
Ontology engineering
How to develop an ontology?

CS-E4410 Semantic Web – additional material
 Jouni Tuominen
Department of Computer Science
Semantic Computing Research Group (SeCo), http://seco.cs.aalto.fi
jouni.tuominen@aalto.fi

Department of
Computer Science

Methodology for ontology engineering

•  Simple structures can be developed fairly easily
•  Be aware of too complex structures

-  Focus on what is actually needed in your application
-  Ontology Engineering rather art than science

•  A good starting point:
-  Natasha Noy, Deborah McGuinness:

Ontology Development 101: A Guide to Developing Your First Ontology. Stanford
University, 2001.

•  More advanced concerns
-  DOLCE and OntoClean

http://www.springerlink.com/content/5p86jk323x0tjktc/fulltext.pdf

2

Department of
Computer Science

A simple ontology development
methodology
 Based on (N. Noy, D. McGuinness, 2001)
http://protege.stanford.edu/publications/ontology_development/
ontology101.pdf

An Ontology Editor: Protégé

4

Department of
Computer Science

Some general remarks

•  There is no correct way
-  Best solution depends on the application

•  The process is iterative
•  The concepts should be close to objects and relations in your domain

5

Department of
Computer Science

Seven-step process

Step 1: Determine the domain and scope of the ontology
•  What is the domain that the ontology will cover?
•  For what we are going to use the ontology?
•  For what types of questions the information in the ontology should

provide answers?
•  Who will use and maintain the ontology?
Step 2. Consider reusing existing ontologies
•  E.g., ontology repositories: http://onki.fi, http://finto.fi
Step 3. Enumerate important terms in the ontology

6

Department of
Computer Science

7

Step 4. Define the classes and
the class hierarchy
•  Top-down
•  Bottom-up
•  Mixed approach

Department of
Computer Science

The most important principle in constructing the taxonomy
•  If a class A is a superclass of class B, then every instance of B is also an

instance of A

8

Halley’s comet

Comet

Solar system

BT

BT

Halley’s comet

Comet

Solar system

type

partOf

Celestial body

subClassOf

Department of
Computer Science

9

Step 5. Define the properties of classes—slots
•  Intrinsic: e.g., flavor or color of wine
•  Extrinsic: e.g., name or area of wine
•  Structural properties (parts)
•  Relations to other objects: e.g., grape of wine

Department of
Computer Science

10

Step 6. Define the facets of the slots
•  Cardinality
•  Value type

–  String, number, Boolean, Enumerated, Instance

•  Domain and range
–  Constraints for properties

•  E.g., the producer of a wine must
be a winery

Department of
Computer Science

11

Step 7. Create instances
•  Choose a class
•  Create an instance
•  Fill in slot values

Department of
Computer Science

Design decisions in constructing the
class hierarchy
Ensuring that class hierarchy is correct
•  Transitivity, cycles, concepts vs. names
Siblings
•  At the same level of generality
•  Usually 2-12 in one level
Multiple inheritance
•  Sometimes needed
•  Usually try to avoid
When to introduce a new class
•  Useful terminological concepts
•  Subclasses have additional properties or restrictions
•  Participate in different relations

12

Department of
Computer Science

When to use a new class vs. a property value?
•  Restrictions needed in other concepts need new concepts
•  Different kind of instances need different classes
•  For example:
-  white-wine goes-with fish à White-wine is a class
-  chilled wine à not a class, use property (instance-class membership should not change often)

When to use instances vs. classes
•  Instances are most specific concepts
-  E.g., wine types vs. bottles of wine

•  In concepts for a natural hierarchy à use classes
-  French-region > Bordeaux-region > St-Emilion-Region

Limiting scope
•  The ontology should not be too detailed: think about the application
Disjointness and exhaustiveness of subclasses

13

Department of
Computer Science

Naming conventions
•  Be consistent and systematic
•  Label naming for humans

-  Unique labels in different languages
-  Understandable without ontology context?

•  Labels will be seen in applications
•  Concept naming (ID) for machines (and programmers)

-  Content neutral URIs vs. names
•  P12345 vs. Finland

-  Understandable without context?
•  Finland vs. Finland-photos

-  Syntactic choices
•  Meal course vs. MealCourse vs. Meal-Course vs. meal_course

-  Singular vs. plural?
•  Cat vs. Cats

-  Prefix and suffix conventions
•  has-father vs. father-of

14

