MS-E2112 Multivariate Statistical Analysis (5cr)
 Lecture 6: Bivariate Correspondence Analysis - part II

Lecturer: Pauliina IImonen
Slides: Ilmonen/Kantala

Contents

Chi-square Statistics
Chi-square Distances

Decomposition of the Chi-square Statistic

PCA on the Row Profiles

PCA on the Column Profiles

Association Between the Profiles

References

Chi-square Statistics

Independence

The independence between variables x and y can be tested using chi-square statistic. The null hypothesis of the test is

$$
H_{o}: p_{j k}=p_{j .} p_{. k}, \text { for all } j, k
$$

and the test statistic is given by

$$
\chi^{2}=\sum_{j=1}^{J} \sum_{k=1}^{K} \frac{\left(n_{j k}-n_{j k}^{*}\right)^{2}}{n_{j k}^{*}} .
$$

Independence

Under random sampling, the $n_{j k}$ follow multinomial distribution with parameters $n, p_{11}, \ldots, p_{J k}$ and $E\left[n_{j k}\right]=n p_{j k}$. In the test statistics above, the $n p_{j k}$, under the null, are estimated by $n_{j k}^{*}$. When the sample size n is large, the test statistic has, under the null hypothesis, approximately chi-square distribution with $(K-1)(J-1)$ degrees of freedom. Thus the null hypothesis (independence between variables x and y) is rejected at the level α if

$$
\chi^{2}>\chi_{(K-1)(J-1), 1-\alpha}^{2}
$$

Links

Chi-square distribution

Multinomial distribution

Chi-square Distances

Chi-square Distance

When the data is in the form of frequency distribution, the distance between the rows (or columns) is measured using weighted euclidian distances. The distance between two rows j_{1} and j_{2} is given by

$$
d^{2}\left(j_{1}, j_{2}\right)=\sum_{k=1}^{K} \frac{1}{f_{. k}}\left(\frac{f_{j_{1} k}}{f_{j_{1} .}}-\frac{f_{j_{2} k}}{f_{j_{2} .}}\right)^{2}
$$

The euclidian distance gives the same weight to each column. The χ^{2} distance gives the same relative importance to each column proportionally to the average frequency. The division of each squared term by the expected frequency is variance standardizing and compensates for the larger variance in high frequencies and the smaller variance in low frequencies. If no such standardization were performed, the differences between larger proportions would tend to be large and thus dominate the distance calculation, while the differences between the smaller proportions would tend to be swamped. The weighting factors are used to equalize these differences.

Chi-square Distance

The distance between two columns k_{1} and k_{2} is given by

$$
d^{2}\left(k_{1}, k_{2}\right)=\sum_{j=1}^{J} \frac{1}{f_{j}}\left(\frac{f_{j k_{1}}}{f_{\cdot k_{1}}}-\frac{f_{j k_{2}}}{f_{\cdot k_{2}}}\right)^{2} .
$$

Decomposition of the Chi-square Statistic

Decomposition of the Chi-square Statistic

Let $Z \in \mathbb{R}^{J \times K}$, where

$$
z_{j k}=\frac{f_{j k}-f_{j} f_{. k}}{\sqrt{f_{j} . f_{. k}}}
$$

Clearly

$$
\sum_{j=1}^{J}\left(f_{j k}-f_{j .} f_{. k}\right)=\sum_{j=1}^{J} f_{j k}-\sum_{j=1}^{J} f_{j .} f_{. k}=f_{. k}-f_{. k} \sum_{j=1}^{J} f_{j .}=f_{. k}-f_{. k}=0 .
$$

Similarly,

$$
\sum_{k=1}^{K}\left(f_{j k}-f_{j .} f_{. k}\right)=0
$$

Thus, the matrix Z gives scaled and centered relative frequencies of the variables. Moreover, the variables are scaled such that the elements $Z_{j k}=\frac{t_{j_{k}}-f_{j}, f_{k}}{\sqrt{f_{j}, f_{. k}}}=\frac{f_{k}-f_{j k}^{*}}{\sqrt{f_{k j}^{*}}}$ are the terms that are squared and summed in the chi-square statistic that is used for testing the independence of the variables.

