

Lecture 3: Static Games and Cournot

Introduction

- In the majority of markets firms interact with few competitors - oligopoly market
- Each firm has to consider rival's actions
$\|-$ strategic interaction in prices, outputs, advertising .,
- This kind of interaction is analyzed using game theory n- assumes that "players" are rational
- Dístinguish cooperative and noncooperative games
m. $-=$ focus on noncooperatiye games
- Also consider timing
iensimultaneous versus sequential games

Nash equilibrium

Equilibrium need not be "nice"

- firms might do better by coordinating but such coordination may not be possible (or legal)
- Some strategies can be eliminated on occasions
- they are never good strategies no matter what the rivals do
- These are dominated strategies
- they are never employed and so can be eliminated
F. $=-\quad$ elimination of a dominated strategy may result in another being - dominated: it also can be eliminated
- One strategy might always be chosen no matter what the rivals, do dominquit strategy

An example

- Two airlines
- Prices set: compete in departure times
- 70% of consumers prefer evening departure, 30% prefer morning departure
- If the airlines choose the same departure times they share the market equally
- Pay-offs to the airlines are determined by market shares
- Represent the pay-offs in a pay-off matrix

The example 4

- Now suppose that Delta has a frequent flier program - When both airline choose the same departure times Delta gets 60% of the travelers

Nash equilibrium

- What if there are no dominated or dominant strategies?
- Then we need to use the Nash equilibrium concept.
- Change the airline game to a pricing game:

H60 potential passengers with a reservation price of $\$ 500$ 120 additional passengers with a reservation price of \$220 price discrimination is not possible (perhaps for regulatory reasons
 or because the airlines don't know the passenger types)

- costs are $\$ 200$ per passenger no matter when the plane leaves
- airlines must choose between a price of $\$ 500$ and a price of $\$ 220$
- if equal prices are charged the passengers are evenly shared \qquad the low price airlime gets all the passengers
-. The pay-eff matrix is now:

Oligopoly models

There are three dominant oligopoly models

- Cournot
\rightarrow Bertrand
1/1-Stackelberg
They are distinguished by

The Cournot model

- Start with a duopoly
- Two firms making an identical product (Cournot supposed this was spring water)
- Demand for this product is

$$
P=A-B Q=A-B\left(q_{1}+q_{2}\right)
$$

where q_{1} is output of firm 1 and q_{2} is output of firm 2

- Marginal cost for each firm is constant at e per unit
- To get the demand curve for one of the firms we treat
the output of the other firm as constant
P. Se for firm 2, dehand is $P=\left(A-B q_{1}\right)-B q_{2}-1 /$

The Cournot
 $\mathbf{P}=\left(\mathbf{A}-\mathrm{Bq}_{1}\right)-\mathbf{B} \mathbf{q}_{2}$

The profit-maximizing choice of output by firm 2 depends upon the output of firm 1
Marginal rever
firm 2 is
$\mathrm{MR}_{2}=\mathbf{A}$
$\mathrm{MR}_{2}=\mathbf{M C}$

$$
\bar{\Gamma} \mathrm{A}^{-}-\mathrm{Bq}_{1}-2 \mathrm{~Bq}_{2}=\mathrm{c}^{\mathrm{l}} \therefore \mathrm{q}_{2}^{*}=(\mathrm{A}-\mathrm{c}) / 2 \mathrm{~B}-\mathrm{q}_{1} / 2
$$

Cournot-Nash equilibrium 3

- In equilibrium each firm produces $\mathbf{q}_{1}{ }_{1}=q^{\mathrm{C}} 2=(\mathrm{A}-\mathrm{c}) / 3 \mathrm{~B}$
- Total output is, therefore, $Q^{*}=2(\mathrm{~A}-\mathrm{c}) / 3 \mathrm{~B}$
- Recall that demand is $\mathbf{P}=\mathbf{A}-\mathbf{B Q}$
- So the equilibrium price is $P^{*}=\mathbf{A}-2(\mathbf{A}-c) / 3=(A+$ 2c)/3
- Profit of firm 1 is $\left(\mathbf{P}^{*}-\mathrm{c}\right) \mathbf{q}_{1}^{\mathrm{C}}=(\mathrm{A}-\mathrm{c})^{2} / 9 \mathrm{~B}$
- Profit of firm 2 is the same
- A monopolist would produce $\mathbf{Q}^{M}=(\mathbf{A}-\mathbf{c}) / 2 \mathrm{~B}$
- Competition between the firms causes them to
- overproduce. Price is lower than the monopoly price
- But outputis less than the competitive output (A - c)/B where price equals marginal cost

Cournot-Nash equilibrium: many firms

What if there are more than two firms?

