

Lecture 3: Static Games and Cournot Competition

Introduction

- In the majority of markets firms interact with *few competitors oligopoly* market
- Each firm has to consider rival's actions
 - strategic interaction in prices, outputs, advertising ...
- This kind of interaction is analyzed using *game theory* assumes that "players" are rational
- Distinguish cooperative and noncooperative games
- focus on noncooperative games
- Also consider *timing*
- simultaneous versus sequential games

Oligopoly theory

No single theory

- employ game theoretic tools that are appropriate
 - outcome depends upon *information* available
- Need a concept of *equilibrium*
 - players (firms?) choose *strategies*, one for each player
 - combination of strategies determines *outcome*
- outcome determines pay-offs (profits?)
- Equilibrium first formalized by Nash: No firm wants to
- --- change its current strategy given that no other firm
- changes its current strategy

Nash equilibrium

- Equilibrium need not be "nice"
 - firms might do better by coordinating but such coordination may not be possible (or legal)
- Some strategies can be eliminated on occasions
 - they are never good strategies no matter what the rivals do
- These are *dominated strategies*
 - they are never employed and so can be eliminated
 - elimination of a dominated strategy may result in another being dominated: it also can be eliminated
- One strategy might always be chosen no matter what the rivals do: *dominant strategy*

An example

- Two airlines
- Prices set: compete in departure times
- 70% of consumers prefer evening departure, 30% prefer morning departure
- If the airlines choose the same departure times they share the market equally
- Pay-offs to the airlines are determined by market shares
- Represent the pay-offs in a *pay-off matrix*

The example 4

- Now suppose that Delta has a frequent flier program
- When both airline choose the same departure times Delta gets 60% of the travelers
- This changes the pay-off matrix

Nash equilibrium

- What if there are no dominated or dominant strategies?
- Then we need to use the *Nash equilibrium* concept.
- Change the airline game to a pricing game:
 - 60 potential passengers with a reservation price of \$500
 - 120 additional passengers with a reservation price of \$220
 - price discrimination is not possible (perhaps for regulatory reasons
 or because the airlines don't know the passenger types)
 - costs are \$200 per passenger no matter when the plane leaves
 - airlines must choose between a price of \$500 and a price of \$220
 - if equal prices are charged the passengers are evenly shared
 - the low-price airline gets all the passengers
- The pay-off matrix is now:

Oligopoly models

- There are three dominant oligopoly models
 - Cournot

18 I

- Bertrand
- Stackelberg
- They are distinguished by
 - the decision variable that firms choose
- the timing of the underlying game
- Concentrate on the Cournot model in this section

The Cournot model

- Start with a duopoly
- **Two firms making an identical product (Cournot supposed this was spring water)**
- **Demand for this product is**

 $P = A - BQ = A - B(q_1 + q_2)$

- where q_1 is output of firm 1 and q_2 is output of firm 2
- Marginal cost for each firm is constant at c per unit
- To get the demand curve for one of the firms we treat the output of the other firm as constant
- So for firm 2, demand is $P = (A Bq_1) Bq_2$

The Cournot model 3 $q_2^* = (A - c)/2B - q_1/2$

- This is the *reaction function* for firm 2 It gives firm 2's profit-maximizing choice of output for any choice of output by firm 1
- There is also a reaction function for firm 1
- By exactly the same argument it can be written:

$$q_1^* = (A - c)/2B - q_2/2$$

Cournot-Nash equilibrium requires that both firms be on their reaction functions.

Cournot-Nash equilibrium

If fir

(A-c)

1 w

 $q^{C}(A-c)/2B$

prod

Firm

(A-c)/B

-c)/2B

The Cournot-Nash equilibrium is at the intersection of the reaction functions produce the monopoly output (A-c)/2B