Decomposition of the Chi-square Statistic

A large positive value $Z_{j k}$ indicates a large contribution to the chi-square statistic. This indicates a positive association between row j and column k. (More observations than expected under independence.) A large negative value $Z_{j k}$ also indicates a large contribution to the chi-square statistic, but this indicates a negative association between row j and column k. (Less observations than expected under independence.) Values near zero indicate no contribution to the test statistic. (The number of observations is equal to the expected number under independence.)

Let

$$
V=Z^{T} Z
$$

and let

$$
W=Z Z^{\top} .
$$

Now the chi-square statistic

$$
\chi^{2}=n(\operatorname{trace}(V))=n(\operatorname{trace}(W)) .
$$

PCA on the Row Profiles

PCA on the Row Profiles

Principal component analysis is based on maximizing euclidian distances. In the context of frequency distributions, the proper distance between the variables is the chi-square distance. Thus, for frequency distributions, PCA has to be applied to modified data.

Whereas traditional PCA relies on euclidian distances, correspondence analysis is based on chi-square distances.

PCA on the Row Profiles

The chi-square distances between two row profiles can be given as

$$
\begin{gathered}
d^{2}\left(j_{1}, j_{2}\right)=\sum_{k=1}^{K} \frac{1}{f_{\cdot k}}\left(\frac{f_{j_{1} k}}{f_{j_{1} .}}-\frac{f_{j_{2} k}}{f_{j_{2} .}}\right)^{2} \\
=\sum_{k=1}^{K}\left(\frac{f_{j_{1} k}}{f_{j_{1} \cdot \sqrt{f_{\cdot k}}}}-\frac{f_{j_{2 k} k}}{f_{j_{2} \cdot \sqrt{f_{\cdot k}}}}\right)^{2} .
\end{gathered}
$$

Thus, if the row profiles are scaled, the usual euclidian metric can be used on the new scaled data.

PCA on the Row Profiles

Let $R \in \mathbb{R}^{J \times K}$, where

$$
R_{j k}=\frac{f_{j k}}{f_{j .} \sqrt{f_{\cdot k}}}-\sqrt{f_{\cdot k}}
$$

The matrix R contains the scaled and shifted row profiles. The shifting is such that the weighted sum

$$
\sum_{j=1}^{J} f_{j} \frac{f_{j k}}{f_{j} \cdot \sqrt{ } f_{\cdot k}}=\sqrt{f_{\cdot k}} .
$$

Let R_{j} denote the j th row of R. Performing PCA on the row profiles equals to finding orthonormal vectors (directions) u_{i} such that projection $P_{i}(\cdot)$ onto u_{i} maximizes the weighted sum of the euclidian distances,

$$
\sum_{j=1}^{J} f_{j} \cdot d^{2}\left(0, P_{i}\left(R_{j}\right)\right)
$$

under the constraint that u_{i} is orthogonal to all $u_{I,} 1 \leq I<i$

PCA on the Row Profiles

The problem is again a problem of maximization under constraint, and similarly as in the usual PCA, the solution is given by the eigenvalues and the eigenvectors of the matrix

$$
V=\sum_{j=1}^{J} f_{j} \cdot R_{j}^{T} R_{j}
$$

Some matrix algebra is needed to show that the matrix

$$
V=\sum_{j=1}^{J} f_{j} . R_{j}^{T} R_{j}=Z^{T} Z
$$

PCA on the Row Profiles

Let λ_{i} denote the i th largest eigenvalue of the matrix V and let u_{i} denote the corresponding unit length eigenvector. Let $u_{i, k}$ denote the k th element of u_{i}. The value (score) of the row profile j (associated with modality A_{j}) on the i th principal component is given by

$$
\phi_{i, j}=\sum_{k=1}^{K} u_{i, k} R_{j k} .
$$

It can be proven that ϕ_{i} is centered such that

$$
\sum_{j=1}^{J} f_{j .} \phi_{i, j}=0
$$

and that the variance of ϕ_{i} is λ_{i}.

