GIS-E3010
 Least-Squares Methods in Geoscience Lecture 3/2018

Variance propagation in general
Variance propagation in LS adjustment
Error ellipsoids
Precision

Non-linear functional models, trilateration

Variance, covariance, Covariance matrix

The variance, standard deviation, error-ellipsoids are measures of precision

$$
\begin{aligned}
& \sigma_{x_{i}}^{2}=E\left(\left(x_{i}-\mu_{x_{i}}\right)^{2}\right) \\
& \sigma_{x}=\sqrt{\sigma_{x}^{2}} \\
& \sigma_{x_{i} x_{j}}=E\left(\left(x_{i}-\mu_{x_{i}}\right)\left(x_{j}-\mu_{x_{j}}\right)\right) \\
& \Sigma_{x}=E\left(\left(X-M_{x}\right)\left(X-M_{x}\right)^{T}\right) \\
& \Sigma_{x}=\left(\begin{array}{cccc}
\sigma_{x_{1}} & \sigma_{x+x_{2}} & \cdots & \sigma_{x_{1} x_{x}} \\
\sigma_{x x_{1} x_{2}} & \sigma_{x_{2}}^{2} & \cdots & \sigma_{x_{2} x_{x}} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{x x_{1} x_{n}} & \cdots & \cdots & \sigma_{x_{2}}^{2}
\end{array}\right)
\end{aligned}
$$

Cofactor matrix, Weight matrix, Covariance matrix

$Q_{x} \quad Q_{v} \quad Q_{\imath} \quad Q_{\ell}$ Cofactor matrices for parameters, residuals, adjusted observations, observations

$$
\begin{aligned}
& \Sigma=\sigma_{0}^{2} Q \\
& P=\sigma_{0}^{2} \Sigma_{\ell}^{-1}=Q_{\ell}^{-1}
\end{aligned}
$$

Covariance matrix

Weight matrix

Variance propagation

$$
\begin{aligned}
& Y=A_{0}+A X \\
& Y \text { is linear combination } \\
& \text { of } X \\
& \left\{\begin{array}{c}
y_{1}=a_{0_{1}}+a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
y_{2}=a_{0_{2}}+a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots \\
y_{c}=a_{0_{c}}+a_{c 1} x_{1}+a_{c 2} x_{2}+\cdots+a_{c n} x_{n}
\end{array}\right. \\
& E(Y)=A_{0}+A E(X) \quad \text { Expectation of } Y \\
& \text { We know the covariance } \\
& \text { matrix of } X \\
& \Sigma_{x}=E\left((X-E(X))(X-E(X))^{T}\right) \\
& \Sigma_{x}=\left(\begin{array}{cccc}
\sigma_{x_{1}}^{2} & \sigma_{x_{1} x_{2}} & \cdots & \sigma_{x_{1} x_{n}} \\
\sigma_{x_{1} x_{2}} & \sigma_{x_{2}}^{2} & \cdots & \sigma_{x_{2} x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{x_{1} x_{n}} & \cdots & \cdots & \sigma_{x_{2}}^{2}
\end{array}\right)
\end{aligned}
$$

How we obtain the covariance matrix of Y ?

Example: we have measured angles and distances and we know the the precision of the instrument. What is the precision of the measured point coordinates?

Variance propagation law

$$
\begin{aligned}
& E\left(\Sigma_{Y}\right)=E\left((Y-E(Y))(Y-E(Y))^{T}\right)= \\
& E\left(\left(Y-A_{0}-A E(X)\right)\left(Y-A_{0}-A E(X)\right)^{T}\right)= \\
& E\left(\left(A_{0}+A X-A_{0}-A E(X)\right)\left(A_{0}+A X-A_{0}-A E(X)\right)^{T}\right)= \\
& E\left((A X-A E(X))(A X-A E(X))^{T}\right)= \\
& A E\left((X-E(X))(X-E(X))^{T}\right) A^{T}= \\
& A E\left(\Sigma_{x}\right) A^{T}
\end{aligned}
$$

Examples

$$
\begin{aligned}
\Sigma_{x} & =\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right)=\left(\begin{array}{ll}
3.0869 & 1.3226 \\
1.3226 & 1.8432
\end{array}\right) \\
y_{1} & =x_{2}-x_{1} \\
y_{2} & =x_{2}+x_{1}
\end{aligned}
$$

Calculate

- Standard deviation of x_{1} and x_{2}
- Standard deviations of y_{1} and y_{2}
- Covariance matrix of y
- Correlation of y_{1} and y_{2}

$$
\begin{aligned}
x & =s \cdot \cos (\alpha) \\
y & =s \cdot \sin (\alpha) \\
\Sigma_{\alpha, s} & =\left(\begin{array}{cc}
\sigma_{\alpha}^{2} & \sigma_{\alpha s} \\
\sigma_{a s} & \sigma_{s}^{2}
\end{array}\right)=\left(\begin{array}{cc}
2.46 \mathrm{~d}-8 & 0 \\
0 & 25 \mathrm{~d}-6
\end{array}\right) \\
\alpha & =\frac{\pi}{6}[\mathrm{rad}] \\
s & =20 \mathrm{~m}
\end{aligned}
$$

- Standard deviation of α and s
- Standard deviations of x and y
- Covariance matrix of x and y