(A-c)/B

Firm 2's reaction function

he reaction function for firm 1 is $t_1 = (A-c)/2B - q_2/2$

he reaction function for firm 2 is $t_2 = (A-c)/2B - q_1/2$

- Cournot-Nash equilibrium 3
- In equilibrium each firm produces q^C₁ = q^C₂ = (A c)/3B
 Total output is, therefore, Q* = 2(A c)/3B
- Recall that demand is P = A BQ
- So the equilibrium price is $P^* = A 2(A c)/3 = (A + 2c)/3$
- **Profit of firm 1 is** $(P^* c)q^C_1 = (A c)^2/9B$
- Profit of firm 2 is the same
- A monopolist would produce Q^M = (A c)/2B
- Competition between the firms causes them to
- overproduce. Price is lower than the monopoly price
- But output is less than the competitive output (A c)/B where price equals marginal cost

- Cournot-Nash equilibrium: many firms
- What if there are more than two firms?
- Much the same approach.
- Say that there are N identical firms producing identical products
- Total output $\mathbf{Q} = \mathbf{q}_1 + \mathbf{q}_2 + \mathbf{q}_2$
- **Demand is** P = A BQ = A
- Consider firm 1. It's dema

This denotes output of every firm other than firm 1

- $\mathbf{P} = \mathbf{A} \mathbf{B}(\mathbf{q}_2 + \dots + \mathbf{q}_N) \mathbf{B}_{\mathbf{A}\mathbf{I}}$
- Use a simplifying notation: $Q_{-1} = q_2 + q_3 + ... + q_N$
 - So demand for firm 1 is $P = (A BQ_{-1}) Bq_1$

Cournot-Nash equilibrium: different costs 3

In equilibrium the firms produce

- $q_{1}^{C} = (A 2c_{1} + c_{2})/3B; q_{2}^{C} = (A 2c_{2} + c_{1})/3B$
- Total output is, therefore, $Q^* = (2A c_1 c_2)/3B$
- **Recall that demand is** P = A B.Q
- So price is $P^* = A (2A c_1 c_2)/3 = (A + c_1 + c_2)/3$
- Profit of firm 1 is $(P^* c_1)q^C_1 = (A 2c_1 + c_2)^2/9$
- Profit of firm 2 is $(P^* c_2)q_2^C = (A 2c_2 + c_1)^2/9$
- Equilibrium output is less than the competitive level
- Output is produced inefficiently: the low-cost firm should produce all the output

Concentration and profitability

- Assume there are N firms with different marginal costs
- We can use the N-firm analysis with a simple change
- **Recall that demand for firm 1 is P = (A BQ_{-1}) Bq_1**
- **But then demand for firm** *i* is $P = (A BQ_{-i}) Bq_i$
- Equate this to marginal cost c_i

$$A - BQ_{-i} - 2Bq_i = c_i$$

This can be reorganized to give the e

But $Q^*_{-i} + q^*_{i} = Q^*_{i}$ and A - BQ* = P*

 $\mathbf{A} - \mathbf{B}(\mathbf{Q}^*_{\cdot i} + \mathbf{q}^*_i) - \mathbf{B}\mathbf{q}^*_i - \mathbf{c}_i = \mathbf{0}$ $\therefore \mathbf{P}^* - \mathbf{B}\mathbf{q}^*_i - \mathbf{c}_i = \mathbf{0} \quad \therefore \mathbf{P}^* - \mathbf{c}_i = \mathbf{B}\mathbf{q}^*_i$

Price Competition: Introduction

- In a wide variety of markets firms compete in prices
 - Internet access
 - Restaurants
 - Consultants
- Financial services
- With monopoly setting price or quantity first makes no
- difference
- In oligopoly it matters a great deal
 - nature of price competition is much more aggressive the
- quantity competition

Price Competition: Bertrand

- In the Cournot model price is set by some market clearing mechanism
- An alternative approach is to assume that firms compete in prices: this is the approach taken by Bertrand
- Leads to dramatically different results
- Take a simple example
 - two firms producing an identical product (spring water?)
 - firms choose the prices at which they sell their products
 - each firm has constant marginal cost of c
 - inverse demand is P = A B.Q
 - direct demand is $Q = a b \cdot P$ with a = A/B and b = 1/B

