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Content, practicalities

I Practicalities concerning GIS-E3010:
I Lectures, exercises, grading. No exam, three
exercise packages, equally weighted

I Materials are in MyCourses

I History and societal status of least-squares
methods.
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Gauss and Legendre

Carl Friedrich Gauss was a land
surveyor in addition to being a
master mathematician. He did the
triangulation of Hannover using the
least-squares method, but never
published the method.

Adrien-Marie Legendre again was
an eminent French mathematician
authoring a textbook on the
determination of comet orbits,
containing a description of the
method.
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Optimisation and cost functions

I Least-squares adjustment can be considered the optimisation
of a cost function. The cost of the imprecision of solution
x̂ =

[
x1 x2 · · · xn

]
is a function of the value of the

solution:
f (x̂) = f (x1, x2, . . . , xn) .

The simplest cost function that has an extremum, and thus
can be optimised, is the quadratic function of the solution:

f (x1, x2, . . . , xn) = a +
∑
i

bixi +
∑
i ,j

cijxixj .
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Optimisation and cost functions (2)

I The optimum is found by finding the zero of the gradient of
the function:

∂f

∂xi
= bi +

∑
j

cijxj +
∑
j

cjixj = 0,

or (as, without loss of generality, cij = cji )

∑
j

cijxj = −2bi ⇒


c11 c21 · · · cn1
c12 c22 · · · cn2
...

...
. . .

...
c1n c2n · · · cnn




x1
x2
...
xn

 =


−2b1
−2b2
...
−2bn

 .
I a linear system of n equations in n unknowns. As long as the

cij matrix is non-singular, it will have a unique solution.
And as long as the matrix is positive definite, the solution
will be a cost minimum.
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Optimisation and cost functions (3)

I Important: although the function to be optimised
is quadratic, the solution is linear.

I Least-squares theory is a linear theory.
I This makes a lot of the math simple and elegant.
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Simple practical applications

I Average
I Linear regression
I Multiple regression
I Ordinary least squares vs. weighted least squares
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The average as a least-squares estimate

Computing the average probably is the simplest example of a
least-squares estimate.

I Closer to the “true” value than the individual observations
averaged.

I Gets better with more observations n, according to
1√
n
.

I Treats all observations equally.
I “Outliers” show up and can, being gross errors, be
eliminated.
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Linear regression

Σ

 

is minimized!
Linear regression by least squares:

x

y

I Assumed model: linear relationship y = ax + b.
I Fitting a line through a point cloud of measurements.
I Two parameters a and b estimated: intercept and slope.
I Gets better with more observation points.
I Treats all observations equally.
I “Outlier” detection.
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Weighted least squares

I Linear regression works well if the observations are equally
precise (homoskedastic observations) and uncorrelated.

I It gives the correct estimates â and b̂, but too optimistic
(too small) uncertainties, if the observations are
correlated. This is because correlated observations contain
less information than independent ones.

I For this, there is weighted least squares, giving also the
correct statistics.
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Slings and arrows of correlation

When things correlate, all kinds of things can go wrong.

I Correlation between x and y does not prove causation x → y ;
however

I Statistically significant correlation shows some common cause.
Like x → y , y → x , or z → x , y .

I A regression model has to be complete: it has to contain all
the unknown parameters explaining the observables.

I Confounders. A confounder is a parameter not taken into
account in regression.

Example (fictional): it was found that the incidence of lung
cancer is inversely correlated with radon exposure. However,
when smoking was taken along in the regression, a positive
correlation with radon was found. Explanation: radon expo-
sure is highest in rocky areas, whereas city dwellers, living in
cities on sedimentary plains, smoke most.
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Geodetic network adjustment

Triangulation networks adjusted over large areas was a
standard application of the least-squares method during the
19th and 20th centuries. Especially worth mentioning are the
large triangulations of Western Europe, leading to the
establishment of European Datum 1950, and the North
American Datums of 1927 and 1983.
The sheer size of the networks necessitated the use of special
mathematical approaches such as Helmert-Wolf blocking.
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Photogrammetry, aerotriangulation

The advent of (aerial) photogrammetry meant a new field of application
for least-squares adjustment method. Both in the interior and exterior
orientation of images, and in the construction of multi-image models in
three dimensions through aerotriangulation, the least-squares method
finds application.