Contribution of the Modalities

The contribution of the modality A_{j} on construction of the axis u_{i} is given by

$$
\frac{f_{j .}\left(\phi_{i, j}\right)^{2}}{\lambda_{i}} .
$$

Quality of the Representation

The quality of the representation of the centered row profile R_{j} by the principal axis i is measured by the squared cosine of angle between the vector $O R_{j}$ and u_{i} :

$$
\cos ^{2}(\alpha)=\left(\frac{<O R_{j}, u_{i}>}{\left\|O R_{j}\right\| \cdot\left\|u_{i}\right\|}\right)^{2}=\frac{\left(\phi_{i, j}\right)^{2}}{\left\|O R_{j}\right\|^{2}}
$$

If the value is close to 1 , the quality of the representation is good.

Note that the formula above does not contain the weight f_{j}, and thus one modality can be:

- Close to the axis u_{i} and and therefore be well represented (well explained).
- Due to a low weight f_{j}, it can have a low contribution to the axis.

PCA on the Column Profiles

PCA on the Column Profiles

Performing PCA on the column profiles does not differ from performing PCA on the row profiles. The solution is given by the eigenvalues and the eigenvectors of the matrix $W=Z Z^{T}$.

PCA on the Column Profiles

Let $C \in \mathbb{R}^{J \times K}$, where

$$
C_{j k}=\frac{f_{j k}}{f_{. k} \sqrt{f_{j .}}}-\sqrt{f_{j .}}
$$

The matrix C contains scaled and shifted column profiles. Let C_{k} denote the k th column of C. Performing PCA on the column profiles equals to finding orthonormal vectors (directions) v_{h} such that projection $P_{h}(\cdot)$ onto v_{h} maximizes the weighted sum of the euclidian distances,

$$
\sum_{k=1}^{K} f_{. k} d^{2}\left(0, P_{h}\left(C_{k}\right)\right)
$$

under the constraint that v_{h} is orthogonal to all $v_{l}, 1 \leq l<h$. The solution is given by the eigenvalues and the eigenvectors of the matrix $W=Z Z^{T}$.

PCA on the Column Profiles

Let λ_{h} denote the h th largest eigenvalue of the matrix W and let v_{h} denote the corresponding unit length eigenvector. Let $v_{h, k}$ denote the k th element of v_{h}. The value (score) of the column profile k (associated with modality B_{k}) on the h th principal component is given by

$$
\psi_{h, k}=\sum_{j=1}^{J} v_{h, j} C_{j k}
$$

It can be proven that ψ_{h} is centered such that

$$
\sum_{k=1}^{K} f_{. k} \psi_{n, k}=0
$$

and that the variance of ψ_{h} is λ_{h}.

Contribution of the Modalities

The contribution of the modality B_{k} on construction of the axis v_{h} is given by

$$
\frac{f_{k}\left(\psi_{n, k}\right)^{2}}{\lambda_{h}} .
$$

Quality of the Representation

The quality of the representation of the centered column profile C_{k} by the principal axis h is measured by the squared cosine of angle between the vector $O C_{k}$ and v_{h}.

$$
\cos ^{2}(\beta)=\left(\frac{<O C_{k}, v_{h}>}{\left\|O C_{k}\right\| \cdot\left\|v_{h}\right\|}\right)^{2}=\frac{\left(\psi_{n, k}\right)^{2}}{\left\|O C_{k}\right\|^{2}}
$$

If the value is close to 1 , the quality of the representation is good.