Bertrand competition

- We need the *derived demand* for each firm
- demand conditional upon the price charged by the other firm
- Take firm 2. Assume that firm 1 has set a price of p₁
 if firm 2 sets a price greater than p₁ she will sell nothing
 if firm 2 sets a price less than p₁ she gets the whole market
 if firm 2 sets a price of exactly p₁ consumers are indifferent
- between the two firms: the market is shared, presumably 50:50
- So we have the derived demand for firm 2
- $\frac{q_2}{q_2} = 0 \qquad \text{if } p_2 > p_1 \\ \frac{q_2}{q_2} = (a bp_2)/2 \qquad \text{if } p_2 = p_1$
 - $= q_2 = (a bp_2)/2$ if $p_2 = p_1$ = $q_2 = a + bp_2$ if $p_2 < \bar{p}_1$

Bertrand competition 3 Firm 2's profit is:

 $\pi_2(\mathbf{p}_{1,},\mathbf{p}_2) = \mathbf{0}$

if $p_2 > p_1$

 $\pi_2(\mathbf{p}_1, \mathbf{p}_2) = (\mathbf{p}_2 - \mathbf{c})(\mathbf{a} - \mathbf{b}\mathbf{p}_2)$ if $\mathbf{p}_2 < \mathbf{p}_1$

 $\pi_2(\mathbf{p}_1, \mathbf{p}_2) = (\mathbf{p}_2 - \mathbf{c})(\mathbf{a} - \mathbf{b}\mathbf{p}_2)/2$ if $\mathbf{p}_2 = \mathbf{p}_1$

For whatever reason!

Clearly this depends on p₁**.**

Suppose first that firm 1 sets a "very high" price: greater than the monopoly price of $p^{M} = (a + c)/2b$

Bertrand competition 6 We now have Firm 2's best response to any price set by firm 1: $- p_{2}^{*} = (a + c)/2b$ if $p_1 > (a + c)/2b$ $p_2^* = p_1 - \text{``something small''}$ if $c < p_1 \le (a + c)/2b$ $p*_2 = c$ if $p_1 \le c$ We have a symmetric best response for firm 1 if $p_2 > (a + c)/2b$ $- p_{1}^{*} = (a + c)/2b$ - $\mathbf{p}_1^* = \mathbf{p}_2$ - "something small" if $c < p_2 \le (a + c)/2b$ if $\mathbf{p}_2 \leq \mathbf{c}$

Bertrand Competition

Why the wildly different result from Cournot?

-Homogenous goods – no difference

-One-shot game – no difference

-Demand – no difference

24

-In Bertrand, the firm supplies all demand – Key difference

-How realistic?

Bertrand Equilibrium: modifications

- The Bertrand model makes clear that competition in prices is very different from competition in quantities
- Since many firms seem to set prices (and not quantities) this
 is a challenge to the Cournot approach
- But the extreme version of the difference seems somewhat forced
- Two extensions can be considered
 - impact of capacity constraints
 - product differentiation

Capacity Constraints

- For the p = c equilibrium to arise, both firms need enough capacity to fill all demand at p = c
- But when p = c they each get only half the market
- So, at the p = c equilibrium, there is huge excess capacity
- So capacity constraints may affect the equilibrium
- Consider an example
- daily demand for skiing on Mount Norman Q = 6,000 60P
 - Q is number of lift tickets and P is price of a lift ticket
 - two resorts: Pepall with daily capacity 1,000 and Richards with daily capacity 1,400, both fixed
 - marginal cost of lift services for both is \$10

The Example

- Is a price P = c =\$10 an equilibrium?
 - total demand is then 5,400, well in excess of capacity
- Suppose both resorts set P = \$10: both then have demand of 2,700
- **Consider Pepall:**
 - raising price loses some demand
 - but where can they go? Richards is already above capacity
 - so some skiers will not switch from Pepall at the higher price
 - **but then Pepall is pricing above MC and making profit on the skiers who remain**
- so *P* = \$10 cannot be an equilibrium

The example 2

- Assume that at any price where demand at a resort is greater than capacity there is *efficient rationing*
 - serves skiers with the highest willingness to pay
- Then can derive residual demand
- **Assume** *P* = \$60
 - total demand = 2,400 = total capacity
 - so Pepall gets 1,000 skiers
 - residual demand to Richards with efficient rationing is Q = 5000 60P or P = 83.33 Q/60 in inverse form
 - marginal revenue is then MR = 83.33 Q/30

