Advanced Physics and Applications of Optical Fibers

This course is a continuation of its prerequisites and aims to provide a deeper understanding of nonlinear phenomena in optical fibers.

The main part is a research project related to fiber lasers, supercontinuum generation or fiber sensors for which the **student returns a report and gives a presentation**.

The course includes support on scientific writing and is ideal for graduate and postgraduate students in photonics.

Prerequisites: ELEC-E3250 Optical fibers: Physics and Applications

PHYS-E0435 Optical Physics

Other photonics or basic optics course

Hanne Ludvigsen

Nicklas Anttu

Antti Matikainen

Learning Outcomes

Will give you the opportunity to study applications of fiber optics and laser technology

You will work in an optics lab as part of a project work

Learn experimental practices such as

- handling optical fibers
- o coupling light into optical fibers
- high-power fiber lasers
- laser safety

You will learn how to analyze and interpret the data obtained in your experiments

You may choose to work with a modern simulation tool RP Fiber Power from RP Photonics to understand the operation of a high-power fiber amplifier or laser.

Course material

- ☐ Slides and other material distributed in MyCourses
- ☐ Reference material (books)
 - G.P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, San Diego, California 2012)
 - G.P. Agrawal, Applications of Nonlinear Fiber Optics, (Academic Press, 2001)
 - Edited by O.G. Okhotnikov, Fiber Lasers, (Wiley-VCH, 2012)
 - S.A. Maier, *Plasmonics: Fundamentals and Applications* (Springer, 2007)

Syllabus

Date	Topics
15.1	Light propagation of optical pulses and nonlinear phenomena in optical fibers Supercontinuum generation (Hanne Ludvigsen)
22.1	Fiber lasers (Laser safety, coupling light, splicing) Simulation tool RP Fiber Power (Nicklas Anttu)
29.1	Plasmonic sensors (Antti Matikainen)
5.2	Choosing topic
13.2	Project work
19.2	Project work
26.2	Project work
5.3	Introduction to scientific writing
12.3	Project work
19.3	Project work
26.3	Follow-up on scientific writing
2.4	Project work
9.4	Presentations