In the case of non-linear equations

$$
\begin{aligned}
& Y=F(X) \\
& \left\{\left.\begin{array}{ccc}
y_{1} & = & f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
y_{2} & = & f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots & & \vdots \\
y_{c} & = & f_{c}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array} \right\rvert\,\right. \\
& Y=F\left(X_{0}\right)+J\left(X-X_{0}\right) \\
& \left\{\left.\begin{array}{ccc}
y_{1}= & f_{1}\left(x_{10}, x_{20}, \ldots, x_{n_{0}}\right)+ & \frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}-x_{1_{0}}\right)+\cdots+\frac{\partial f_{1}}{\partial x_{n}}\left(x_{n}-x_{n_{0}}\right) \\
y_{2}= & f_{2}\left(x_{1_{0}}, x_{20}, \ldots, x_{n_{0}}\right)+ & \frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}-x_{1_{0}}\right)+\cdots+\frac{\partial \partial_{2}}{\partial x_{n}}\left(x_{n}-x_{n_{0}}\right) \\
\vdots & \vdots & \vdots \\
y_{c}= & f_{c}\left(x_{1_{0}}, x_{20}, \ldots, x_{n_{0}}\right)+ & \frac{\partial f_{c}}{\partial x_{1}}\left(x_{1}-x_{1_{0}}\right)+\cdots+\frac{\partial f_{c}}{\partial x_{n}}\left(x_{n}-x_{n_{0}}\right)
\end{array} \right\rvert\,\right. \\
& J=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{c}}{\partial x_{1}} & \frac{\partial f_{c}}{\partial x_{2}} & \cdots & \frac{\partial f_{c}}{\partial x_{n}}
\end{array}\right) \\
& \Sigma_{y}=J \Sigma_{x} J^{T}
\end{aligned}
$$

Variance propagation in least squares process: Observation equation model

Covariance matrix of adjusted parameters

$$
\begin{aligned}
& x-x_{0}=\left(A^{T} P A\right)^{-1} A^{T} P y \\
& \Sigma_{y}=B C_{\ell} B^{T}=\Sigma_{\ell}, \text { kun } \quad B=-I \\
& J=\left(A^{T} P A\right)^{-1} A^{T} P \\
& J \Sigma_{\ell} J^{T}=\left(A^{T} P A\right)^{-1} A^{T} P \sigma_{0}^{2} Q_{\ell} P A\left(A^{T} P A\right)^{-1}=\sigma_{0}^{2}\left(A^{T} P A\right)^{-1}
\end{aligned}
$$

$$
\Sigma_{x}=\sigma_{0}^{2} N^{-1}=\sigma_{0}^{2} Q_{x}
$$

Note! This can be calculated before measurements, if we know the measurement method and instruments (P) and the structure of network (A)

Variance propagation in least squares process: observation equation model

Covariance and cofactor matrix of adjusted observations:

$$
\begin{array}{cc}
\hat{y}=A \hat{x}, & \Sigma_{x}=\sigma_{0}^{2} N^{-1}=\sigma_{0}^{2} Q_{x} \\
\Sigma_{\hat{\imath}}=A \Sigma_{\hat{x}} A^{T} & Q_{\hat{\imath}}=A Q_{\hat{x}} A^{T}
\end{array}
$$

Covariance matrix of adjusted observations:
$v=\hat{\ell}-\ell$
$\Sigma_{v}=\Sigma_{\ell}-\Sigma_{\hat{\ell}} \quad \mathrm{Q}_{v}=\mathrm{Q}_{\ell}-Q_{\hat{\ell}}$
Note! Theses can be calculated before measurements, if we know the measurement method and instruments (P) and the structure of network (A)

Axes of hyper-ellipsoid

Eigenvalues and eigen

$$
\text { vectors to } \Sigma_{\hat{x}}
$$

λ :s are variances of z (eigen values) and squares of the semi axes of hyper-ellipsoid

$$
\begin{aligned}
& P\left[(x-\hat{x})^{T} \Sigma_{\hat{x}}^{-1}(x-\hat{x}) \leq u F_{\alpha, u, r}\right] \\
& P\left[(x-\hat{x})^{T} R R^{T} C_{\hat{x}}^{-1} R R^{T}(x-\hat{x}) \leq u F_{\alpha, u, r}\right]=1-\alpha \\
& P\left[z^{T} \Lambda^{-1} z \leq u F_{\alpha, u, r}\right]=1-\alpha \\
& P\left[\frac{z_{i}^{2}}{\sqrt{\lambda_{1}^{2}}}+\frac{z_{2}^{2}}{\sqrt{\lambda_{2}^{2}}}+\cdots+\frac{z_{2}^{2}}{\sqrt{\lambda_{i}^{2}}} \leq u F_{\alpha, u, r}\right]=1-\alpha
\end{aligned}
$$

Scaling the standard error ellipsoids

The size of the error ellisoid depends on the number of parameters u, redundance of the adjustment r and the chosen probability. The scaling factor is

$$
\sqrt{u F_{\alpha, u, r}}
$$

If scaling factor is 1 , we have standard error ellipsoids with semiaxes $\sqrt{\lambda_{i}}$

Confidence regions

Calculating error ellipses

In network point calculated to corresponding part of the covariance matrix (3×3 in 3D network)

Calculate eigen values and eigen vectors for the part of the covariance matrix

The size and direction of ellipses depend on the reference

Standard deviations

Relative error ellipses (ellipsoids) are error ellipses for coordinate difference $D X$

$$
\Sigma_{\Delta X}=D \Sigma_{X} D^{T} \quad D=\left(\begin{array}{rrrrrr}
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & 1
\end{array}\right)
$$

