 GWhe

²ccsF ²ccsC Iccs

0.112 $1.3 billion
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NUMERICAL EXAMPLE: CCS 
Retrofit Option Values
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NUMERICAL EXAMPLE: CCS 
Retrofit Thresholds
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NUMERICAL EXAMPLE: 
Sensitivity Analysis
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QUESTIONS


