## Assignment 8

Consider a two objective optimization problem

$$
\begin{aligned}
& \max _{x \in S} f(x)=\left[f_{1}(x), f_{2}(x)\right]^{T}=\left[x_{1}, x_{2}\right]^{T} \\
& S=\left\{x=\left(x_{1}, x_{2}\right) \mid x_{2}-0.5 x_{1}^{2} \geq 0, x_{2}+0.5 x_{1}^{2}-4 \leq 0, x_{1} \geq 0\right\} .
\end{aligned}
$$

Use the GDF algorithm with three iterations and starting point $x=(0.60,0.25)$ to solve the problem. In step (4) of the algorithm (Miettinen p. 143), the decision maker selects the more preferred of two objective vectors $z^{1}$ and $z^{2}\left(z^{j}=f\left(x^{h}+t_{j}^{h} d^{h}\right)\right)$, which are computed with step lengths $t_{1}=0.5$ and $t_{2}=1$ (Miettinen, p. 145).

The decision maker's preferences are consistent with the utility function $U(f)=f_{1}^{1 / 5}+f_{2}^{1 / 5}$.
Notice that $f$ is maximized here, but minimized in Miettinen's formulation
Notice also that it is assumed that the DM is able to evaluate $\nabla U(f)$ precisely at any $\left(f_{1}, f_{2}\right)$.