The systems of observation
equations in photogrammetry
can be huge; also here,
special mathematical
approaches are needed. E.g.,
iterative solution using the
conjugate-gradient method.
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Time series, correlation, and all that

I Time series play a role
everywhere in society: in
economics, demographics,
development, geophysics,
everywhere things change
over time.

I E.g., also in the study of
climate change and its
impacts.

Proper analysis of time series requires that serial correlation –
between successive time-series elements – is properly taken into
account. The method of choice for this is weighted least squares.
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Statistics in society; econometry

In economics, a notation slightly different from that used in
geodesy:

Y = α + βX + ε,

compare to the geodetic observation equation

`+ v = Ax̂

with
(
Y

`

)
observation vector,

(
β

x̂

)
vector of unknowns,

(
X

A

)
coefficient matrix / design matrix,

(
ε

v

)
vector of errors / residuals.

I Note also the linearization of geodetic observation equations.
In economics, linearity is usually assumed.
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Fields on the Earth’s surface and least-squares collocation

Observations of gravity on the Earth’s surface are,
like of so many geophysical quantities, sparse: meteo
temperatures, tide-gauge readings, . . . Because of
this sparsity, special techniques have been developed
for proper statistical inference from this sparse data.
The technique is called least-squares collocation.
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Famous researchers in least-squares collocation

I Torben Krarup (1919–2005), Denmark
I Helmut Moritz (1933–), Austria
I Weikko A. Heiskanen (1895–1971), Finland
I C. Christian Tscherning (1942–2014), Denmark
I Danie G. Krige (1919–2013), South Africa, described in
his master’s thesis the technique that became popularly
known in geostatistics as “kriging”. Equivalent to
least-squares collocation, also known more formally as
Wiener-Kolmogorov prediction.

17 / 29



Spatial covariance

The use of sparse spatial data to make meaningful inferences is
possible because of long-range spatial correlation. This property is
described by the spatial covariance function. The figure is the
covariance function for gravity anomalies formulated by R.A.
Hirvonen in 1962, based on data from Ohio and Finland.
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It is characterized by two
parameters: the variance
C0, describing the
variability of gravity
anomalies, and the
correlation length d ,
describing the distance
over which gravity
anomalies are typically still
somewhat correlated.

18 / 29



Least-squares collocation

In least-squares collocation, the spatial covariance function is used
to generate the coefficient matrix used for predicting, or estimating,
unknown values ̂̀P in locations P where no measurement was
taken from the measurements `1, `2, . . . , `N that are available.
Like this (observations assumed error free):

̂̀
P =

[
C (sP1) C (sP2) · · · C (sPN)

]


C (0) C (s21) · · · C (sN1)
C (s12) C (0) · · · C (sN2)

...
...

. . .
...

C (s1N) C (s2N) · · · C (0)


−1 

`1
`2
...
`N

 ,

where the covariance function is C (sij) , with sij being the
(spherical) distance between points i and j .
For the Hirvonen function, we have

C (s) =
C0

1 + (s/d)2 .
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Least-squares collocation (2)
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The predicted values of a
function given in two points
shown. For this special case
(error free observations) this is an
interpolation technique:

I Close to the data points, the predicted values are close to the
data-point values.

I At a data point, the predicted value equals the data value of
the point (this applies only for error free observations!)

I Far away from the data points, the predicted values go
smoothly to zero: lacking real info, zero is a “best guess”.

