

WWW today

CS-E4410 Semantic Web, 9.1.2019

Eero Hyvönen
Aalto University, Semantic Computing Research Group (SeCo) http://seco.cs.aalto.fi
University of Helsinki, HELDIG
http://heldig.fi

eero.hyvonen@aalto.fi

Outline

- Background of the World Wide Web
- Services on the web
- Knowledge representation
- Web programming
- Megatrends of the web

Background: dimensions of the web

Users

- Billion users in 2005
- 2 billion users in 2011
- 3 billion users in 6/2014
- 3.8 billion user 1/2018

Page amount indexed by search engines

- Magnitude: tens of billions of pages
 - Google's index ca. 50 billion pages

In addition: "hidden/deep web"

Databases not reachable by public search engines

Extremely effective publishing channel

- All information readable by everyone
- New content easy to publish to billions of people
- Usage is almost "free"

Holy trinity of the WWW

URI addresses: resources

Web sites, documents, pictures, etc.

HTML language

- Representing the WWW pages
- Hyperlinks

HTTP etc. protocols

Transferring web resources between server and client

Services on the web

Functional services

Banking, stores, governmental bureaus, etc.

Information retrieval services

- Search engines (e.g., Google) and browsing
- Portals, directories
- Databases in different applications

Information retrieval challenges on the web: end-user perspective

Ease of formulating search queries

Creating queries that work as intended

The quality of the search results

- Recall: How many % of the relevant information is found
- Precision: How many % of the found information is relevant
- Relevance: How well do the results correspond to the user needs
 - E.g., Google's PageRank algorithm

Presentation of the search results

- Ease of understanding
- Ranking and structuring

Examples of the limitations of basic text search

Search term may appear in an irrelevant document

• "This page does not discuss **politics**"

Identifying synonyms

- Venus =/= Morning star =/= Evening star
- The change of names: Tanja Vienonen -> Karpela -> Saarela -> ?
 - Bad recall, relevant pages are not found
 - Formulation of queries is difficult

Identifying homonyms

- Varkaus -> event (theft), a Finnish city
- Nokia -> company, city, person, animal (sable)
 - E.g., "nokia": pages about the animal are mixed with the ones about the company
- Pyhäjärvi ("Holy lake") -> 49 places in Finland
 - Bad precision, results are garbage
 - Understanding the results is difficult
 - Formulation of queries is difficult

Examples of the limitations (2)

Computer does not understand relations between concepts

- Narrower-broader concept, part-whole
- E.g., query: "Helsinki" & "restaurant"
 - Are "pizzerias" in "Kallio" and "Punavuori" found?
- · Background knowledge and "common sense" is missing
 - Search with term "smoke" does not necessarily return pages about "fire"

The information searched for is fragmented, but results cannot be aggregated

• E.g., "search publications of the members of the research group X"

Examples of the limitations (3)

Finding relations between information resources is challenging

- E.g., "How is Sibelius related to the city of Hämeenlinna?"
- The result is a set of separate pages that the user has to analyze

Search does not actually solve problems, "web of wisdom"

- How much does a kilogram of feathers weigh in the moon?
- With lots of information, the problem solving resembles remembering!
 - "Who is the father of the daughter of Tarja Halonen?"
 - "Why is the All Saints' Day celebrated?"

No sufficient personalization and utilization of the context

What could I do today in London?

Examples of the limitations (4)

Finnish is especially challenging due to word forms, deriatives and compound words

- "yö" vs. "öinen" vs. "öistä" ("night", "nightly", "of nightly/nights")
- hypätä, hypyttää, hypähtää, hypähdellä, hypäyttää, ... ("to jump")
- Kolmivaihekilowattituntimittari ("three-phase electricity meter")
- Kylmäsavulohiraejuustotagliatelle (recipe from the "Vartti" newspaper)

The biggest problem, however, is the computer's inability to "understand" the meaning of contents, semantics

- Current search engines search for words (text strings) instead of senses (what do the words mean)
- If a computer does not "understand", it cannot serve intelligently

Browsing challenges in the web: end-user perspective

Understanding the "big picture" in a large fragmented information space

"Lost in the hyperspace"

Links get out of date and destroyed

- The linked target pages expire or are removed entirely
- New pages do not get linked to old ones
- Old pages do not get linked to new ones

Reliability of information and their providers

- "Web of trust"
- "Flat Earth" organization's page vs. Aalto University's scientific page
- Wikipedia vs. Encyclopedia Britannica

Knowledge management challenges: information provider perspective

Structuring contents with links is manual work

Information does not get linked at content level without human effort

Different organizations create overlapping information

• The same work is done multiple times

The contents and their structures are not interoperable

- E.g., aggregation of collections of different memory organizations is difficult
- Lack of interoperability prevents combining of contents
- Lack of interoperability prevents the management of contents

Information about the contents and their changes is not communicated between organizations

Often they don't even know about each other

Knowledge representation on the web

The idea of markup languages: HTML, XML, ...

