Lecture Outline

- 1. Introduction
- 2. Monotonic Rules: Example
- 3. Monotonic Rules: Syntax & Semantics
- 4. Description Logic Programs (DLP)
- 5. Semantic Web Rules Language (SWRL)
- 6. Nonmonotonic Rules: Syntax
- 7. Nonmonotonic Rules: Example
- 8. Rule Markup Language (RuleML)

Motivation – Negation in Rule Head

- In nonmonotonic rule systems, a rule may not be applied even if all premises are known because we have to consider contrary reasoning chains
- Now we consider defeasible rules that can be defeated by other rules
- Negated atoms may occur in the head and the body of rules, to allow for conflicts
 - $p(X) \rightarrow q(X)$
 - r(X) \rightarrow ¬q(X)

Defeasible Rules

$$p(X) \Rightarrow q(X)$$

 $r(X) \Rightarrow \neg q(X)$

- Given also the facts p(a) and r(a) we conclude neither q(a) nor ¬q(a)
 - This is a typical example of 2 rules blocking each other
- Conflict may be resolved using priorities among rules
- Suppose we knew somehow that the 1st rule is stronger than the 2nd
 - Then we could derive q(a)

Origin of Rule Priorities

- Higher authority
 - E.g. in law, federal law preempts state law
 - E.g., in business administration, higher management has more authority than middle management
- Recency
- Specificity
 - A typical example is a general rule with some exceptions
- We abstract from the specific prioritization principle
 - We assume the existence of an external priority relation on the set of rules

Rule Priorities

- Rules have a unique label
- The priority relation to be acyclic

Competing Rules

- In simple cases two rules are competing only if one head is the negation of the other
- But in many cases once a predicate p is derived, some other predicates are excluded from holding
 - E.g., an investment consultant may base his recommendations on three levels of risk investors are willing to take: low, moderate, and high
 - Only one risk level per investor is allowed to hold

Competing Rules (2)

- These situations are modelled by maintaining a conflict set C(L) for each literal L
- C(L) always contains the negation of L but may contain more literals

Defeasible Rules: Syntax

$$r: L1, ..., Ln \Rightarrow L$$

- r is the label
- {L1, ..., Ln} the body (or premises)
- L the head of the rule
- L, L1, ..., Ln are positive or negative literals
- A literal is an atomic formula p(t1,...,tm) or its negation ¬p(t1,...,tm)
- No function symbols may occur in the rule

Defeasible Logic Programs

- A defeasible logic program is a triple (F,R,>) consisting of
 - a set F of facts
 - a finite set R of defeasible rules
 - an acyclic binary relation > on R
 - A set of pairs r > r' where r and r' are labels of rules in R

Lecture Outline

- 1. Introduction
- 2. Monotonic Rules: Example
- 3. Monotonic Rules: Syntax & Semantics
- 4. Description Logic Programs (DLP)
- 5. Semantic Web Rules Language (SWRL)
- 6. Nonmonotonic Rules: Syntax
- 7. Nonmonotonic Rules: Example
- 8. Rule Markup Language (RuleML)

Brokered Trade

- Brokered trades take place via an independent third party, the broker
- The broker matches the buyer's requirements and the sellers' capabilities, and proposes a transaction when both parties can be satisfied by the trade
- The application is apartment renting an activity that is common and often tedious and time-consuming

The Potential Buyer's Requirements

- At least 45 sq m with at least 2 bedrooms
- Elevator if on 3rd floor or higher
- Pet animals must be allowed
- Carlos is willing to pay:
 - \$ 300 for a centrally located 45 sq m apartment
 - \$ 250 for a similar flat in the suburbs
 - An extra \$ 5 per square meter for a larger apartment
 - An extra \$ 2 per square meter for a garden
 - He is unable to pay more than \$ 400 in total
- If given the choice, he would go for the cheapest option
- His second priority is the presence of a garden
- His lowest priority is additional space

Formalization of Carlos's Requirements – Predicates Used

- **size(x,y)**, y is the size of apartment x (in sq m)
- bedrooms(x,y), x has y bedrooms
- price(x,y), y is the price for x
- floor(x,y), x is on the y-th floor
- gardenSize(x,y), x has a garden of size y
- lift(x), there is an elevator in the house of x
- pets(x), pets are allowed in x
- central(x), x is centrally located
- acceptable(x), flat x satisfies Carlos's requirements
- offer(x,y), Carlos is willing to pay \$ y for flat x

Formalization of Carlos's Requirements – Rules

```
r1: \Rightarrow acceptable(X)
r2: bedrooms(X,Y), Y < 2 \Rightarrow ¬acceptable(X)
r3: size(X,Y), Y < 45 \Rightarrow ¬acceptable(X)
r4: ¬pets(X) \Rightarrow ¬acceptable(X)
r5: floor(X,Y), Y > 2,¬lift(X) \Rightarrow ¬acceptable(X)
r6: price(X,Y), Y > 400 \Rightarrow ¬acceptable(X)
r2 > r1, r3 > r1, r4 > r1, r5 > r1, r6 > r1
```

Formalization of Carlos's Requirements – Rules (2)

```
r7: size(X,Y), Y ≥ 45, garden(X,Z), central(X) ⇒
offer(X, 300 + 2*Z + 5*(Y - 45))
r8: size(X,Y), Y ≥ 45, garden(X,Z), ¬central(X) ⇒
offer(X, 250 + 2*Z + 5(Y - 45))
r9: offer(X,Y), price(X,Z), Y < Z ⇒ ¬acceptable(X)
r9 > r1
```

Representation of Available Apartments

```
bedrooms(a1,1)
size(a1,50)
central(a1)
floor(a1,1)
¬lift(a1)
pets(a1)
garden(a1,0)
price(a1,300)
```

Representation of Available Apartments (2)

Flat	Bedrooms	Size	Central	Floor	Lift	Pets	Garden	Price
a1	1	50	yes	1	no	yes	0	300
a2	2	45	yes	0	no	yes	0	335
а3	2	65	no	2	no	yes	0	350
a4	2	55	no	1	yes	no	15	330
a5	3	55	yes	0	no	yes	15	350
a6	2	60	yes	3	no	no	0	370
а7	3	65	yes	1	no	yes	12	375

Determining Acceptable Apartments

- If we match Carlos's requirements and the available apartments, we see that
- flat a1 is not acceptable because it has one bedroom only (rule r2)
- flats a4 and a6 are unacceptable because pets are not allowed (rule r4)
- for a2, Carlos is willing to pay \$ 300, but the price is higher (rules r7 and r9)
- flats a3, a5, and a7 are acceptable (rule r1)

Selecting an Apartment

```
r10: acceptable(X) ⇒ cheapest(X)
r11: acceptable(X), price(X,Z), acceptable(Y),
    price(Y,W), W < Z ⇒ ¬cheapest(X)
r12: cheapest(X) ⇒ largestGarden(X)
r13: cheapest(X), gardenSize(X,Z),
    cheapest(Y), gardenSize(Y,W),
    W > Z ⇒ ¬largestGarden(X)
```

Selecting an Apartment (2)

```
r14: largestGarden(X) ⇒ rent(X)
r15: largestGarden(X), size(X,Z),
largestGarden(Y), size(Y,W),
W > Z⇒ ¬ rent(X)

r11 > r10, r13 > r12, r15 > r14
```