AALTO UNIVERSITY

Systems analysis laboratory

Mat-2.4136 Special Topics in Decision Making: Aggregation functions Matteo Brunelli

Exercise 3: Ordered weighted averaging (OWA) functions

1. Consider the following three candidates evaluated by four judges

	J 1	J 2	J 3	J 4
C_{1}	0.9	0.8	0.3	0.5
C_{2}	0.2	0.7	0.7	0.7
C_{3}	0.6	0.6	0.6	0.7

Evaluate them by means of OWA functions with weight vectors $\mathbf{w}_{1}=(0,1 / 2,1 / 2,0)$ and $\mathbf{w}_{2}=(1 / 8,1 / 8,2 / 8,1 / 2)$.

Calculate the orness and the dispersion (entropy) for both \mathbf{w}_{1} and \mathbf{w}_{2}.
Remember

$$
\operatorname{orness}(\mathbf{w})=\frac{1}{n-1} \sum_{i=1}^{n}(n-i) w_{i} \quad \operatorname{disp}(\mathbf{w})=-\sum_{i=1}^{n} w_{i} \log w_{i} .
$$

2. Use the quantifier $Q(x)=x^{3}$ to construct the 5-ary weight vector for an OWA function.
3. Let $Q:[0,1] \rightarrow[0,1]$ be a monotone increasing bijection with $Q(0)=0$ and $Q(1)=$ 1. We call Q a 'quantifier'. Consider the vector $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ whose components are obtained as

$$
w_{i}=Q\left(\frac{i}{n}\right)-Q\left(\frac{i-1}{n}\right)
$$

Show that \mathbf{w} obtained in such a way is a weight vector, i.e. $w_{i} \in[0,1]$ and $\sum_{i=1}^{n} w_{i}=$ 1. Hint: the proof is very easy.
4. Consider the two quantifiers Q and Q^{\prime}, and let \mathbf{w} and \mathbf{w}^{\prime} be the weight vectors obtained by means of Q and Q^{\prime} respectively. Prove that

$$
Q(y) \geq Q^{\prime}(y) \forall y \in[0,1] \Rightarrow \operatorname{orness}(\mathbf{w}) \geq \operatorname{orness}\left(\mathbf{w}^{\prime}\right)
$$

5. Take again the two quantifiers Q and Q^{\prime}, and let \mathbf{w} and \mathbf{w}^{\prime} be the weight vectors obtained by means of Q and Q^{\prime} respectively. Consider the following two statements:
(a) $\int_{y \in[0,1]} Q(y) d y \geq \int_{y \in[0,1]} Q^{\prime}(y) d y \Rightarrow \operatorname{orness}(\mathbf{w}) \geq \operatorname{orness}\left(\mathbf{w}^{\prime}\right)$
(b) $w_{1} \geq w_{2} \geq \cdots \geq w_{n} \Rightarrow \operatorname{orness}(\mathbf{w}) \geq 0.5$

Claim and prove their truth, or falsity. Hint: one is true, and I suspect the other one to be false.
6. Consider the formula of entropy of a weight vector here called $\operatorname{disp}(\mathbf{w})$. Prove that the vector maximizing it is $\mathbf{w}=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$. It is the translation in our framework of the well-known fact, in information theory, that the uniform distribution is the one maximizing entropy.
Hint: this is the most famous application of the Gibbs' inequality. Here, Gibbs' inequality would state that, given two weight vectors $\left(w_{1}, \ldots, w_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$, the following is true

$$
\sum_{i=1}^{n} w_{i} \log \left(\frac{v_{i}}{w_{i}}\right) \leq 0
$$

Also, try to start the proof with $\operatorname{disp}(\mathbf{w})-\log (n)$ and see if you can reach the Gibbs' inequality.