- Much the same approach.
- Say that there are \mathbf{N} identical firms producing identical products
Total output $\mathrm{Q}=\mathrm{q}_{1}+\mathrm{q}_{2}+$. This denotes output
Demand is $\mathbf{P}=\mathbf{A}-\mathbf{B Q}=\mathbf{A}$
of every firm other
than firm 1
- Consider firm 1. It's dema

$$
\mathbf{P}=\mathbf{A}-\mathbf{B}\left(\mathbf{q}_{2}+\ldots+\mathbf{q}_{\mathbf{N}}\right)-\mathbf{B}
$$

- Use a simplifying notation: $Q_{-1}=q_{2}+q_{3}+\ldots+q_{N}$
P. So denand for firm 1 is $P=\left(A-B Q_{-1}\right)-B q_{1}$

Cournot-Nash equilibrium: many firms

$$
q_{1}=(A-c) / 2 B-Q_{-1} / 2
$$

$\therefore \mathbf{Q}^{*}{ }_{-1}=(\mathbf{N}-\mathbf{1}) \mathbf{q}^{*}{ }_{1}$
$\| \therefore \mathrm{q}^{*}{ }_{1}=(\mathrm{A}-\mathrm{c}) / 2 \mathrm{~B}$ - $(\mathrm{N}$
$\therefore(1+(\mathbf{N}-1) / 2) q^{*}{ }_{1}=(\mathbf{A}-2$
$\therefore \quad \therefore \mathbf{q}_{1}{ }_{1}(N+1) / 2=(A-c) / 2 B$
$\therefore \mathbf{q}^{*}{ }_{1}=(\mathbf{A}-\mathbf{c}) /(\mathbf{N}+\mathbf{1}) \mathrm{B}$
$\therefore Q^{*}=\mathbf{N}(\mathbf{A}-\mathbf{c}) /(\mathbf{N}+1) \mathrm{B}$
$\therefore \mathbf{P}^{*}=\mathbf{A}-\mathbf{B Q}^{*}=(\mathbf{A}+\mathbf{N c}) /(\mathbf{N}+\mathbf{1})$ firms increases profit

Profit of firm 1 is $P_{1}{ }_{1}=\left(P^{*}-c\right) q_{1}^{*}=(A-c)^{2} /(N+1)^{2} B$

Cournot-Nash equilibrium: different costs

What if the firms do not have identical costs?

- Much the same analysis can be used

- Marginal costs of firm 1 are \mathbf{c}_{1} and of f
- $\begin{array}{c}\text { Solve } \\ \text { - Wemand is } \mathbf{P}=\mathbf{A}-\mathrm{BQ}=\mathrm{A}-\mathrm{B}\left(\mathrm{q}_{1}+\mathrm{q}_{2}\right) \\ \text { for out } \\ \text { - We marginal revenue for firm 1 }\end{array}$

- $\mathbf{M R}_{1}=\left(\mathbf{A}-\mathrm{Bq}_{2}\right)-2 B \mathbf{q}_{1}$
- Equate to marginal cost: (holds for output of
$\therefore \mathbf{q}^{*}=\left(\mathrm{A}-\mathrm{c}_{1}\right) / 2 \mathrm{~B}=\mathrm{q}_{2} / 2$
firm 2

$$
\overline{\mathrm{C}} \quad \mathrm{q}_{2}{ }_{2}=\left(\mathrm{A}-\mathrm{c}_{2}\right) / 2 \mathrm{~B}-\mathrm{q}_{1} / 2
$$

Cournot-Nash equilibrium: different costs 2

Cournot-Nash equilibrium: different costs 3
In equilibrium the firms produce
$\mathbf{q}_{1}=\left(\mathrm{A}-2 \mathrm{c}_{1}+\mathrm{c}_{2}\right) / 3 \mathrm{~B} ; \mathbf{q}_{2}=\left(\mathrm{A}-2 \mathrm{c}_{2}+\mathrm{c}_{1}\right) / 3 \mathrm{~B}$