Association Between the Profiles

Association Between the Profiles

It can be shown that the matrices V and W have the same nonzero eigenvalues. Moreover, the eigenvectors u_{i} can be given in terms of v_{i} and vice versa:

$$
u_{i}=\frac{1}{\sqrt{\lambda_{i}}} Z^{T} v_{i}
$$

and

$$
v_{i}=\frac{1}{\sqrt{\lambda_{i}}} Z u_{i} .
$$

Association Between the Profiles

Let $H=\operatorname{rank}(V)=\operatorname{rank}(W)$. The coolest thing in correspondence analysis is that the attraction-repulsion indices $d_{j k}$ can be given in terms of ϕ and ψ as follows

$$
d_{j k}=1+\sum_{h=1}^{H} \frac{1}{\sqrt{\lambda_{h}}} \phi_{h, j} \psi_{h, k} .
$$

Association Between the Profiles

The components are often standardized defining

$$
\hat{\psi}_{h, k}=\frac{1}{\sqrt{\lambda_{h}}} \psi_{n, k}
$$

and

$$
\hat{\phi}_{h, j}=\frac{1}{\sqrt{\lambda_{1}}} \phi_{n, j} .
$$

Then

$$
d_{j k}=1+\sqrt{\lambda_{1}} \sum_{h=1}^{H} \hat{\phi}_{h, j} \hat{\psi}_{h, k} .
$$

The attraction-repulsion index $d_{j k}$ is now larger than 1 if and only if the smallest angle between ($\hat{\phi}_{1, j}, \ldots, \hat{\phi}_{H, j}$) and $\left(\hat{\psi}_{1, k}, \ldots, \hat{\psi}_{H, k}\right)$ is less than 90°.

If the row profile j and the column profile k are well represented by the first two principal components, then the attraction-repulsion index

$$
d_{j k} \approx 1+\sqrt{\lambda_{1}} \sum_{h=1}^{2} \hat{\phi}_{n, j} \hat{\psi}_{h, k}
$$

We can therefore say that the modalities A_{j} and B_{k} are attracted to each if the angle between ($\hat{\phi}_{1, j}, \hat{\phi}_{2, j}$) and $\left(\hat{\psi}_{1, k}, \hat{\psi}_{2, k}\right)$ is less than 90° and they repulse each other if the angle between ($\hat{\phi}_{1, j}, \hat{\phi}_{2, j}$) and ($\hat{\psi}_{1, k}, \hat{\psi}_{2, k}$) is larger than 90°. In this case, one can simply observe the angle from the (double) biplot of the first two components of $\hat{\phi}$ and $\hat{\psi}$.

Example of Correspondence Analysis

Correspondence analysis using the data presented in lecture five. Variable x Education is divided to categories A_{1} Primary School, A_{2} High School, and A_{3} University, and variable y Salary is divided to categories B_{1} low, B_{2} average, and B_{3} high.

	B_{1}	B_{2}	B_{3}	
A_{1}	150	40	10	200
A_{2}	190	350	60	600
A_{3}	10	110	80	200
	350	500	150	1000

Table: Contingency table

Example of Correspondence Analysis

Figure: Salary and education (A1=Primary School education, A2=High School education, $\mathrm{A} 3=$ University level education, $\mathrm{B} 1=$ low salary, $\mathrm{B} 2=$ average salary, $\mathrm{B} 3=$ high salary)

Next Week

Next week we will talk about multiple correspondence analysis (MCA).

References

PCA on the Column Profiles

Association Eetween the Profiles
permences

References I

K. V. Mardia, J. T. Kent, J. M. Bibby, Multivariate Analysis, Academic Press, London, 2003 (reprint of 1979).

References II

R. V. Hogg, J. W. McKean, A. T. Craig, Introduction to Mathematical Statistics, Pearson Education, Upper Sadle River, 2005.
\&R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
\&R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.

References III

Q L. Simar, An Introduction to Multivariate Data Analysis, Université Catholique de Louvain Press, 2008.

