Mat-2.4136 Special Topics in Decision Making: Aggregation functions Matteo Brunelli

Exercise 1: General properties

- 1. Assume the convention 0/0 = 0. Is $A(x_1, x_2) = \frac{x_1^2 + x_2^2}{x_1 + x_2}$ an aggregation function in [0, 1]? Justify your answer.
- 2. Consider that
 - $x \in \mathbb{R}$ is an *idempotent element* of F if and only if $F(x, \ldots, x) = x$.
 - F is *unanimously increasing* if and only if

$$x_i > y_i \ \forall i \Rightarrow \mathsf{F}(x_1, \dots, x_n) > \mathsf{F}(y_1, \dots, y_n).$$

Then fill the following table

	idemp			unanim.
	elements	associative	bisymmetric	increas.
$\max(\mathbf{x}) = \max\{x_1, \dots, x_n\}$	$x \in [0, 1]$	YES	YES	YES
$median(\mathbf{x}) = median(x_1, \dots, x_n)$				
$-\frac{n}{\sum_{i=1}^{n} 1/x_i}$				
$-\min\{\sum_{i=1}^n x_i, 1\}$				
$M_{0.5}(\mathbf{x}) = median(0, 0.5 + \sum_{i=1}^{n} (x_i - 0.5), 1)$				

3. A *lattice polynomial* is an expression involving a number of variables x_1, x_2, \ldots , logical operators \land , \lor and parentheses. For instance

 $(x_1 \lor x_2) \land x_3 \land x_1$

is a lattice polynomial. Write down the median function of three values, x_1, x_2, x_3 as a lattice polynomial.

Note: It is possible to interpret $\lor = \max$ and $\land = \min$ so that the lattice polynomial above would be $\min\{\max\{x_1, x_2\}, x_3, x_1\}$

- 4. The product $\Pi(\mathbf{x}) = \prod_{i=1}^{n} x_i$ is an aggregation function in [0, 1]. Consider the extended real line $\mathbb{R} = [-\infty, +\infty]$ with its operations, e.g. $+\infty \cdot 0 = 0$ and $+\infty \cdot +\infty = +\infty$. Then the product is also an aggregation function on $[0, +\infty]$. On what other subset of $[-\infty, +\infty]$ is the product defined as an aggregation function?
- 5. Consider an associative and idempotent extended aggregation function. Is it variant under repetition of components of \mathbf{x} ? Prove it.
- 6. Consider the Einstein sum

$$\mathsf{E}(x_1, x_2) = \frac{x_1 + x_2}{1 + x_1 x_2}$$

in example 1.73. Use the associativity property to extend it to the case of three arguments x_1, x_2, x_3 .