Domain- and environment-independent standard for documents

- Creation
- Management
- Transferring

Documents are text files

- Open, simple format
- Usable on all HW/SW platforms
- Easy to modify, store, read, transfer
- Future-proof

Markup languages

The idea is to separate structure, content, and presentation

- Describing the document structure (programmer)
 - *E.g.*, *HTML*: *<H1>Heading*</*H1>*
- Describing the information content (programmer)
 - E.g., XML: <ADDRESS>Otaniementie 17</ADDRESS>
- The presentation is decided by the reader (browser)
 - E.g., PC, mobile phone

Why XML?

Different presentations for same content

- Different devices (PC, mobile phone, ...)
- Different applications (WWW page, printed book, ...)

Utilization of the content structure

• E.g., better precision/recall in search engines

Quality control

Syntax validation is possible

Importance of markup languages

XML languages are used widely on the web

- Knowledge encoded in open format
 - Lots of standards for different domains
- Open APIs for programming languages (e.g., Java)
 - Programmatic processing of the pages

Vendor-independency

Stability against the change of file formats

Pages are simple text files

Domain-specific standard languages

Standardization

General coordination of the development of the WWW

- World Wide Web Consortium (W3C) (www.w3.org)
 - Cooperation body of manufactures, operators, etc.
 - Creates WWW recommendations

Domain-specific organizations

- ISO: different domains, excluding electrical/electronical
- IEC https://www.iec.ch/, CEN https://www.iec.ch/, CEN https://www.iec.ch/, CEN https://www.oasis-open.org/, https://www.oasis-open.org/,
- Countless number of work groups on different domains

Challenges of markup languages

Complex for humans to read and process

Not especially human-friendly notation

Repetition

- Includes unnecessarily lots redundancy (e.g., start and end tag), which magnifies the size of the markup
 - Laborious to write
 - Needs bandwidth for transferring

More recent movements

JSON JavaScript Object Notation

- Knowledge representation as hierarchical key-value pairs
- Integrated into JavaScript: easy/efficient to use
- Widely used
- Used also on the Semantic Web: e.g., JSON-LD notation

Simple Semantic Web notations for knowledge representation

- Turtle, OWL notations, etc. (we'll return to this on later lectures)
- Widely used

Web programming

Types of web programming

Client-side application programming (WWW browser)

Distributed functionality

Server-side application programming (WWW server)

Centralized functionality

Client-side web programming

Java applets

- Java program is read from the server into the browser
- The program is ran in the client machine

Dynamic HTML

- ECMAScript (JavaScript, JScript)
 - Executable programs inside the HTML markup (script)
- Cascading Style Sheets (CSS)
 - *General style definitions for HTML language elements*
- Domain Object Model (DOM)
 - Object model of the page for scripts to read and manipulate

AJAX (Asyncronous JavaScript and XML, 2005)

- Interactions with the server via function calls without reloading the page
- Enables mashups and sharing functionalities (e.g., Google Maps)

Server-side web programming

CGI scripts and servlets

- Program on the server
- Gets information from the browser, e.g., via a form
 - *GET*, *POST*, *PUT*, etc. methods
- Returns a HTML result page to the browser

Server Side Includes (SSI)

- Code snippets in a HTML template that are replaced with content
 - *E.g.*, date or other dynamic part of the document
 - The server executes the code snippet and replaces it with the result before returning the page

Server-side web programming (2)

Server Side Scripting (ASP, JSP, PHP, ...)

- HTML page with program code
- Code is executed and replaced with HTML results
- A server-side program generates the HTML pages
 - *E.g.*, querying information from a database
- The result is sent to the browser

Tag and template libraries, application frameworks

- Templates and helpers for generating HTML markup
- Support for application architectures, e.g., MVC Model-View-Controller
- AngularJS, React, Vue.js, Django, Drupal,...

Megatrends of the web

Megatrends of the web

- 1. Contents are enriched semantically (Semantic Web)
 - Semantic Web, Linked Data / Web of Data
- 2. Dynamic processing is increasing (Web Services)
 - Web services, agent technologies
 - Adaptability and context sensitivity
 - Ambient computing, ubiquitous computing
 - Personalization
- 3. Community-generated contents (Web 2.0)
 - Distributed creation of contents that are linked together
 - Real-time services
- 4. Volume is increasing (Big Data)
- 5. Openness is increasing (Open Data)