- Total output is, therefore, $\mathrm{Q}^{*}=\left(2 \mathrm{~A}-\overline{\mathrm{c}}_{1}-\mathrm{c}_{2}\right) / 3 \mathrm{~B}$

Recall that demand is $\mathbf{P}=\mathbf{A}-\mathbf{B} . \mathbf{Q}$

- So price is $\mathrm{P} *=\mathrm{A}-\left(2 \mathrm{~A}-\mathrm{c}_{1}-\mathrm{c}_{2}\right) / \mathbf{3}=\left(\mathrm{A}+\mathrm{c}_{1}+\mathrm{c}_{2}\right) / 3$
- Profit of firm 1 is $\left(\mathbf{P}^{*}-c_{1}\right) q_{1}^{C}=\left(A-2 c_{1}+c_{2}\right)^{2} / 9$
- Profit of firm 2 is $\left(P^{*}-c_{2}\right) q_{2}^{C}=\left(A-2 c_{2}+c_{1}\right)^{2} / 9$
- Equilibrium output is less than the competitive level
- Output is produced inefficiently: the low-cost firm should produce all the output

Concentration and profitability

- Assume there are \mathbf{N} firms with different marginal costs
- We can use the N -firm analysis with a simple change
- Recall that demand for firm $\mathbf{1}$ is $\mathbf{P}=\left(\mathbf{A}-\mathbf{B Q}_{-1}\right)-\mathbf{B q}_{1}$

But then demand for firm i is $\mathbf{P}=\left(\mathbf{A}-\mathrm{BQ}_{-\mathrm{i}}\right)-B q_{i}$

- Equate this to marginal cost $\boldsymbol{c}_{\mathrm{i}}$
(1) $A-B Q_{-i}-2 B q_{i}=c_{i}$

This can be reorganized to give the e
But $Q^{*}{ }_{i}+q^{*_{i}}=Q^{*}$

$$
A-B\left(Q_{-i}^{*}+q_{i}^{*}\right)-B q_{i-}^{*} c_{i}=0
$$

$$
\therefore P^{*}-\mathbf{B q}^{*}-c_{i}=0 \quad \therefore P^{*}-c_{i}=B q_{i}^{*}
$$

-

- In a wide variety of markets firms compete in prices
- Internet access
- Restaurants
| $\left\lvert\, \begin{aligned} & - \text { Consultants } \\ & - \text { Financial services }\end{aligned}\right.$
- With monopoly setting price or quantity first makes no difference
- In oligopoly it matters a great deal
- - nature of price competition is much more aggressive the

Price Competition: Bertrand

In the Cournot model price is set by some market clearing mechanism

- An alternative approach is to assume that firms compete in prices: this is the approach taken by Bertrand
- Leads to dramatically different results
- Take a simple example
- two firms producing an identical product (spring water?)
- firms choose the prices at which they sell their products
- - each firm has constant marginal cost of c

Bertrand competition

We need the derived demand for each firm

demand conditional upon the price charged by the other firm

- Take firm 2. Assume that firm 1 has set a price of p_{1}
if firm 2 sets a price greater than p_{1} she will sell nothing
- if firm 2 sets a price less than p_{1} she gets the whole market
- if firm 2 sets a price of exactly p_{1} consumers are indifferent
|lime between two firms: the market is shared, presumably 50:50
- So we have the derived demand for firm 2
$\begin{array}{lll}-q_{2}=0 & & \text { if } p_{2}>p_{1} \\ -\mathbf{q}_{2}=\left(a-b p_{2}\right) / 2 & & \text { if } p_{2}=p_{1} \\ -\mathbf{q}_{2}+a-b p_{2} & & \text { if } p_{2}<\mathbf{p}_{1}\end{array}$

栱昜

Bertrand competition 3

Firm 2's profit is:

$$
\pi_{2}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=\mathbf{0}
$$

$$
\pi_{2}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=\left(\mathbf{p}_{2}-\mathbf{c}\right)\left(\mathbf{a}-\mathbf{b} \mathbf{p}_{2}\right)
$$

$$
\text { if } \mathbf{p}_{2}<\mathbf{p}_{1}
$$

$$
\pi_{2}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=\left(\mathbf{p}_{2}-\mathbf{c}\right)\left(\mathbf{a}-\mathbf{b} \mathbf{p}_{2}\right) / 2
$$

$$
\text { if } p_{2}=p_{1}
$$

$\|$ Clearly this depends on p_{1}.
\%. Suppose first that firm 1 sets a "very high" price: - greater than the monopoly price of $\mathbf{p}^{M}=(a+c) / 2 b$

