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The aim in discriminant analysis is to find a way to separate
two or more classes of objects or events. That is then used in
classification of new observations.



Discriminant Analysis
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Consider g, g > 1, categories (populations or groups). The
object in discriminant analysis is to allocate an individual to one
of these g groups based on his measurements. For example,
the population might consist of different diseases and the
measurement is the symptoms of a patient. Thus one is trying
to diagnose a patient’s disease based on his symptoms.
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o Two bivariate normally distributed populations.
¢ More complicated bivariate settings.
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Discriminant Analysis, Normal Variables
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Let n x p matrix

Xg
where each X;, i € 1,..., g, is an n; x p data matrix
corresponding to group/population i coming from normal

distribution N(u;, ¥;). We here assume that the covariance
matrices ¥; are always of full rank.



Discriminant Analysis, Normal Variables
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The probability density function of N(u, X) distributed variables
(with full rank covariance matrix) can be given as

(2m) P2 det(T) " Pexp(—1/2((x — ) E " (x — u)))

and the parameters i and ¥ can be estimated consistently by
the sample mean vector and the sample covariance matrix,
respectively.



Discriminant Analysis, Normal Variables
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Under the assumption of normal distributions, an observation x
can be allocated to one of the g groups on the basis of
estimated probability density functions. Let S; = cov(X;), and
let Xx; = mean(X;). The observation x is allocated to group j, if

In(det(8))+(x—%)" ;' (x—X;) < In(det(S))+(x—xi)" S (x—X;), for all i # .



Discriminant Analysis, Normal Variables
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If the g groups are assumed to come from normal distributions
with equal covariance matrices, then a consistent estimate of
the common covariance matrix X is given by

1 g
S= n_g;(n,-_ns,-.

An observation x is allocated to group j, if

(x —x)"S7"(x — %) < (x = x)"S™(x — X;), forall i # j.
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Fisher’s Linear Discriminant Function

Let n x p matrix

where each Xj, i € 1,..., g, is an n; x p data matrix
corresponding to group/population i.
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Fisher’s Linear Discriminant Function
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Let v
W= Z -1)S;,
i=1

where S; = cov(Xj), and let

B= Zg: (X — X)(xi — x)T.
i=1

The matrix W measures within group dispersions and the
matrix B measures dispersion between groups.



Fisher’s Linear Discriminant Function
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Fisher’s linear discriminant function is the linear function a’ x,
where a is the maximizer of

a'Ba

a’'Wa’

Thus Fisher’s linear discriminant function is a linear function
that maximizes the ratio of between groups dispersion and
within group dispersions.

The solution is obtained by setting a to be equal to the
eigenvector of W~'B that corresponds to the largest
eigenvalue.



Fisher’s Linear Discriminant Function
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Once linear discriminant function has been calculated, an
observation x can be allocated to one of the g groups on the
basis of its discriminant score a’ x. The observation x is
allocated to the population whose mean score is closest to the
a’x. That s, x is allocated to group j, if

la’x —a'x;| < |a'x —a' x|, foralli#j.



Fisher’s Linear Discriminant Function
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Fisher’s linear discriminant function is most important in the
special case of g = 2 groups. Then the matrix B has rank 1,
and it can be written as

nyno

B ad’,

where d = Xy — Xo. Thus, W~"B has only one non-zero
eigenvalue and that equals to

tr(W-1B) = L:ZdTW*1 d.
The corresponding eigenvector is

a=Wd.
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Figure: Fisher’s linear discriminant analysis under normality (two
groups).



Fisher's LDA, Example 2
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Figure: Pairwise Fisher’s linear discriminant analysis under normality
(three groups).
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Let S, = {x1, ..., X} denote a set of p variate observations
from distribution F,. Statistical depth D(y, S,) measures
centrality of any p variate y with respect to S,,. The value of
D(y, S,) is always between 0 and 1 and the larger the value of
D(y, Sy) is, the more central y is with respect to S;,.



Mahalanobis Depth
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Let S, = {x1, ..., Xn} denote a set of p variate observations
from distribution F. The Mahalanobis depth Dy(y, Sy) is
defined as follows.

1

Du(y, Sn) = 112

with

d=/ly -0)7C(y - %),

where X is the sample mean vector and C the sample
covariance matrix calculated from the sample S,.

Similar depth functions may be constructed by replacing the
sample mean vector with some other location vector and the
sample covariance matrix by some other scatter matrix.



Mahalanobis Depth, population version
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Let x denote a p variate random variable with cumulative
distribution function F,. The population Mahalanobis depth
Du(y, Fx) is defined as follows.

1

Du(y, Fx) = 112

with

d=\/ly ==y — )

where 1 = p(Fx) is the mean vector and X = ¥ (Fy) is the
covariance matrix of the random variable x.
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Let S, = {x1, ..., Xn} denote a set of p variate observations
from distribution F. The half space depth Dy(y, Sy) is defined
as follows.
1
Du(y, Sp) = min—|{x; € Sy | u (xi — y) > 0},
ueu n

where U denotes the unit sphere in R”.



Half Space Depth, Example

bivhorm[,2]

Figure: Bivariate normal distribution. The half space depth value of
the red point is 2/20 = 0.1. The half space depth value of the green
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point is 5/20 = 0.25.
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Half Space Depth, Population Version
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Let x denote a p variate random variable with cumulative
distribution function F,. The population half space depth
Dy(y, Fx) is defined as follows.