I The “prediction surface” is a linear combination of
Hirvonen “bell-curve surfaces” like shown in the earlier
figure.
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The space age: real-time least squares

I Motivation
I The Kalman filter and the Extended Kalman filter
I The particle filter
I Applications
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Motivation

Unmanned flight started with missiles. The first modern missile was the
German V2: it contained a guidance system based on inertial techniques.
This creates a need to be able to calculate the path, either on the ground
or on-board, while the flight was ongoing.
Missiles became satellite carriers, satellites spacecraft, and the paths of
all needed to be determined from observations during flight.
This is what the Kalman filter was developed for.

One critical application was the rendez-vous problem, two orbiting
spacecraft finding each other in space and exchanging materials.
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The Kalman filter

x−(tk),Σ−(tk)

Observation Model

`k = Hkx(tk) + mk

`k = g (x(tk)) + mk

Filtered state

True state x(t)

x+(tk),Σ+(tk)

x+(tk+1),Σ+(tk+1)

x−(tk+1),Σ−(tk+1)

Dynamic
Model x(tk+1) = Φk+1

k x(tk) + Θk+1
k

(Q(t))
dx
dt

= f (x, t) + n(t)

(Rk)

I There is a dynamic model that propagates our knowledge of the state of
the system forward in time using our knowledge of the system’s behavour.

I There is an observation model that allows us to improve our knowledge of
the state of the system as observations become available. This
improvement is done in a least-squares way.

I Repeat. Kalman is a recursive filter.
I Kalman, R. E. (1960). “A New Approach to Linear Filtering

and Prediction Problems”. Journal of Basic Engineering. 82:35.
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Applications of the Kalman filter

The Kalman filter is used in many places outside spacecraft navigation.
Examples:

I Integrated navigation using IMU (Inertial Measurement Unit) and GNSS
(Global Navigation Satellite System) measurements, in aircraft, vessels,
land vehicles, backpacks. The filter accepts measurements of both types
and produces a navigation trajectory in real time.

I In the GNSS processing package GAMIT/GLOBK, the latter (GLOBK) is
a Kalman filter.

I The Kalman filter is used in robotics for motion control,
I it is used in econometrics, and
I it is part of software used for automated trading on the stock exchange.

A really nice discription of the Kalman filter, with good pictures,
can be found here.
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Other filters

I The extended Kalman filter involves linearization, and can be
used in general non-linear situations. This applies to both the
dynamic model and the observational model.

I For the Kalman filter, the best estimate is represented as a
single state vector, and its statistical probability distribution as
a single variance-covariance matrix of that state vector.

I It thus cannot handle general statistical distributions, just
normal ones.

I (Non-normality will inevitably be produced by strong
non-linearities in the system.)

I One solution to this is the particle filter.
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The particle filter

I The particle filter represents the probability distribution
explicitly as a “cloud” of particles in state space, initially with
each particle the same weight.

I As the system evolves and the
particles move, observations will
change (update) the weights of
the particles. Every now and then
the cloud must be “renormalized”
– i.e., “heavy” particles split,
“light” ones merged.

I The particle filter is especially
suitable if the statistical
distributions are known or
suspected to be strongly
non-normal.
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Comparison of least-squares techniques

I Adjustment:
I Unknown is a vector of real numbers xi .
I Observed are real numbers `j .

I Collocation:
I Unknown is a function f of one of more real arguments, like

time t or place (x , y).
I Observed are function values at discrete points or argument

values f (ti ).

I Kalman-filter:
I Unknown is a vectorial “state” xi (t) of time.
I Observed are values of a function of this state F (xi (tj)), at

discrete times before the present time, tj < t.
I Estimation takes place in real time using only “past”

observations.
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Comparison of least-squares techniques

Needed in all are

1. Functional models describing the known physics of the
situation and the observation process

2. Statistical models for all uncertainties afflicting the system and
its observation process.

I Linearization will typically be necessary to make the problem
tractable.

I Results obtained will be:
I estimates of the unknowns, optimal in the least-squares sense
I estimates of the uncertainties of the unknowns.
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Summary; questions

I Practicalities of the course GIS-E3010 were discussed.
I The history, background and scope of least-squares

computational methods in society, and more specifically in the
geosciences, was presented.

Questions?

Thank you!
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