Bertrand Equilibrium: modifications

The Bertrand model makes clear that competition in prices is very different from competition in quantities

- Since many firms seem to set prices (and not quantities) this is a challenge to the Cournot approach
- But the extreme version of the difference seems somewhat forced
- Two extensions can be considered
- imipact of capacity constraints
- - produot differentiation

Capacity Constraints

For the $p=c$ equilibrium to arise, both firms need enough capacity to fill all demand at $p=c$

- But when $p=c$ they each get only half the market
- So, at the $p=c$ equilibrium, there is huge excess capacity
- So capacity constraints may affect the equilibrium

Consider an example
CI daily demand for skiing on Mount Norman $Q=6,000-60 P$

- Q is number of lift tickets and P is price of a lift ticket
- two resorts: Pepall with daily capacity 1,000 and Richards with daily capacity 1,400 , both fixed narginal cost oflift services for both is $\$ 10$

The Example

- Is a price $P=c=\$ 10$ an equilibrium?
in total demand is then 5,400 , well in excess of capacity
- Suppose both resorts set $P=\$ 10$: both then have demand of 2,700
- Consider Pepall:
- raising price loses some demand

The example 2

- Assume that at any price where demand at a resort is greater than capacity there is efficient rationing
- serves skiers with the highest willingness to pay
- Then can derive residual demand

Assume $P=\$ 60$

- total demand $=2,400=$ total capacity so Pepall gets 1,000 skiers residual demand to Richards with efficient rationing is $Q=$ $5000-60 P$ or $P=83.33-Q / 60$ in inverse form
- marginal revenue is then $M R=83.33-Q / 30$

The example 3

- Residual demand and MR:
- Suppose that Richards sets $P=\$ 60$. Does it want to change?
since MR > MC Richards doeds not want to raise price and lose skiers since $Q_{R}=1,400$ Richards is at eapacity and does not
- want to reduce price
- Same logic applies to Pepall so $P=\$ 60$ is a Nash equilibrium for this game. \qquad
\qquad
\qquad

Capacity constraints again

Logic is quite general
firms are unlikely to choose sufficient capacity to serve the whole market when price equals marginal cost

1. since they get only a fraction in equilibrium

- so capacity of each firm is less than needed to serve the whole market
- but then there is no incentive to cut price to marginal cost
- So the efficiency property of Bertrand equilibrium
breaks down when firms are capacity constrained

Product differentiation

- Original analysis also assumes that firms offer homogeneous products
- Creates incentives for firms to differentiate their products
- to generate consumer loyalty

An example of product differentiation

Coke and Pepsi are similar but not identical. As a result, the lower priced product does not win the entire market.
Econometric estimation gives:

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{C}}=63.42-3.98 \mathrm{P}_{\mathrm{C}}+2.25 \mathrm{P}_{\mathrm{P}} \\
& \mathrm{MC}_{\mathrm{C}}=\$ 4.96 \\
& \mathrm{Q}_{\mathrm{P}}=49.52-5.48 \mathrm{P}_{\mathrm{P}}+1.40 \mathrm{P}_{\mathrm{C}} \\
& \mathrm{MC}_{\mathrm{C}}=\$ 3.96
\end{aligned}
$$

There are at least two methods for solving for P_{C} and P_{P}

Bertrand and product differentiation

Method 1: Calculus

$$
\text { Profit of Coke: } \pi_{\mathrm{C}}=\left(\mathrm{P}_{\mathrm{C}}-4.96\right)\left(63.42-3.98 \mathrm{P}_{\mathrm{C}}+2.25 \mathrm{P}_{\mathrm{P}}\right)
$$

Profit of Pepsi: $\pi_{P}=\left(P_{P}-3.96\right)\left(49.52-5.48 P_{P}+1.40 P_{C}\right)$
Differentiate with respect to P_{C} and P_{P} respectively
Method 2: $\mathrm{MR}=\mathrm{MC}$
Reorganize the demand functions
${ }^{-} P_{C}=\left(15.93+0.57 P_{P}\right)-0.25 Q_{C}$
${ }^{*} P_{P}=\left(9.04+0.26 P_{C}\right)-0.18 Q_{P}$
Calculate marginal revenue, equate to marginal cost, solve for Q_{C} and Q_{E} and substitute in the demand functions