Du(y. Fx) = jnf P(u"(x ~ ) > 0),

where U denotes the unit sphere in R”.



Depth Functions
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Mahalanobis depth and half space depth are just two examples
of statistical depth functions. There are several other depth
functions that have been presented in the literature.

Let x denote a p variate random variable with cumulative
distribution function F. In general, depth functions should fulffill
the following properties (Zuo and Serfling):

» Affine invariance: For any p vector b and any p x p matrix
A, D(y, Fx) = D(Ay + b, Fax+b).

» Maximality at center: If there exist a unique point of
symmetry 0 such that § + x is distributed as 6 — x, then
D(0, Fx) = sup, D(y, Fx).

» Monotonicity with respect to the deepest point: If there
exist a deepest point «, then for any p vector v
D(« + tv, Fx) is monotonically decreasing function of t > 0.

» Vanishing at infinity:D(y, Fx) — 0, as ||y|| — .
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Classification Based on Statistical Depth
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Consider two samples S, = {xy, ..., Xp} and T, = {21, ..., Zm}
from distributions Fyx and F,, respectively. A new observation y
can now be allocated as coming from F, or F, by using a depth
function. If D(y, Sp) > D(y, Trm), the observation y is allocated
as coming from F, and otherwise it is allocated as coming
from F;.

The procedure generalizes naturally to several distributions.
The observation is allocated as coming from the distribution F,,
that corresponds to the largest depth value for y.



Other Approaches
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Other Approaches
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o Classification based "closest neighbors" or on local
depths.

e Context related classification.



Misclassification Rates
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Misclassification Rates
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In discriminant analysis, it is desirable to find such
classification rules that reduce misclassification as much as
possible. In practice one can also take into account the costs
of misclassification. For example, it can be worse not to detect
an iliness than to classify a healthy individual as ill.



Misclassification Rates
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Calculating exact misclassification rates can be difficult or even
impossible when exact underlying distributions are not known.



Misclassification Rates
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Misclassification rates are often estimated by calculating
sample misclassification rates. After defining a classification
rule, the data is classified according to that rule, and sample
misclassification rate is obtained. Note that estimated
misclassification rates obtained this way grossly underestimate
the true misclassification rates - even when sample sizes n; are
large. The problem comes from the fact that the same sample
is used to construct the rule and also to test the quality of the
classification



Misclassification Rates, Training Sample
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Misclassification rates can also be estimated by dividing the
original sample into two parts. A training sample (for example
80% of the observations) is used to construct the rule. The rest
of the sample is used in approximating the misclassification
rate. However, this approach requires large sample sizes and
the evaluated classification rule is not the same rule as the one
that would be obtained using the entire original sample.
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Three different viruses were spreading in the city. Viruses B
and C are typically not lethal, whereas virus A requires
immediate medical attention, as it is lethal if untreated.

The next slide contains symptoms and laboratory test results of
the virus type for 20 patients.



Example

P. Age| Gen Fev| Fev| Rash Sore¢ Head Nau|l Dian Sle| Musg Vonji Vir
num der | er(l)] er(h throatache sea| rhea epy| cle | ting| us
cramps
1 19 | F X X X X X X C
2 54 | M X X X X X B
3 86 | M X X X X X B
4 47 | M X X X X X X B
5 11 | F X X X X X C
6 32 | - X X X X X A
7 66 | F X X X X X B
8 12| M X X X X X C
9 33 | F X X X X X X C
10 | 18 | F X X X X C
11 148 | M X X X X X X B
12|78 | M X X X X X X ¢}
13190 | F X X X X B
14 |1 36 | M X X X X X X A
1519 F X X X X X X C
16 | 30 | F X X X X X B
17 | 25 | F X X X X X X X C
18 | 6 M X X X X X ¢}
19 | 21 F X X X X X X B
20 | 17 | - X X X X X X C
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Example

Typical symptoms of the viruses.

Virus
Symptoms

A
High-grade
fever,
headache,
sleepy, mus-
cle cramps,
vomiting

B
High-grade
fever,
headache,
rash, sleepy,
muscle
cramps,
vomiting
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C

Fever, sore
throat,
nausea,
diarrhea,
vomiting,
rash
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Three new patients have the following symptoms. For each
patient — determine the virus that is causing the patient’s
symptoms.

Age Gender Symptoms

1 23 M High-grade fever, headache,
rash, sleepy, muscle cramps,
vomiting

2 49 F Low-grade fever, sore throat,
nausea, diarrhea, vomiting, rash

3 17 F Headache, nausea, diarrhea,
vomiting, rash

4 55 M High-grade fever, sore throat,

nausea, diarrhea, vomiting, rash



Example

"Correct" answers:

Patient

Virus

Reason

1

B

Very typical symptoms of virus B.

2

C

Typical symptoms of virus C.

3

C

Headache is not a typical symp-
tom of virus C. However, one can
reason that diarrhea and vomiting
may cause dehydration which then
causes headache. Patient 3 does
not have fever, but it was noted ear-
lier that virus C does not always
cause fever.

B+C

Did you notice, that none of the
adults with virus C had high-grade
fever? Here, it was something else
that caused the high-grade fever —
virus B.
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Next Week
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Next week we will talk about clustering.
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