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PCA Using Correlation Matrix

As was pointed out last week, PCA is highly sensitive for
scaling of the variables. One can address this problem by
standardizing the variables first. The data can be standardized
by subtracting the sample mean x̄ , and then dividing each
variable by the corresponding square root of the sample
variance σ̂ii . PCA is then applied to this preprocessed data.
Note that for standardized variables, the covariance matrix Σ
turns into a correlation matrix.



Lecturer:
Pauliina Ilmonen

Slides:
Ilmonen/Kantala

PCA Using Correlation
Matrix

Correlation Structure
in PCA

Multivariate Linear
Regression

PCA in Regression
Analysis

References

PCA Using Correlation Matrix

If PCA is performed standardizing the variables first, it naturally
becomes scale-invariant.

If variables do not have the same natural units, it is better to
standardize the data first. For example, if the variables
considered are weight, height, age, and IQ, it is a good idea to
think about standardizing the data first. But if the variables do
share the same units and if there are no large differences
between the variances, then one can apply standard PCA.
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PCA Using Correlation Matrix

One may address the problem of scale-sensitivity by
standardizing the data first. However, this standardization does
not make PCA fully invariant under all linear transformations.
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Correlation Structure

Theorem
Let x denote a p-variate random vector with finite mean vector
µ, and finite covariance matrix Σ. Let σii denote the ith
diagonal element of Σ. Let y = ΓT (x − µ), where Γ ∈ Rp×p is
orthogonal, ΓT ΣΓ = Λ = diag(λ1, · · · , λp) and λ1 ≥ · · · ≥ λp.
Let γj denote the jth column vector of Γ and let γij denote the
ith element of it (i.e. γij denotes the ij element of Γ). Then

corr(xiyj ) = ρij =
γijλj√
σiiλj

.
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Correlation Structure

Proof.
Let x denote a p-variate random vector with finite mean vector
µ, and finite covariance matrix Σ. Let σii denote the i th
diagonal element of Σ. Let y = ΓT (x − µ), where Γ ∈ Rp×p is
orthogonal, ΓT ΣΓ = Λ = diag(λ1, · · · , λp) and λ1 ≥ · · · ≥ λp.
Let γj denote the j th column vector of Γ and let γij denote the
i th element of it (i.e. γij denotes the ij element of Γ). Assume
(wlog) that E [x ] = E [y ] = 0. Now

E [xyT ] = E [x(ΓT x)T ] = E [xxT Γ] = ΣΓ.

Therefore the covariance between xi and yj is γijλj . Since xi
and yj have variances σii and λj , respectively, the correlation
between xi and yj is given by

ρij =
γijλj√
σiiλj

.
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Correlation Structure

It can be said that "the proportion of the variation" of xi
explained by yj is ρ2

ij . Since the elements of y are uncorrelated,
any set S of components explain a proportion

ρ2
iS =

∑
j∈S

ρ2
ij .

Note that when Σ is a correlation matrix, the variance σii = 1
and thus ρij = γij

√
λj .
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Multivariate Linear Regression

Regression analysis is used to predict the value of one or more
responses from a set of predictors. Predictors can be
continuous or categorical or a mixture of both.
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Multivariate Regression Model

Let y be a p-variate random vector of dependent variables
such that

y = BT x + u,

where x is a q-variate fixed vector of predictors, B is a q × p
matrix of regression parameters, and u is a p-variate vector of
random errors with mean 0, and common covariance matrix Σ.
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Multivariate Linear Regression

Assume that we have a size n sample from the multivariate
regression model. Then Y is a n × p data matrix such that

Y = XB + U,

where X is a known n × q matrix, B is a q × p matrix, and U is
a n × p matrix of unobserved random disturbances. The
elements of the first column of X are all assumed to be 1 (to
allow a mean effect), and the rows of U are assumed to be
uncorrelated.
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Estimation
Assume that Y is a n × p data matrix such that

Y = XB + U,

where X is a known n × q matrix, B is a q × p matrix, and the
n × p error matrix U is independent of X . The elements of the
first column of X are all assumed to be 1. Assume that the
rows of the error matrix U are independent and identically
distributed with the mean vector µ = 0 and the covariance
matrix Σ. Assume that the inverse of X T X exists.

Let
P = I − X (X T X )−1X T .

Now, the generalized least squares estimates of B and Σ are

B̂ = (X T X )−1X T Y

and
Σ̂ =

1
n

Y T PY .
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Estimation

The estimate B̂ can be used in estimating/predicting the values
of the matrix Y ,

Ŷ = XB̂.

The estimate of the error matrix is obtained by taking the
difference between Y and Ŷ

Û = Y − XB̂.
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Trace Correlation and Determinant
Correlation

Assume that the matrix Y is centered so that the columns of Y
have zero mean. Define now

D = (Y T Y )−1ÛT Û.

It is straightforward to see that the matrix ÛT Û ranges between
zero, when all the variation of Y is explained by the regression
model, and Y T Y , when no part of the variation in Y is
explained by X . Therefore I − D varies between the identity
matrix and the zero matrix. It can be shown that all the
eigenvalues of I − D lie between 1 and 0.
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Trace Correlation and Determinant
Correlation

It would be desirable that a measure of multivariate correlation
would range between zero and one. This property is satisfied
by two often used coefficients, the trace correlation rT and the
determinant correlation rD,

r2
T =

1
p

tr(I − D),

and
r2
D = det(I − D).

Note that the coefficient rD is zero if at least one of the
eigenvalues of I − D is zero, and rT is zero if and only if all the
eigenvalues of I − D are zero.
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Some Comments

• We assumed that the inverse of X T X exists. If it does not
(or if some of the columns of X are nearly collinear),
consider using smaller number of variables.

• One should not use the regression model for predicting
outside of the range of the X values. Behavior of extreme
points may be different!

• Traditional L2 regression is very sensitive to outlying
observations.
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PCA in Regression Analysis

Linear regression analysis is unstable in the presence of
multicollinearity, or near multicollinearity, of the predictors. In
this situation, PCA can be used to preprocess the data. Instead
of performing regression analysis using the original variables,
one can perform it using new variables obtained from PCA
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PCA in Regression Analysis

Linear regression analysis is unstable in the presence of highly
linearly dependent predictors. This problem is often solved
simply by disregarding some of the predictors. Alternatively,
PCA can be used to preprocess the data. Instead of
performing regression analysis using the original variables, one
can perform it using new variables obtained from PCA.
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PCA in Regression Analysis

In general, when PCA is used, the principal components with
the largest variance are chosen in order to explain as much of
the total variation of x as possible. In regression settings, the
choice of the components is somewhat different. In the context
of regression, it is sensible to choose the components having
the largest correlation with the most interesting dependent
variables, because the purpose is to use the components in
explaining the dependent variables. Fortunately, there is often
a tendency in data for the components with largest variances to
best explain the dependent variables.
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PCA in Regression Analysis

If the original regression equation is given by

y = BT x + u,

then also
y = AT w + u,

where w = ΓT x is the principal component transformation and
A = ΓT B. For the corresponding sample version it also holds
that if

Y = XB + U,

then
Y = WA + U,

where W = XG, and A = GT B.

One can now reduce dimension by deleting some of the
columns of W .



Lecturer:
Pauliina Ilmonen

Slides:
Ilmonen/Kantala

PCA Using Correlation
Matrix

Correlation Structure
in PCA

Multivariate Linear
Regression

PCA in Regression
Analysis

References

Next Week

Next week we will talk about robust principal component
analysis.
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