Bertrand and product differentiation 2

Both methods give the best response functions:

$$
\begin{aligned}
& P_{C}=10.44+0.2826 P_{P} \\
& P_{P}=6.49+0.1277 P_{C}
\end{aligned}
$$

${ }^{4}$ These can be solved for the equilibrium
prices as indicated
The equilibrium prices *are each greater than marginal cost

Bertrand competition and the spatial model

- An alternative approach: spatial model of Hotelling

1- a Main Street over which consumers are distributed

- supplied by two shops located at opposite ends of the street
- but now the shops are competitors
- each consumer buys exactly one unit of the good provided that its full price is less than V

| - a consumer buys from the shop offer |
| ---: | ---: |
| - consumers incur transport costs of t |
| travelling to a shop |

- Whatt prices will the two shops charge?

Bertrand equilibrium

Profit to firm 1 is $\pi_{1}=\left(p_{1}-c \quad\right.$ This is the best $\left.p_{1}+t\right) / 2 t$ $\pi_{1}=\mathbf{N}\left(p_{2} p_{1}-p_{1}^{2}+\mathbf{t} \mathbf{p}_{1}+\mathbf{c} p_{1}\right.$ response function is Differentiate with respect t for firm 1 $\partial \pi_{1} 1 \partial \mathbf{p}_{1}=\frac{\mathbf{N}}{2 \mathbf{t}}\left(\mathbf{p}_{2}-2 \mathbf{n}-t+\mathbf{c}\right)=0$
) $\begin{gathered}\mathbf{p}_{11}^{}=\left(p_{2}+\mathbf{t}+\mathbf{c}\right) / 2 \\ \text { Whàt about firm }\end{gathered}$
This is the best response function for firm 2

- similar best responsc

$$
\mathbf{p}_{2}^{*}=\left(p_{1}+t+\mathbf{c}\right) / 2
$$

Bertrand competition 3

- Two final points on this analysis
 - t is a measure of transport costs

- it is also a measure of the value consumers place on getting their most preferred variety
- when t is large competition is softened
- and profit is increased
- when t is small competition is tougher
- and profit is decreased
- Locations have been taken as fixed
- suppose product design can be set by the firms
-bbalance "business stealing"temptation to be close
$\square \rightarrow$ bagainst "completition softening"desire to be separate

Strategic complements and substitutes

Best response functions are very different with Cournot and Bertrand

they have opposite slopes reflects very different forms of competition

Strategic complements and substitutes

i- suppose firm 2's costs increase
-this causes Firm 2's Cournot best response function to fall - at any output for firm 1 firm 2 now wants to produce less
firm 1's output increases and
 firm 2's falls

Firm 2's Bertrand best response function risēs - at any price for firm 1 firm 2 now wants to raise its price firp 1 as price increases as does firm 2's

Strategic complements and substitutes 2

- When best response functions are upward sloping (e.g.

Bertrand) we have strategic complements

- - passive action induces passive response
- When best response functions are downward sloping
(e.g. Cournot) we have strategic substitutes
- passive actions induces aggressive response
- Difficult to determine strategic choice variable: price or quantity
- - outputin advance of sale - probably quantity
- production schedules easily changed and intense competition \qquad for customers t probably price

Assume payoff (ie. profit) u for strategies (ie. prices, quantities) s

The necessary first order condition (FOC) for player i is

$$
\frac{\partial u_{i}\left(s_{i}, s_{-i}\right)}{\partial s_{i}}=0
$$

The Nash equilibrium is typically calculated by solving the system of equations determined by the FOC:s for each player.
Consider a situation with two players (i and j). By totally differentiating the necessary FOC and noting that $\quad s_{i}=r_{i}\left(s_{-i}\right)$

the slope of player i's reaction function can be found to be

Because we have assumed concavity it follows from this that

$$
\operatorname{sign}\left\{r_{i}^{\prime}\right\}=\operatorname{sign}\left\{\frac{\partial^{2} u_{i}\left(s_{i}, s_{j}\right)}{\partial s_{i} \partial s_{j}}\right\}
$$

Consequently, the reaction function is upward (downward) sloping if and only if