Capacity constraints again

Logic is quite general

- firms are unlikely to choose sufficient capacity to serve the whole market when price equals marginal cost
 - since they get only a fraction in equilibrium
 - so capacity of each firm is less than needed to serve the whole market.
- but then there is no incentive to cut price to marginal cost
- So the efficiency property of Bertrand equilibrium breaks down when firms are capacity constrained

Product differentiation

- Original analysis also assumes that firms offer homogeneous products
- Creates incentives for firms to *differentiate* their products
 - to generate consumer loyalty
 - do not lose all demand when they price above their rivals
 - keep the "most loyal"

Bertrand and product differentiation Method 1: Calculus Profit of Coke: $\pi_{C} = (P_{C} - 4.96)(63.42 - 3.98P_{C} + 2.25P_{P})$ Profit of Pepsi: $\pi_{P} = (P_{P} - 3.96)(49.52 - 5.48P_{P} + 1.40P_{C})$ Differentiate with respect to P_{C} and P_{P} respectively Method 2: MR = MC

Reorganize the demand functions

 $P_{\rm C} = (15.93 + 0.57P_{\rm P}) - 0.25Q_{\rm C}$

 $P_P = (9.04 + 0.26P_C) - 0.18Q_P$

Calculate marginal revenue, equate to marginal cost, solve for Q_C and Q_P and substitute in the demand functions

- Bertrand competition and the spatial model An alternative approach: spatial model of Hotelling
 - a Main Street over which consumers are distributed
 - supplied by two shops located at opposite ends of the street-
 - but now the shops are competitors
 - each consumer buys exactly one unit of the good provided that its full price is less than V
 - a consumer buys from the shop offering the lower full price
- consumers incur transport costs of t per unit distance in travelling to a shop
- Recall the broader interpretation
- What prices will the two shops charge?

Bertrand competition 3

- **Two final points on this analysis**
- *t* is a measure of transport costs
 - it is also a measure of the value consumers place on getting their most preferred variety
 - when *t* is large competition is softened
 - and profit is increased
 - when t is small competition is tougher
 - and profit is decreased
- Locations have been taken as fixed
 - suppose product design can be set by the firms
 - balance "business stealing" temptation to be close
 - against "competition softening" desire to be separate

Strategic complements and substitutes 2

- When best response functions are upward sloping (e.g. Bertrand) we have *strategic complements*
 - passive action induces passive response
- When best response functions are downward sloping (e.g. Cournot) we have *strategic substitutes*
 - passive actions induces aggressive response
- Difficult to determine strategic choice variable: price or quantity
 - output in advance of sale probably quantity
 - production schedules easily changed and intense competition for customers – probably price

Assume payoff (ie. profit) u for strategies (ie. prices, quantities) s

The necessary first order condition (FOC) for player i is

$$\frac{\partial u_i(s_i, s_{-i})}{\partial s_i} = 0$$

The Nash equilibrium is typically calculated by solving the system of equations determined by the FOC:s for each player.

Consider a situation with two players (i and j). By totally differentiating the necessary FOC and noting that $s_i = r_i (s_{-i})$

$$\frac{\partial^2 u_i(r_i(s_{-i}), s_j)}{\partial s_i^2} r_i'(s_{-i}) + \frac{\partial^2 u_i(s_i, s_j)}{\partial s_i \partial s_j} = 0$$

the slope of player i's reaction function can be found to be

$$r_i'(s_{\perp i}) = - \frac{\frac{\partial^2 u_i(s_i, s_j)}{\partial s_i \partial s_j}}{\frac{\partial^2 u_i(s_i, s_j)}{\partial s_i^2}}$$

Because we have assumed concavity it follows from this that

$$sign\left\{r_{i}'\right\} = sign\left\{\frac{\partial^{2}u_{i}(s_{i},s_{j})}{\partial s_{i} \partial s_{j}}\right\}$$

Consequently, the reaction function is upward (downward) sloping if and only if

$$\frac{\partial^2 u_i(s_i, s_j)}{\partial s_i \partial s_{j'}} > 0 \quad (< 0)$$