AALTO UNIVERSITY

Systems analysis laboratory
Mat-2.4136 Special Topics in Decision Making: Aggregation functions
Matteo Brunelli
Exercise 1: General properties

1. Assume the convention $0 / 0=0$. Is $\mathrm{A}\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}+x_{2}^{2}}{x_{1}+x_{2}}$ an aggregation function in $[0,1]$? Justify your answer.
2. Consider that

- $x \in \mathbb{R}$ is an idempotent element of \mathbf{F} if and only if $\mathbf{F}(x, \ldots, x)=x$.
- F is unanimously increasing if and only if

$$
x_{i}>y_{i} \forall i \Rightarrow \mathrm{~F}\left(x_{1}, \ldots, x_{n}\right)>\mathrm{F}\left(y_{1}, \ldots, y_{n}\right) .
$$

Then fill the following table

| idemp | | | unanim.
 elements | associative |
| :---: | :---: | :---: | :---: | :---: | | bisymmetric | YES | YES | YES |
| :---: | :---: | :---: | :---: |
| $\max (\mathbf{x})=\max \left\{x_{1}, \ldots, x_{n}\right\}$ | $x \in[0,1]$ | YES | |
| $\operatorname{median}(\mathbf{x})=\operatorname{median}\left(x_{1}, \ldots, x_{n}\right)$ | | | |
| $\operatorname{HM}(\mathbf{x})=\frac{n}{\sum_{i=1}^{n} 1 / x_{i}}$ | | | |
| $\min \left\{\sum_{i=1}^{n} x_{i}, 1\right\}$ | | | |

3. A lattice polynomial is an expression involving a number of variables x_{1}, x_{2}, \ldots, logical operators \wedge, \vee and parentheses. For instance

$$
\left(x_{1} \vee x_{2}\right) \wedge x_{3} \wedge x_{1}
$$

is a lattice polynomial. Write down the median function of three values, x_{1}, x_{2}, x_{3} as a lattice polynomial.
Note: It is possible to interpret $\vee=\max$ and $\wedge=\min$ so that the lattice polynomial above would be $\min \left\{\max \left\{x_{1}, x_{2}\right\}, x_{3}, x_{1}\right\}$
4. The product $\Pi(\mathbf{x})=\prod_{i=1}^{n} x_{i}$ is an aggregation function in $[0,1]$. Consider the extended real line $\overline{\mathbb{R}}=[-\infty,+\infty]$ with its operations, e.g. $+\infty \cdot 0=0$ and $+\infty$. $+\infty=+\infty$. Then the product is also an aggregation function on $[0,+\infty]$. On what other subset of $[-\infty,+\infty]$ is the product defined as an aggregation function?
5. Consider an associative and idempotent extended aggregation function. Is it variant under repetition of components of \mathbf{x} ? Prove it.
6. Consider the Einstein sum

$$
\mathrm{E}\left(x_{1}, x_{2}\right)=\frac{x_{1}+x_{2}}{1+x_{1} x_{2}}
$$

in example 1.73. Use the associativity property to extend it to the case of three arguments x_{1}, x_{2}, x_{3}.

