AALTO UNIVERSITY

Systems analysis laboratory

Mat-2.4136 Special Topics in Decision Making: Fuzzy Sets
 Matteo Brunelli

Exercise 3: Extension principle

1. A function $f: X \rightarrow Y$ can be seen as a subset of $X \times Y$. Consider the function defined by the pairs $\{(1,2),(2,3),(3,2),(4,1),(5,3),(6,2)\}$ where, for instance, $(1,2)$ means that 1 is mapped to 2 . Now, considering the crisp set

$$
A=\{1,2,3,4\} \subseteq X
$$

what is its image $B=f(A)$? And if A is the following fuzzy set?

$$
A=\{(1,0.3),(2,0.9),(3,1),(4,0.1),(5,0.2),(6,1)\}
$$

2. Consider the function $f(x)=x^{2}$ as a $f: \mathbb{R} \rightarrow \mathbb{R}$. If A is the following symmetric fuzzy number in the parameters a and α,

$$
\mu_{A}(x)= \begin{cases}1-\frac{|a-x|}{\alpha} & \text { if }|a-x| \leq \alpha \\ 0, & \text { otherwise }\end{cases}
$$

then what is B ? Find the analytic expression of B.
3. Consider $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ as a mapping $f: X \times X \rightarrow Y$ and the following two fuzzy sets on X

$$
A=\{(1,0.6),(2,0.8),(3,1),(4,0.6)\} \quad B=\{(0,0.5),(1,1),(2,0.9)\}
$$

Use the extension principle to find the fuzzy subset C of Y obtained by applying f to A and B.
4. Calculate

$$
\begin{aligned}
& {[-1,2]+[1,3] ;} \\
& {[-2,4]-[3,6] ;} \\
& {[-3,4] \cdot[-3,4] ;} \\
& {[-4,6] /[1,2]}
\end{aligned}
$$

5. Consider the two fuzzy numbers

$$
\mu_{A}(x)=\left\{\begin{array}{ll}
(x+1) / 2, & \text { if }-1 \leq x \leq 1 \\
(3-x) / 2, & \text { if } 1<x \leq 3 \\
0, & \text { otherwise }
\end{array} \quad \mu_{B}(x)= \begin{cases}(x-1) / 2, & \text { if } 1 \leq x \leq 3 \\
(5-x) / 2, & \text { if } 3<x \leq 5 \\
0, & \text { otherwise }\end{cases}\right.
$$

Use the interval arithmetic to find their product. (Klir \& Yuan, sections 4.3-4-4).

